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Timeout Automata1 (Semantics)

I A set of state variables V .

I A global clock, c ∈ R0≤.

I A set of timeout variables T such that for t ∈ T , t ∈ R0≤.

Construct a transition system 〈S , S0, →〉:
I States are mappings of all variables to values.
I Transitions are either time transitions or discrete transitions.

I Time transitions are enabled if the clock is less than all
timeouts. Updates clock to least timeout.

I Discrete transitions are enabled if the clock equals some
timeout. Updates state variables and timeouts.

1B. Dutertre and M. Sorea. “Timed Systems in SAL,” 2004.
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The Train-Gate-Controller

Train

t0
t1

x ≤ 5
approach

x := 0

c0
c1

z ≤ 1
approach

z := 0

t2
x ≤ 5

t3
x ≤ 5

in
x > 2

out

exit Gate

g0
g1

y ≤ 1

g2
g3

y ≤ 2

lower

y := 0

down

raise

y := 0

up
y ≥ 1

Controller

c2
c3

z ≤ 1

lower
z = 1

exit

z := 0

raise

Lee Pike The Formal Verification of a Reintegration Protocol



TGC SAL (Pseudo)-Specs: From Asynchrony to Synchrony

Asynchronous Composition

train: MODULE =

t state = t0

AND t to = time

-->

t state’ = t1;

flag1’ = TRUE;

msg1’ = approach;

controller: MODULE =

c state = c0

AND flag1 = TRUE

AND msg1 = approach

-->

c state’ = c1;

flag1’ = FALSE;

Synchronous Composition

train: MODULE =

t state = t0

AND t to = time

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = time

AND msg1’ = approach

-->

c state’ = c1;
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TGC SAL (Pseudo)-Specs: From Asynchrony to Synchrony

Asynchronous Composition

train: MODULE =

t state = t0

AND t to = time

-->

t state’ = t1;

flag1’ = TRUE;

msg1’ = approach;

controller: MODULE =

c state = c0

AND flag1 = TRUE

AND msg1 = approach

-->

c state’ = c1;

flag1’ = FALSE;

Synchronous Composition

train: MODULE =

t state = t0

AND t to = time

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = time

AND msg1’ = approach

-->

c state’ = c1;
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TGC SAL (Pseudo)-Specs: From Synchrony to Clockless

Clocked Semantics

train: MODULE =

t state = t0

AND t to = time

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = time

AND msg1’ = approach

-->

c state’ = c1;

Clockless Semantics

train: MODULE =

t state = t0

AND t to = min(t to, c to, g to)

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = min(t to, c to, g to)

AND msg1’ = approach

-->

c state’ = c1;
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TGC SAL (Pseudo)-Specs: From Synchrony to Clockless

Clocked Semantics

train: MODULE =

t state = t0

AND t to = time

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = time

AND msg1’ = approach

-->

c state’ = c1;

Clockless Semantics

train: MODULE =

t state = t0

AND t to = min(t to, c to, g to)

AND c state = c0

-->

t state’ = t1;

msg1’ = approach;

controller: MODULE =

c state = c0

AND t to = min(t to, c to, g to)

AND msg1’ = approach

-->

c state’ = c1;
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The Frame Property

time

P

tn tn+1tn − π
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The Peril of Time-Triggered Simulation

time
echoreint to

echo’

undetected
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The Peril of Time-Triggered Simulation

time
echo reint to’

echo’

undetected
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The Peril of Time-Triggered Simulation

time
reint to’echo’

undetected
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Safety Properties

Theorem (No Operational Accusations)
For all operational nodes i , accs[i ] does not hold during the
reintegration protocol.

Theorem (Synchronization Acquisition)
For all operational nodes i , |clock − echo(i)| < π upon termination
of the reintegration protocol.
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Appendix: Protocol Description

State Variables & Initialization

I accs: ARRAY of booleans, one for each monitored node.

I seen: ARRAY of naturals, one for each monitored node.

I mode: {prelim diag , frame synch, synch capture}
I clock: R0≤.

I fs finish: R0≤.

I pd finish: R0≤.

for each i, accs[i ] := false;
mode := prelim diag;
for each i, seen[i ] := 0;
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Appendix: Protocol Description

Preliminary Diagnosis Mode

pd finish := clock + P + π;
while clock < pd finish do {

for each i, when echo(i) do {
if (seen[i ] < 2 and not accs[i ])
then seen[i ] := seen[i ] + 1
else accs[i ] := true;
};

};
for each i, if seen[i ] = 0 then accs[i ];
mode := frame synch;
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Appendix: Protocol Description

Frame Synchronization Mode

for each i, seen[i ] := 0;
fs finish := clock;
while clock − fs finish < π do {
for each i, when echo(i) do {
if (seen[i ] = 0 and not accs[i ])
then {
fs finish := clock;
seen[i ] := seen[i ] + 1;
};
else accs[i ] := true;
};

};
mode := synch capture;
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Appendix: Protocol Description

Synchronization Capture Mode

for each i, seen[i ] := 0;
while seen cnt ≤ trusted/2 do {
for each i, when echo(i) do {
if (seen[i ] = 0 and not accs[i ])
then seen[i ] := seen[i ] + 1;
};

};
clock := 0;
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