Using the Prover
1
Intermediate
Commands &
Predicate Logic

Lee Pike

Using the Prover II:
Intermediate Commands & Predicate Logic Shcrmzanor

Instantiation

Examples

Lee Pike Structural Rules

Decision Procedures

NASA Langley Formal Methods Group

lee.s.pike@nasa.gov

June 3, 2005

Proofs & Quantifiers
Introduction
Skolemization
Instantiation
Examples

Intermediate Proof Commands
Structural Rules
Decision Procedures

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Quantification

» Quantified formulas are declared by quantifying free
variables in the formula.
» For example,
leml: LEMMA FORALL (x: int, y: int): x * y = y * x

z: VAR int
lem2: LEMMA FORALL (x: int): EXISTS z: x + z = 0

» Free variables in formulas are implicitly assumed to be
universally quantified.
Example: the formula x + y = y + x is treated by the
prover as FORALL (x: int, y: idnt): x+y =7y + x

» Skolemization and Instantiation are used to eliminate
quantifiers.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Introduction

Skolemization

» Skolemization is the process of introducing a fresh (i.e.,
unused in the sequent) constant (a skolem constant) to
represent an arbitrary value in the domain.

» Universal quantifiers in the consequent are skolemized.

» Existential quantifiers in the antecedent are skolemized.

» The intuition can be seen in how quantifiers are treated
in informal proofs:

» Prove that for all natural numbers n, P(n) implies
Q(n). Let a be an arbitrary natural number and show
that P(a) implies Q(a) ...

» Suppose there exists a natural number n such that P(n)

holds; let a be an arbitrary natural number such that
P(a) ...

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Introduction

Instantiation

» Instantiation is the process of replacing a quantified
variable with a previously-declared constant.

» Universal quantifiers in the antecedent are instantiated.

» Existential quantifiers in the consequent are
instantiated.

» Examples:

» Suppose for all n, P(n) holds, and prove We know
P(3) ...

» Suppose Q(3). Prove there exists an n such that P(n).
We will show that if Q(3), then P(5) ...

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Introduction

Universal vs. Existential Variables

Top-level quantifier
Location FORALL ‘ EXISTS
Antecedent || use (inst) use (skolem)
Consequent || use (skolem) | USE (inst)

Embedded quantifiers must be brought to the outermost

level for quantifier rules to apply.

» There are several variants each for skolem and inst.

» skolem Variants provide more automation than inst

variants.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Introduction

Skolem Constants

Skolem constants are generated using explicit prover
commands.

» There is a skolem command and several variants.
» Easiest to start with is the following:

v

v

v

Syntax: (skolem! &optional (fnums *) ...)

Generates Skolem constants for formulas given in fnums
Only top-level quantifiers may be skolemized.
Command is usually invoked without arguments,
causing it to apply to the whole sequent.

The Emacs command M-x show-skolem-constants Shows
the currently active constants in a separate emacs
buffer.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Skolemization

Using the Prover

More Skolemization Rules h

Intermediate
Commands &
Predicate Logic

Lee Pike

Some commands are available that combine low-level
operations to increase degree of automation. Skolemization

» A common sequence is skolem! followed by fiatten.
» The following command does them both:
» Syntax: (skosimpx &optional preds?)
> Repeatedly applies skolen! followed by fiatten until no
more simplification occurs
» Often used at the start of a proof to get to the point
where you really want to start

Instantiating Quantifiers

Eliminating quantifiers by instantiation requires substituting
suitable terms for them in the current sequent.

» Basic command for doing this:
> Syntax: (inst fnum &rest terms)
» This command offers a way to instantiate variables in a
formula with terms of the right type.
» Typechecking is performed on the terms.
» As a result, additional proof goals may be generated to
make sure the terms can be used in substitution.
» Example:
» Given that formula 3 is (EXISTS i: i > 1), instantiating
with the substitution of 2 for i produces the formula
2> 1.
(inst 3 "2")

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Instantiation

Instantiate & Copy

v

v

v

v

Syntax: (inst-cp fnum &rest terms)

Works just like inst, but saves a copy of the formula in
quantified form

This is useful if you want to use a lemma twice.

