
Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstractions for Fault-Tolerant Distributed System
Verification

Lee Pike1

Reporting joint work with
Jeffrey Maddalon1 Paul Miner1 Alfons Geser2

1Formal Methods Group, NASA Langley Research Center
{lee.s.pike, j.m.maddalon, paul.s.miner}@nasa.gov

2National Institute of Aerospace
geser@nianet.org

September 13, 2004

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Introduction

Four Abstractions
Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Conclusions & Future Work

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Desiderata

I The formal specification and verification of safety-critical
embedded systems.

I In particular, SPIDER, an ultra-reliable embedded platform,
under development at the NASA Langley Research Center.

I Systematic and reusable specifications.

I Specifications that facilitate proof in higher-order mechanical
theorem-provers.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Desiderata

I The formal specification and verification of safety-critical
embedded systems.

I In particular, SPIDER, an ultra-reliable embedded platform,
under development at the NASA Langley Research Center.

I Systematic and reusable specifications.

I Specifications that facilitate proof in higher-order mechanical
theorem-provers.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Desiderata

I The formal specification and verification of safety-critical
embedded systems.

I In particular, SPIDER, an ultra-reliable embedded platform,
under development at the NASA Langley Research Center.

I Systematic and reusable specifications.

I Specifications that facilitate proof in higher-order mechanical
theorem-provers.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Desiderata

I The formal specification and verification of safety-critical
embedded systems.

I In particular, SPIDER, an ultra-reliable embedded platform,
under development at the NASA Langley Research Center.

I Systematic and reusable specifications.

I Specifications that facilitate proof in higher-order mechanical
theorem-provers.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Principles of Abstraction

Good abstractions

I Dispose of irrelevant detail.

I Are simple, general, and comprehensible.

Example: A set abstracts a sequence when the relevant property is
simply membership.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Level of Abstraction of Specifications

I Behavioral system specification.

I Fault-tolerant distributed protocol specification, e.g.,
I Passing data
I Diagnosing faults
I Synchronizing local clocks
I Start-up/Restart
I Reintegration

I NOT protocol scheduling.

I NOT block-level processor design.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Level of Abstraction of Specifications

I Behavioral system specification.
I Fault-tolerant distributed protocol specification, e.g.,

I Passing data
I Diagnosing faults
I Synchronizing local clocks
I Start-up/Restart
I Reintegration

I NOT protocol scheduling.

I NOT block-level processor design.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Level of Abstraction of Specifications

I Behavioral system specification.
I Fault-tolerant distributed protocol specification, e.g.,

I Passing data
I Diagnosing faults
I Synchronizing local clocks
I Start-up/Restart
I Reintegration

I NOT protocol scheduling.

I NOT block-level processor design.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Contributions

Our contribution is the organization, explanation, and library
support in PVS of the abstractions described herein.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

What is essential about a message in a fault tolerance
context?

I Whether it is corrupted or not.

I Whether or not a process can detect this corruption.

sender receiver

msg

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

What is essential about a message in a fault tolerance
context?

I Whether it is corrupted or not.

I Whether or not a process can detect this corruption.

sender receiver

msg

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Message Classifications

Benign Message Any non-faulty process receiving it
could determine the message is corrupted, e.g.,

I The message arrives at the wrong time
(in a synchronized system).

I The message fails error-detection.

Accepted Message Any other message.

Note An accepted message is not necessarily an uncorrupted
message.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Message Classifications

Benign Message Any non-faulty process receiving it
could determine the message is corrupted, e.g.,

I The message arrives at the wrong time
(in a synchronized system).

I The message fails error-detection.

Accepted Message Any other message.

Note An accepted message is not necessarily an uncorrupted
message.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Message Classifications

Benign Message Any non-faulty process receiving it
could determine the message is corrupted, e.g.,

I The message arrives at the wrong time
(in a synchronized system).

I The message fails error-detection.

Accepted Message Any other message.

Note An accepted message is not necessarily an uncorrupted
message.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Message Classifications

Benign Message Any non-faulty process receiving it
could determine the message is corrupted, e.g.,

I The message arrives at the wrong time
(in a synchronized system).

I The message fails error-detection.

Accepted Message Any other message.

Note An accepted message is not necessarily an uncorrupted
message.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Two Ways Faults are Abstracted

Fault-Location Abstractions Where in a system the fault occurs.

Fault-Type Abstractions How a system is affected by the fault.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Two Ways Faults are Abstracted

Fault-Location Abstractions Where in a system the fault occurs.

Fault-Type Abstractions How a system is affected by the fault.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Two Ways Faults are Abstracted

Fault-Location Abstractions Where in a system the fault occurs.

Fault-Type Abstractions How a system is affected by the fault.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

process

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving

process

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving

process

computing

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving sending

process

computing

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving sending

process

computing

fault
fault fault

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving sending

process

computing

fault faultfault

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

The Hybrid Fault Model

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

The Hybrid Fault Model

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process
v

v

v

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

The Hybrid Fault Model

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process

err

err

err

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

The Hybrid Fault Model

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process
v’

v’

v’

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

The Hybrid Fault Model

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process

v

v’’

v’

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Comparing Incoming Messages to Mask Faults

I In fault-tolerant protocols, processes receive redundant
messages from other processes.

