
The Formal Verification of a Reintegration Protocol

Lee Pike

Formal Methods Group
NASA Langley Research Center

lee.s.pike@nasa.gov

February 8, 2005

(The contents herein are not necessarily endorsed by the United States

Government.)

Lee Pike The Formal Verification of a Reintegration Protocol

Acknowledgments

I The reintegration protocol was developed by Wilfredo
Torres-Pomales, Mahyar Malekpour, and Paul Miner.

I Wilfredo significantly helped me understand the protocol’s
behavior and requirements.

I Bruno Dutertre and Leonardo de Moura provided many
helpful suggestions about Timeout Automata and SAL.

Lee Pike The Formal Verification of a Reintegration Protocol

Timeout Automata1 (Semantics)

I A set of state variables V .

I A global clock, c ∈ R0≤.

I A set of timeout variables T such that for t ∈ T , t ∈ R0≤.

Construct a transition system 〈S , S0, →〉:
I States are mappings of all variables to values.
I Transitions are either time transitions or discrete transitions.

I Time transitions are enabled if the clock is less than all
timeouts. Updates clock to least timeout.

I Discrete transitions are enabled if the clock equals some
timeout. Updates state variables and timeouts.

1B. Dutertre and M. Sorea. “Timed Systems in SAL,” 2004.
Lee Pike The Formal Verification of a Reintegration Protocol

The Train-Gate-Controller

Train

t0
t1

x ≤ 5
approach

x := 0

c0
c1

z ≤ 1
approach

z := 0

t2
x ≤ 5

t3
x ≤ 5

in
x > 2

out

exit Gate

g0
g1

y ≤ 1

g2
g3

y ≤ 2

lower

y := 0

down

raise

y := 0

up
y ≥ 1

Controller

c2
c3

z ≤ 1

lower
z = 1

exit

z := 0

raise

Lee Pike The Formal Verification of a Reintegration Protocol

TGC SAL (Pseudo)-Specs: From Asynchrony to Synchrony

Asynchronous Composition

train: MODULE =

t state = t0

AND t to = time

-->

t state’ = t1;

flag1’ = TRUE;

msg1’ = approach;

controller: MODULE =

c state = c0

AND flag1 = TRUE

AND msg1 = approach

-->

c state’ = c1;

flag1’ = FALSE;

Synchronous Composition

train: MODULE =

t state = t0

AND t to = time

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = time

AND msg1’ = approach

-->

c state’ = c1;

Lee Pike The Formal Verification of a Reintegration Protocol

TGC SAL (Pseudo)-Specs: From Asynchrony to Synchrony

Asynchronous Composition

train: MODULE =

t state = t0

AND t to = time

-->

t state’ = t1;

flag1’ = TRUE;

msg1’ = approach;

controller: MODULE =

c state = c0

AND flag1 = TRUE

AND msg1 = approach

-->

c state’ = c1;

flag1’ = FALSE;

Synchronous Composition

train: MODULE =

t state = t0

AND t to = time

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = time

AND msg1’ = approach

-->

c state’ = c1;

Lee Pike The Formal Verification of a Reintegration Protocol

TGC SAL (Pseudo)-Specs: From Synchrony to Clockless

Clocked Semantics

train: MODULE =

t state = t0

AND t to = time

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = time

AND msg1’ = approach

-->

c state’ = c1;

Clockless Semantics

train: MODULE =

t state = t0

AND t to = min(t to, c to, g to)

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = min(t to, c to, g to)

AND msg1’ = approach

-->

c state’ = c1;

Lee Pike The Formal Verification of a Reintegration Protocol

TGC SAL (Pseudo)-Specs: From Synchrony to Clockless

Clocked Semantics

train: MODULE =

t state = t0

AND t to = time

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = time

AND msg1’ = approach

-->

c state’ = c1;

Clockless Semantics

train: MODULE =

t state = t0

AND t to = min(t to, c to, g to)

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = min(t to, c to, g to)

AND msg1’ = approach

-->

c state’ = c1;

Lee Pike The Formal Verification of a Reintegration Protocol

The Frame Property

time

P

tn tn+1tn − π

Lee Pike The Formal Verification of a Reintegration Protocol

The Peril of Time-Triggered Simulation

time
echoreint to

echo’

undetected

Lee Pike The Formal Verification of a Reintegration Protocol

The Peril of Time-Triggered Simulation

time
echo reint to’

echo’

undetected

Lee Pike The Formal Verification of a Reintegration Protocol

The Peril of Time-Triggered Simulation

time
reint to’echo’

undetected

Lee Pike The Formal Verification of a Reintegration Protocol

Safety Properties

Theorem (No Operational Accusations)
For all operational nodes i , accs[i] does not hold during the
reintegration protocol.

Theorem (Synchronization Acquisition)
For all operational nodes i , |clock − echo(i)| < π upon termination
of the reintegration protocol.

Lee Pike The Formal Verification of a Reintegration Protocol

Appendix: Protocol Description

State Variables & Initialization

I accs: ARRAY of booleans, one for each monitored node.

I seen: ARRAY of naturals, one for each monitored node.

I mode: {prelim diag , frame synch, synch capture}
I clock: R0≤.

I fs finish: R0≤.

I pd finish: R0≤.

for each i, accs[i] := false;
mode := prelim diag;
for each i, seen[i] := 0;

Lee Pike The Formal Verification of a Reintegration Protocol

Appendix: Protocol Description

Preliminary Diagnosis Mode

pd finish := clock + P + π;
while clock < pd finish do {

for each i, when echo(i) do {
if (seen[i] < 2 and not accs[i])
then seen[i] := seen[i] + 1
else accs[i] := true;
};

};
for each i, if seen[i] = 0 then accs[i];
mode := frame synch;

Lee Pike The Formal Verification of a Reintegration Protocol

Appendix: Protocol Description

Frame Synchronization Mode

for each i, seen[i] := 0;
fs finish := clock;
while clock − fs finish < π do {
for each i, when echo(i) do {
if (seen[i] = 0 and not accs[i])
then {
fs finish := clock;
seen[i] := seen[i] + 1;
};
else accs[i] := true;
};

};
mode := synch capture;

Lee Pike The Formal Verification of a Reintegration Protocol

Appendix: Protocol Description

Synchronization Capture Mode

for each i, seen[i] := 0;
while seen cnt ≤ trusted/2 do {
for each i, when echo(i) do {
if (seen[i] = 0 and not accs[i])
then seen[i] := seen[i] + 1;
};

};
clock := 0;

Lee Pike The Formal Verification of a Reintegration Protocol

	Appendix: Protocol Description

