Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Overview of SRI's
Symbolic Analysis Laboratory (SAL)

Lee Pike

June 3, 2005
lee.s.pike@nasa.gov

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to Automated Verification

SAL: A Verification Framework

The Language

Examples

The Future...

Model-Checking 101

Model-checking is a way automatically to verify hardware or

software. For a property P,
» A Model-checking program checks to ensure that every
state on each execution path satisfies P.

» Returns a counter-example otherwise.

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike
Introduction to

Automated
Verification

No Free Lunch D

Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

» Model-checking is expensive (both in space and time).
» Most model-checkers can handle only finite models.

» The specification must be encoded as a state machine,
and properties must be stated in a restricted language

(temporal logic).

Benefits of Model-Checking Quenview of <RI

Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

» Dramatic improvements over the years (in theory and
practice) have scaled-up automated verification of
real-world systems.

> Relatively less user expertise & user interaction required
than for theorem-proving.

» Many industrial problems fit the “model-checking
paradigm.”

Some Well-Known Model-Checkers Quenview of <RI

Laboratory (SAL)

Lee Pike
» Action Language Verifier (discrete-time specification) el i
A d
<http://www.cs.ucsb.edu/ bultan/composite/> Vz,ti?ir::éin

» MOCHA (symbolic)
<http://www-cad.eecs.berkeley.edu/ "mocha/>

» NuSMV (symbolic, bounded)
<http://nusmv.irst.itc.it/>

» SMART (symbolic—MDD's)
<http://www.cs.ucr.edu/"ciardo/SMART/index.html>

» SPIN (explicit-state)
<http://spinroot.com/spin/whatispin.html>

» Uppaal (timed automata)
http://www.uppaal.com/

N.B. This list is not exhaustive (nor representative)!

http://www.cs.ucsb.edu/~bultan/composite/
http://www-cad.eecs.berkeley.edu/~mocha/
http://nusmv.irst.itc.it/
http://www.cs.ucr.edu/~ciardo/SMART/index.html
http://spinroot.com/spin/whatispin.html
http://www.uppaal.com/

About SAL

The Symbolic Analysis Laboratory (SAL) is an integrated
formal verification environment.

» Developed by SRI, International (the makers of PVS).

» Publicly available at <http://sal.csl.sri.com/>
(for noncommercial use).
» Available for:

» Linux

» Solaris

» MacOS X

» Cygwin (for Windows)

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

SAL: A
Verification
Framework

http://sal.csl.sri.com/

Overview of SRI's

The SAL PhllOSOphy Symbolic Analysis

Laboratory (SAL)

Lee Pike
SAL: A
» One language, many tools. Verification
. K Framework
» Designed for extension: model-checkers are Scheme
scripts.
» Plug 'n play:

» Can be used with multiple decision procedures
(e.g., CVC Lite, CVC, SVC, UCLID, etc.).

» Can be used with multiple SAT solvers
(e.g., ICS, Siege, zChaff, Berkmin, etc.).

(Finite-State) Model-checkers

» Symbolic model-checker (BDDs) (MDDs in the future)
» Witness symbolic model-checker
» Bounded model-checker

» (Explicit-state model-checker in the future)

All of which are “state-of-the-art”

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

SAL: A
Verification
Framework

Other Tools

» Simulator

» Parser
» Infinite-state bounded model-checker!

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

SAL: A
Verification
Framework

Overview

» Building block: the module
» Typed
» Synchronous and asynchronous composition of modules

» XML abstract syntax exists for the language

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

The Language

Overview of SRI's
Types Symbolic Analysis
Laboratory (SAL)

Lee Pike

The language is typed, following PVS typing conventions
» Finite Types (e.g., booleans, finite arrays, records, finite
ranges of Z, tuples)
» Infinite types (e.g., R, N)
» Subtyping possible

The Language

Variables

» With respect to a module, variables can be
» Local
» Global
> Input
» Output
» Modules can update global, local, and output variables