I Messages are compared to ensure the selected message is
within the range of those sent by non-faulty processes.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Comparing Incoming Messages to Mask Faults

I In fault-tolerant protocols, processes receive redundant
messages from other processes.

I Messages are compared to ensure the selected message is
within the range of those sent by non-faulty processes.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Two Means to Compare Messages

Majority Voting The item that shows up most often is chosen (if
one exists).

Middle-Value Selection The sequence of messages is put into
sorted order; then the item with the middle index is
chosen.

Majority

If a majority value exists, then majority voting and middle-value
selection are equivalent.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Two Means to Compare Messages

Majority Voting The item that shows up most often is chosen (if
one exists).

Middle-Value Selection The sequence of messages is put into
sorted order; then the item with the middle index is
chosen.

Majority of {1, 1, 1, 2, 2 } is 1.

If a majority value exists, then majority voting and middle-value
selection are equivalent.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Two Means to Compare Messages

Majority Voting The item that shows up most often is chosen (if
one exists).

Middle-Value Selection The sequence of messages is put into
sorted order; then the item with the middle index is
chosen.

Middle-Value of {1, 1, 3, 4, 7 } is 3.

If a majority value exists, then majority voting and middle-value
selection are equivalent.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Two Means to Compare Messages

Majority Voting The item that shows up most often is chosen (if
one exists).

Middle-Value Selection The sequence of messages is put into
sorted order; then the item with the middle index is
chosen.

If a majority value exists, then majority voting and middle-value
selection are equivalent.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

A Relational Model of Communication

A relational specification of a protocol is more abstract than a
functional specification:
Example:

Assume: Most of the values in a majority vote are from good
processes.

Prove: The voted value is from a good process.

A functional model of the protocol can then be shown to satisfy
the preconditions of the relational model.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

A Relational Model of Communication

A relational specification of a protocol is more abstract than a
functional specification:
Example:

Assume: Most of the values in a majority vote are from good
processes.

Prove: The voted value is from a good process.

A functional model of the protocol can then be shown to satisfy
the preconditions of the relational model.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

A Relational Model of Communication

A relational specification of a protocol is more abstract than a
functional specification:
Example:

Assume: Most of the values in a majority vote are from good
processes.

Prove: The voted value is from a good process.

A functional model of the protocol can then be shown to satisfy
the preconditions of the relational model.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

A Relational Model of Communication

A relational specification of a protocol is more abstract than a
functional specification:
Example:

Assume: Most of the values in a majority vote are from good
processes.

Prove: The voted value is from a good process.

A functional model of the protocol can then be shown to satisfy
the preconditions of the relational model.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Benefits of a Relational Model

I A single relational model can be implemented by different
functional specifications.

I Independent of the architecture and fault-classifications.

I Simplifies specifications and proofs in the functional models.

I Maximizes proof-reuse between functional models.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Benefits of a Relational Model

I A single relational model can be implemented by different
functional specifications.

I Independent of the architecture and fault-classifications.

I Simplifies specifications and proofs in the functional models.

I Maximizes proof-reuse between functional models.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Benefits of a Relational Model

I A single relational model can be implemented by different
functional specifications.

I Independent of the architecture and fault-classifications.

I Simplifies specifications and proofs in the functional models.

I Maximizes proof-reuse between functional models.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Benefits of a Relational Model

I A single relational model can be implemented by different
functional specifications.

I Independent of the architecture and fault-classifications.

I Simplifies specifications and proofs in the functional models.

I Maximizes proof-reuse between functional models.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Benefits of a Relational Model

I A single relational model can be implemented by different
functional specifications.

I Independent of the architecture and fault-classifications.

I Simplifies specifications and proofs in the functional models.

I Maximizes proof-reuse between functional models.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Relational Models of Inexact and Exact Sampling

We formulate two similar relational abstractions determined by the
kind of function sampled.

Inexact Function Approximating (sampling) a function’s value.
Example: Temperature (a function of time) is
approximated by a digital thermometer.

Exact Function Computing some function exactly.
Example: Ordering a set of values.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Relational Models of Inexact and Exact Sampling

We formulate two similar relational abstractions determined by the
kind of function sampled.

Inexact Function Approximating (sampling) a function’s value.
Example: Temperature (a function of time) is
approximated by a digital thermometer.

Exact Function Computing some function exactly.
Example: Ordering a set of values.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Abstracting Messages
Abstracting Faults
Abstracting Fault-Masking
Abstracting Communication

Relational Models of Inexact and Exact Sampling

We formulate two similar relational abstractions determined by the
kind of function sampled.

Inexact Function Approximating (sampling) a function’s value.
Example: Temperature (a function of time) is
approximated by a digital thermometer.

Exact Function Computing some function exactly.
Example: Ordering a set of values.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Ongoing Work

I On-going development of a generalized fault-tolerance library
of results in PVS.

