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Model-Checking 101

Model-checking is a way automatically to verify hardware or

software. For a property P,
» A Model-checking program checks to ensure that every
state on each execution path satisfies P.

» Returns a counter-example otherwise.
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» Model-checking is expensive (both in space and time).
» Most model-checkers can handle only finite models.

» The specification must be encoded as a state machine,
and properties must be stated in a restricted language

(temporal logic).
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» Dramatic improvements over the years (in theory and
practice) have scaled-up automated verification of
real-world systems.

> Relatively less user expertise & user interaction required
than for theorem-proving.

» Many industrial problems fit the “model-checking
paradigm.”



Some Well-Known Model-Checkers Quenview of <RI
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» Action Language Verifier (discrete-time specification) el i
A d
<http://www.cs.ucsb.edu/ bultan/composite/> Vz,ti?ir::éin

» MOCHA (symbolic)
<http://www-cad.eecs.berkeley.edu/ "mocha/>

» NuSMV (symbolic, bounded)
<http://nusmv.irst.itc.it/>

» SMART (symbolic—MDD's)
<http://www.cs.ucr.edu/"ciardo/SMART/index.html>

» SPIN (explicit-state)
<http://spinroot.com/spin/whatispin.html>

» Uppaal (timed automata)
http://www.uppaal.com/

N.B. This list is not exhaustive (nor representative)!
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About SAL

The Symbolic Analysis Laboratory (SAL) is an integrated
formal verification environment.

» Developed by SRI, International (the makers of PVS).

» Publicly available at <http://sal.csl.sri.com/>
(for noncommercial use).
» Available for:

» Linux

» Solaris

» MacOS X

» Cygwin (for Windows)
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http://sal.csl.sri.com/
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SAL: A
» One language, many tools. Verification
. K Framework
» Designed for extension: model-checkers are Scheme
scripts.
» Plug 'n play:

» Can be used with multiple decision procedures
(e.g., CVC Lite, CVC, SVC, UCLID, etc.).

» Can be used with multiple SAT solvers
(e.g., ICS, Siege, zChaff, Berkmin, etc.).



(Finite-State) Model-checkers

» Symbolic model-checker (BDDs) (MDDs in the future)
» Witness symbolic model-checker
» Bounded model-checker

» (Explicit-state model-checker in the future)

All of which are “state-of-the-art”
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Other Tools

» Simulator

» Parser
» Infinite-state bounded model-checker!
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Overview

» Building block: the module
» Typed
» Synchronous and asynchronous composition of modules

» XML abstract syntax exists for the language
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The language is typed, following PVS typing conventions
» Finite Types (e.g., booleans, finite arrays, records, finite
ranges of Z, tuples)
» Infinite types (e.g., R, N)
» Subtyping possible

The Language



Variables

» With respect to a module, variables can be
» Local
» Global
> Input
» Output
» Modules can update global, local, and output variables

» Communication between modules via shared variables
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Other Considerations

» Uninterpreted constants & functions
» Interpreted constants & functions
» Quantification over finite types

» Synchronous and asynchronous composition operators
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PC: TYPE = {sleeping, trying, critical};
job: MODULE =
BEGIN
INPUT y2 : NATURAL
OUTPUT y1 : NATURAL
LOCAL pc : PC
INITIALIZATION
pc = sleeping; Examples
yl =20
TRANSITION
L

pc = sleeping --> y1’ y2 + 1;
pc’ = trying

[
pc = trying AND (y2 = 0 OR y1 < y2) --> pc’ = critical
[

critical --> y1’ 0;
pc’ = sleeping

pc

END;
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» Asynchronous composition:
system: MODULE = reader [] writer;
» Synchronous composition:
system: MODULE = reader || writer;
Examples

» Parameterized composition with renaming:

IDENTITY: TYPE

[1 .. 5];

system: MODULE =
WITH OUTPUT time_out: TIMEOUT_ARRAY
([] (i: IDENTITY): (RENAME timeout TO time_out[i]
IN process[i]));



Property Specification Language e s
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» CTL or LTL, depending on the model checker

» Examples:

> reachable: THEOREM Examples
system |- (FORALL (i : Process_Id): EF(pc[i] = cs));

> mutex: THEOREM
system |- G(NOT(pc.1 = critical AND pc.2 = critical));



Invariants

» Finding inductive invariants that hold in every state for
transition systems is hard (especially in infinite-state
systems).

» Sometimes finding an invariant that holds after k steps
is easier.

» Intuition:

» A subroutine is guaranteed to complete in k steps and
guarantees some invariant property.

» Reduces the number of unreachable states considered in
the inductive hypothesis.
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k-Induction

» k-Induction is a generalization of induction (for
transition systems):
» k-Induction Principle: to show that /(s) holds for all
reachable states s, show
Base Case For all trajectories of length k that begin
with an initial state, show each state of
the trajectory satisfies /.

Induction Step For all trajectories of length k such that
I(s;) for 0 < i < k —1, show that for each
state sk, /(sk).

» Induction is the special case where k =1
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Recent Successes

» The verification of a real-time model of the TTP/C
startup protocol using sal-inf-bmc
Bruno Dutertre & Maria Sorea (SRI)

> The efficient generation of test-cases to meet a
coverage criterion
Grgoire Hamon (Chalmers),
Leonardo de Moura & John Rushby (SRI)

» The verification of a real-time model of a reintegration
protocol using sal-inf-bmc
Lee Pike (NASA)

» Many other nontrivial examples
<http://sal.csl.sri.com/examples.shtml>
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http://sal.csl.sri.com/examples.shtml

PVS & SAL: When to Use What

» PVS may be preferable if ...

» You are doing “real math” (calculus, number theory,
algebra, etc.).

» You want to write abstract specifications &
requirements.

» You want to reason at the “requirements level.”

» SAL may be preferable if ...

» Your specification is a state machine.

> you want to prove invariants over infinite-state systems,
relative to a decidable theory (sal-inf-bmc).

» You can write specifications in a temporal logic.

» You want to reason at the “implementation level.”

In practice, these tools will cohabit a formal verification
endeavor. . .
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Future Work

» Tighter integration with PVS
» Type-checking

» Additional optimizations & improvements

SAL 2.4 to be released soon!
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