One instance may need one term for the instantiation of
a variable, while another instance may need a different
term, so ...

. inst-cp allows you to have it both ways.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Instantiation

Find my Constant

» Syntax: (inst? &optional (fnums *) ...)

» Similar to inst, but tries to automatically find the terms
for substitution

» This is useful in most proof situations.

» There are usually expressions lying around in the
sequent that are the terms you want to substitute.

» inst? is pretty good at finding them.

» The larger the sequent, however, the more candidate
terms exist to choose from, causing the success rate to
drop.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Instantiation

PVS Theory for Examples

We will be using a simple PVS theory to illustrate basic

prover commands:

YAY Examples and exercises for basic prover commands

prover_basic: THEORY

BEGIN

arb: TYPE+)
arb_pred: TYPE = [arb -> booll %
a,b,c: arb %
Xx,y,z: VAR arb %

P,Q,R: arb_pred %

Arbitrary
Predicate
Constants
Variables

Predicate

nonempty type
type for arb
of type arb
of type arb

names

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Examples

Sample Quantified Formulas teie el Prover

Intermediate
Commands &
Predicate Logic

Lee Pike

quant_0: LEMMA (FORALL x: P(x)) => P(a) Examples
quant_1: LEMMA (FORALL x: P(x)) => (EXISTS y: P(y))

quant_2: LEMMA (EXISTS x: P(x)) OR (EXISTS x: Q(x))
IFF (EXISTS x: P(x) OR Q(x))

1l,m,n: VAR int
distrib: LEMMA 1 * (m + n) = (1L * m) + (1 * n)

END prover_basic

Skolem Constants (Cont'd)

Starting proof of formula distrib from theory prover basic:

distrib :

{1} FORALL (x: int, y: int, z: int):
x* (y+2) = (xx*xy)+ (x % 2)

Rule? (skolem!)
Skolemizing,

this simplifies to:
distrib :

{1} x!1 *x (y!1 + z!1) = (x!'1 * y!'1) + (x!'1 * z!1)

The variables x, y, z have been replaced with the skolem
constants x!1, y!'1, z!1.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Examples

Example of Instantiation Usingthe Proer

Intermediate
Commands &
Predicate Logic

Lee Pike

|
{1} (FORALL x: P(x)) => P(a)
Examples
Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
quant_O :

{-1} (FORALL x: P(x))

|
{1} P(a)

Rule? (inst -1 "a")
Instantiating the top quantifier in -1 with the terms: a,
Q.E.D.

Another Example of Instantiation

Try getting the prover to automatically find the instantiation.

quant_1 :

|
{1} ((FORALL x: P(x) => Q(x)) AND P(a)) => Q(a)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,
this simplifies to:

quant_1 :

{-1} (FORALL x: P(x) => Q(x))
{-2} P(a)
|

{1} Q(a)

Looks like the constant “a” is what we want.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Examples

Another Instantiation Example (Cont'd)

Rule? (inst?)

Found substitution:

X gets a,

Instantiating quantified variables,
this simplifies to:

quant_1 :

{-1} P(a) => Q(a)
[-2] P(a)

[1] Qa)
Rule? (prop)

Applying propositional simplification,
Q.E.D.

The prover made the right pick!

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Examples

Can the Prover Always Find an Instantiation?

|
{1} (FORALL x: P(x)) => (EXISTS y: P(y))

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,
this simplifies to:

quant_2 :

{1} (EXISTS y: P(y)

What will 1nst? do here?

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Examples

Find an Instantiation? (Cont'd)

Rule? (inst?)
Couldn’t find a suitable instantiation for any

quantified formula. Please provide partial instantiation.

