
Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Overview of SRI’s
Symbolic Analysis Laboratory (SAL)

Lee Pike

June 3, 2005
lee.s.pike@nasa.gov

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Introduction to Automated Verification

SAL: A Verification Framework

The Language

Examples

The Future...

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Model-Checking 101

Model-checking is a way automatically to verify hardware or
software. For a property P,

I A Model-checking program checks to ensure that every
state on each execution path satisfies P.

I Returns a counter-example otherwise.

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

No Free Lunch

I Model-checking is expensive (both in space and time).

I Most model-checkers can handle only finite models.

I The specification must be encoded as a state machine,
and properties must be stated in a restricted language
(temporal logic).

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Benefits of Model-Checking

I Dramatic improvements over the years (in theory and
practice) have scaled-up automated verification of
real-world systems.

I Relatively less user expertise & user interaction required
than for theorem-proving.

I Many industrial problems fit the “model-checking
paradigm.”

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Some Well-Known Model-Checkers

I Action Language Verifier (discrete-time specification)
<http://www.cs.ucsb.edu/~bultan/composite/>

I MOCHA (symbolic)
<http://www-cad.eecs.berkeley.edu/~mocha/>

I NuSMV (symbolic, bounded)
<http://nusmv.irst.itc.it/>

I SMART (symbolic—MDD’s)
<http://www.cs.ucr.edu/~ciardo/SMART/index.html>

I SPIN (explicit-state)
<http://spinroot.com/spin/whatispin.html>

I Uppaal (timed automata)
http://www.uppaal.com/

N.B. This list is not exhaustive (nor representative)!

http://www.cs.ucsb.edu/~bultan/composite/
http://www-cad.eecs.berkeley.edu/~mocha/
http://nusmv.irst.itc.it/
http://www.cs.ucr.edu/~ciardo/SMART/index.html
http://spinroot.com/spin/whatispin.html
http://www.uppaal.com/

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

About SAL

The Symbolic Analysis Laboratory (SAL) is an integrated
formal verification environment.

I Developed by SRI, International (the makers of PVS).

I Publicly available at <http://sal.csl.sri.com/>
(for noncommercial use).

I Available for:
I Linux
I Solaris
I MacOS X
I Cygwin (for Windows)

http://sal.csl.sri.com/

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

The SAL Philosophy

I One language, many tools.

I Designed for extension: model-checkers are Scheme
scripts.

I Plug ’n play:
I Can be used with multiple decision procedures

(e.g., CVC Lite, CVC, SVC, UCLID, etc.).
I Can be used with multiple SAT solvers

(e.g., ICS, Siege, zChaff, Berkmin, etc.).

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

(Finite-State) Model-checkers

I Symbolic model-checker (BDDs) (MDDs in the future)

I Witness symbolic model-checker

I Bounded model-checker

I (Explicit-state model-checker in the future)

All of which are “state-of-the-art”

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Other Tools

I Simulator

I Parser

I Infinite-state bounded model-checker!

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Overview

I Building block: the module

I Typed

I Synchronous and asynchronous composition of modules

I XML abstract syntax exists for the language

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Types

The language is typed, following PVS typing conventions

I Finite Types (e.g., booleans, finite arrays, records, finite
ranges of Z, tuples)

I Infinite types (e.g., R, N)

I Subtyping possible

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Variables

I With respect to a module, variables can be
I Local
I Global
I Input
I Output

I Modules can update global, local, and output variables

I Communication between modules via shared variables

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Other Considerations

I Uninterpreted constants & functions

I Interpreted constants & functions

I Quantification over finite types

I Synchronous and asynchronous composition operators

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

A Module (Bakery Example)

PC: TYPE = {sleeping, trying, critical};

job: MODULE =

BEGIN

INPUT y2 : NATURAL

OUTPUT y1 : NATURAL

LOCAL pc : PC

INITIALIZATION

pc = sleeping;

y1 = 0

TRANSITION

[

pc = sleeping --> y1’ = y2 + 1;

pc’ = trying

[]

pc = trying AND (y2 = 0 OR y1 < y2) --> pc’ = critical

[]

pc = critical --> y1’ = 0;

pc’ = sleeping

]

END;

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Module Composition

I Asynchronous composition:
system: MODULE = reader [] writer;

I Synchronous composition:
system: MODULE = reader || writer;

I Parameterized composition with renaming:

IDENTITY: TYPE = [1 .. 5];
.
.
.

system: MODULE =

WITH OUTPUT time_out: TIMEOUT_ARRAY

([] (i: IDENTITY): (RENAME timeout TO time_out[i]

IN process[i]));

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Property Specification Language

I CTL or LTL, depending on the model checker
I Examples:

I reachable: THEOREM

system |- (FORALL (i : Process_Id): EF(pc[i] = cs));

I mutex: THEOREM

system |- G(NOT(pc.1 = critical AND pc.2 = critical));

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Invariants

I Finding inductive invariants that hold in every state for
transition systems is hard (especially in infinite-state
systems).

I Sometimes finding an invariant that holds after k steps
is easier.

I Intuition:
I A subroutine is guaranteed to complete in k steps and

guarantees some invariant property.
I Reduces the number of unreachable states considered in

the inductive hypothesis.

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

k-Induction

I k-Induction is a generalization of induction (for
transition systems):

I k-Induction Principle: to show that I (s) holds for all
reachable states s, show

Base Case For all trajectories of length k that begin
with an initial state, show each state of
the trajectory satisfies I .

Induction Step For all trajectories of length k such that
I (si) for 0 ≤ i ≤ k − 1, show that for each
state sk , I (sk).

I Induction is the special case where k = 1

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Recent Successes

I The verification of a real-time model of the TTP/C
startup protocol using sal-inf-bmc

Bruno Dutertre & Maria Sorea (SRI)

I The efficient generation of test-cases to meet a
coverage criterion

Grgoire Hamon (Chalmers),
Leonardo de Moura & John Rushby (SRI)

I The verification of a real-time model of a reintegration
protocol using sal-inf-bmc

Lee Pike (NASA)

I Many other nontrivial examples
<http://sal.csl.sri.com/examples.shtml>

http://sal.csl.sri.com/examples.shtml

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

PVS & SAL: When to Use What

I PVS may be preferable if . . .
I You are doing “real math” (calculus, number theory,

algebra, etc.).
I You want to write abstract specifications &

requirements.
I You want to reason at the “requirements level.”

I SAL may be preferable if . . .
I Your specification is a state machine.
I you want to prove invariants over infinite-state systems,

relative to a decidable theory (sal-inf-bmc).
I You can write specifications in a temporal logic.
I You want to reason at the “implementation level.”

In practice, these tools will cohabit a formal verification
endeavor. . .

Overview of SRI’s
Symbolic Analysis
Laboratory (SAL)

Lee Pike

Introduction to
Automated
Verification

SAL: A
Verification
Framework

The Language

Examples

The Future...

Future Work

I Tighter integration with PVS

I Type-checking

I Additional optimizations & improvements

SAL 2.4 to be released soon!

	Introduction to Automated Verification
	SAL: A Verification Framework
	The Language
	Examples
	The Future...