» Communication between modules via shared variables

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

The Language

Other Considerations

» Uninterpreted constants & functions
» Interpreted constants & functions
» Quantification over finite types

» Synchronous and asynchronous composition operators

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

The Language

A Module (Bakery Example) Symbatic Anahes

Laboratory (SAL)

Lee Pike
PC: TYPE = {sleeping, trying, critical};
job: MODULE =
BEGIN
INPUT y2 : NATURAL
OUTPUT y1 : NATURAL
LOCAL pc : PC
INITIALIZATION
pc = sleeping; Examples
yl =20
TRANSITION
L

pc = sleeping --> y1’ y2 + 1;
pc’ = trying

[
pc = trying AND (y2 = 0 OR y1 < y2) --> pc’ = critical
[

critical --> y1’ 0;
pc’ = sleeping

pc

END;

Overview of SRI's

MOdUle CompOSItlon Symbolic Analysis

Laboratory (SAL)

Lee Pike
» Asynchronous composition:
system: MODULE = reader [] writer;
» Synchronous composition:
system: MODULE = reader || writer;
Examples

» Parameterized composition with renaming:

IDENTITY: TYPE

[1 .. 5];

system: MODULE =
WITH OUTPUT time_out: TIMEOUT_ARRAY
([] (i: IDENTITY): (RENAME timeout TO time_out[i]
IN process[i]));

Property Specification Language e s

Laboratory (SAL)

Lee Pike

» CTL or LTL, depending on the model checker

» Examples:

> reachable: THEOREM Examples
system |- (FORALL (i : Process_Id): EF(pc[i] = cs));

> mutex: THEOREM
system |- G(NOT(pc.1 = critical AND pc.2 = critical));

Invariants

» Finding inductive invariants that hold in every state for
transition systems is hard (especially in infinite-state
systems).

» Sometimes finding an invariant that holds after k steps
is easier.

» Intuition:

» A subroutine is guaranteed to complete in k steps and
guarantees some invariant property.

» Reduces the number of unreachable states considered in
the inductive hypothesis.

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Examples

k-Induction

» k-Induction is a generalization of induction (for
transition systems):
» k-Induction Principle: to show that /(s) holds for all
reachable states s, show
Base Case For all trajectories of length k that begin
with an initial state, show each state of
the trajectory satisfies /.

Induction Step For all trajectories of length k such that
I(s;) for 0 < i < k —1, show that for each
state sk, /(sk).

» Induction is the special case where k =1

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Examples

Recent Successes

» The verification of a real-time model of the TTP/C
startup protocol using sal-inf-bmc
Bruno Dutertre & Maria Sorea (SRI)

> The efficient generation of test-cases to meet a
coverage criterion
Grgoire Hamon (Chalmers),
Leonardo de Moura & John Rushby (SRI)

» The verification of a real-time model of a reintegration
protocol using sal-inf-bmc
Lee Pike (NASA)

» Many other nontrivial examples
<http://sal.csl.sri.com/examples.shtml>

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

The Future...

http://sal.csl.sri.com/examples.shtml

PVS & SAL: When to Use What

» PVS may be preferable if ...

» You are doing “real math” (calculus, number theory,
algebra, etc.).

» You want to write abstract specifications &
requirements.

» You want to reason at the “requirements level.”

» SAL may be preferable if ...

» Your specification is a state machine.

> you want to prove invariants over infinite-state systems,
relative to a decidable theory (sal-inf-bmc).

» You can write specifications in a temporal logic.

» You want to reason at the “implementation level.”

In practice, these tools will cohabit a formal verification
endeavor. . .

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

The Future...

Future Work

» Tighter integration with PVS
» Type-checking

» Additional optimizations & improvements

SAL 2.4 to be released soon!

Overview of SRI's
Symbolic Analysis
Laboratory (SAL)

Lee Pike

The Future...

	Introduction to Automated Verification
	SAL: A Verification Framework
	The Language
	Examples
	The Future...