No change on: (INST?)
quant_2 :

{-1} (FORALL x: P(x))

|
{1} (EXISTS y: P(y)

The prover gives up — it can't do the “creative” work of

finding a viable term if it's not present in the sequent.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Examples

Find an Instantiation? (Cont'd)

Rule? (inst + "a"

Instantiating the top quantifier in + with the terms:

a,
this simplifies to:
quant_2 :

[-1] (FORALL x: P(x))

|
{1} P

Rule? (inst?)

Found substitution:

X gets a,

Instantiating quantified variables,
Q.E.D.

Need to supply your own term in this case.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Examples

Hiding Formulas

Two commands tell the prover to temporarily forget
information and then recall it later.
The first tells the prover which items to ignore

» Syntax: (hide &rest fnums).
» Causes the designated formulas to be hidden away.
» Those formulas will not be used in making deductions.

» This is useful if you have a complicated sequent and
some of the formulas look irrelevant.

» Also useful if a formula has already served its purpose.

» Saves processing time during proof steps.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Structural Rules

Revealing Formulas

The
back

>
>

>

second command allows you to bring hidden formulas

Syntax: (reveal &rest fnums)
Restores the designated formulas to the current sequent

Makes the deletion of information through the hide
command safe

The Emacs command M-x show-hidden-formulas tells you
what is hidden and what their current formula numbers
are.

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Structural Rules

DeC|S|0n PrOCEdureS Using the Prover

I
Intermediate

PVS uses decision procedures to supplement logical Commands &

. Predicate Logic
reasoni ng.
Lee Pike

» Terminating algorithms that can decide whether a
logical formula is valid or invalid

» These constitute automated theorem-proving, so they
usually provide no derivations.

Example: a truth table for propositional logic
» PVS integrates a number of decision procedures
including
» Theory of equality with uninterpreted functions
> Linear arithmetic over natural numbers and reals
» PVS-specific language features such as function
overrides

Decision Procedures

Various prover rules apply decision procedures in
combination with other reasoning techniques.

» Important feature for achieving automation
» At the cost of visibility into intermediate steps

Deductive Hammers: Small To Large

The prover has a hierarchy of increasingly muscular
simplification rules.

PROP
BDDSIMP

ASSERT

GROUND

SMASH
GRIND

Repeated application of fiatten and spiit
Propositional simplification using

Binary Decision Diagrams (BDDs)

Applies type-appropriate decision procedures

and auto-rewrites

Propositional simplification plus decision procedures
Repeatedly tries BopSIMP, ASSERT, and LIFT-IF

All of the above plus definition expansion and 1nsT?

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Decision Procedures

Automated Deduction Tips

» Typically, these simplification rules are invoked without
arguments.

» Examples: (assert), (ground), (grind)

» Caution: crinp is fairly aggressive

» Can take a while to complete
» Might leave you in a strange place when it's done
» Might need to be interrupted to abort runaway behavior

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Decision Procedures

Using Type Information

The prover needs to be asked to reveal information about
typed expressions

» A command for importing type predicate constraints:

> Syntax: (typepred &rest exprs)

» Causes type constraints for expressions to be added to
sequent

» Subtype predicates are often recalled this way

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Decision Procedures

Type-Predicate Example

boundedl :

{1} FORALL (a: {x: real | abs(x) < 1}):

a*xa<l1

Rule? (skosimpx*)

Repeatedly Skolemizing and flattening,
this simplifies to:

boundedl :

{1} alt *all <1

Rule? (typepred "a!l")

Adding type constraints for all,
this simplifies to:

bounded1

[1] all *x all <1

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Decision Procedures

Summary

v

A constant companion:
skolem universals in the consequent & existentials in the
antecedent.

For one and all:
inst universals in the antecedent & existentials in the
consequent.

» Hide 'n Seek: nhide & reveal

» Automatic for the provers:

prop, assert, ground, grind.

Hey formula, what’s your type?
typepred & typepred!

Using the Prover
I
Intermediate
Commands &
Predicate Logic

Lee Pike

Decision Procedures

	Proofs & Quantifiers
	Introduction
	Skolemization
	Instantiation
	Examples

	Intermediate Proof Commands
	Structural Rules
	Decision Procedures