I Joint work with Holger Pfeifer (Univ. of Ulm) to
I Extend these abstractions (e.g., a more refined fault model).
I Verify TTA using these abstractions and our library.

Software engineering didn’t succeed without good abstractions and
library support.

Neither will theorem-proving.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Ongoing Work

I On-going development of a generalized fault-tolerance library
of results in PVS.

I Joint work with Holger Pfeifer (Univ. of Ulm) to
I Extend these abstractions (e.g., a more refined fault model).
I Verify TTA using these abstractions and our library.

Software engineering didn’t succeed without good abstractions and
library support.

Neither will theorem-proving.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Ongoing Work

I On-going development of a generalized fault-tolerance library
of results in PVS.

I Joint work with Holger Pfeifer (Univ. of Ulm) to
I Extend these abstractions (e.g., a more refined fault model).
I Verify TTA using these abstractions and our library.

Software engineering didn’t succeed without good abstractions and
library support.

Neither will theorem-proving.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Outline
Introduction

Four Abstractions
Conclusions & Future Work

Links

PVS Files for the Paper

http://shemesh.larc.nasa.gov/fm/spider/tphols2004/
Google: tphols abstractions

SPIDER Project

http://shemesh.larc.nasa.gov/fm/spider/
Google: formal methods spider

NASA Langley Research Center Formal Methods Group

http://shemesh.larc.nasa.gov/fm/
Google: nasa formal methods

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

http://shemesh.larc.nasa.gov/fm/spider/tphols2004/
http://shemesh.larc.nasa.gov/fm/spider/
http://shemesh.larc.nasa.gov/fm/

Appendix
Beamer
Formalizations

The Beamer and PGF Classes for LATEX

This presentation brought to you by the wonderful Beamer class.

Beamer Website

http://latex-beamer.sourceforge.net/
Google: beamer class

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

http://latex-beamer.sourceforge.net/

Appendix
Beamer
Formalizations

Formalizing Messages

Let m ∈ MSG :

Constructors Extractors Recognizers

accepted msg [m] value accepted msg?
benign msg none benign msg?

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

Formalizing Faults: A Send Function

send(msg map, sender status, s, r)
df
=

accepted msg [msg map(s)] : sender status(s) = good
benign msg : sender status(s) = ben

sym msg(msg map(s), s) : sender status(s) = sym
asym msg(msg map(s), s, r) : sender status(s) = asym

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

Formalizing Majority Voting Relationally

ms : V → N

maj set(ms)
df
= {v | 2×ms(v) > |ms|}

majority(ms)
df
=

{
no maj : maj set(ms) = ∅
ε(maj set(ms)) : otherwise

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

Formalizing Middle-Value Selection Relationally

lower filter(ms, v)
df
= λi .

{
ms(i) : i � v

0 : otherwise

upper filter(ms, v)
df
= λi .

{
ms(i) : v � i

0 : otherwise

mid val set(ms)
df
={

v

∣∣∣∣ 2× |lower filter(ms, v)| > |ms| ∧
2× |upper filter(ms, v)| ≥ |ms|

}

middle value(ms)
df
= ε(mid val set(ms))

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

Middle-Value Selection and Majority Voting Equivalence

Theorem (Middle Value is Majority)

majority(ms) 6= no maj implies middle value(ms) = majority(ms).

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

The Exact Validity Property

Exact Validity: Exact Validity: A good receiver’s fault-masking
vote is equal to the value of the function good processes compute.

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

Pre-Conditions to Satisfy Exact Validity

First, most of the sending processes must be good.

majority good(good senders, eligible senders)
df
=

2× |good senders| > |eligible senders| ∧
good senders ⊆ eligible senders

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

Pre-Conditions to Satisfy Exact Validity

Second, the all good sending processes must send correctly.

exact message error(good senders, ideal , actual)
df
=

∀s. s ∈ good senders =⇒ ideal(s) = actual(s)

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

Pre-Conditions to Satisfy Exact Validity

Third, all good sending processes compute the same function.

function agreement(good senders, ideal)
df
=

∀s1, s2. s1 ∈ good senders ∧ s2 ∈ good senders

=⇒ ideal(s1) = ideal(s2)

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

A Technical Detail...

make bag(eligible senders, actual)
df
=

λv .
∣∣ {s | s ∈ eligible senders ∧ actual(s) = v}

∣∣

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

Appendix
Beamer
Formalizations

Formally Stating the Exact Validity Theorem

exact validity(eligible senders, good senders, ideal , actual)
df
=

∀s. s ∈ good senders =⇒
ideal(s) = majority(make bag(eligible senders, actual))

Theorem (Exact Validity)

majority good(good senders, eligible senders) ∧
exact message error(good senders, ideal , actual)) ∧
message agreement(good senders, ideal)

=⇒
exact validity(eligible senders, good senders, ideal , actual)

Lee Pike et. al. Abstractions for Fault-Tolerant Distributed System Verification

	Outline
	Introduction
	Four Abstractions
	Abstracting Messages
	Abstracting Faults
	Abstracting Fault-Masking
	Abstracting Communication

	Conclusions & Future Work
	Appendix
	Beamer
	Formalizations

