Using the Prover II: Intermediate Commands & Predicate Logic

Lee Pike

NASA Langley Formal Methods Group lee.s.pike@nasa.gov June 3, 2005 Using the Prover II:
Intermediate
Commands &
Predicate Logic

Lee Pike

Proofs & Quantifiers Introduction Skolemization Instantiation

Intermediate Proc Commands Structural Rules

Proofs & Quantifiers

Introduction Skolemization Instantiation Examples

Intermediate Proof Commands

Structural Rules **Decision Procedures** Using the Prover Intermediate Commands & Predicate Logic

Lee Pike

Quantification

- Quantified formulas are declared by quantifying free variables in the formula.
- For example,

```
lem1: LEMMA FORALL (x: int, y: int): x * y = y * x
z: VAR int
lem2: LEMMA FORALL (x: int): EXISTS z: x + z = 0
```

Free variables in formulas are implicitly assumed to be universally quantified.

```
Example: the formula x + y = y + x is treated by the prover as FORALL (x: int, y: int): x + y = y + x
```

Skolemization and Instantiation are used to eliminate quantifiers. Using the Prover II: Intermediate Commands & Predicate Logic

Lee Pike

Proofs & Quantifiers

Introduction Skolemization

nstantiation Examples

Intermediate Proo Commands Structural Rules Decision Procedures

Skolemization

- Skolemization is the process of introducing a fresh (i.e., unused in the sequent) constant (a skolem constant) to represent an arbitrary value in the domain.
- Universal quantifiers in the consequent are skolemized.
- Existential quantifiers in the antecedent are skolemized.
- ► The intuition can be seen in how quantifiers are treated in informal proofs:
 - ▶ Prove that for all natural numbers n, P(n) implies Q(n). Let a be an arbitrary natural number and show that P(a) implies Q(a) ...
 - ▶ Suppose there exists a natural number n such that P(n) holds; let a be an arbitrary natural number such that P(a) . . .

Using the Prover II: Intermediate Commands & Predicate Logic

Lee Pike

Proofs & Quantifiers

Introduction Skolemizatio

Examples ntermediate Pr

ntermediate Proof
Commands
Structural Rules
Decision Procedures

Instantiation

- Instantiation is the process of replacing a quantified variable with a previously-declared constant.
- Universal quantifiers in the antecedent are instantiated.
- Existential quantifiers in the consequent are instantiated.
- Examples:
 - Suppose for all n, P(n) holds, and prove . . . We know $P(3) \dots$
 - ▶ Suppose Q(3). Prove there exists an n such that P(n). We will show that if Q(3), then P(5) ...

Using the Prover Intermediate Commands & Predicate Logic

Lee Pike

Introduction

Universal vs. Existential Variables

	Top-level quantifier	
Location	FORALL	EXISTS
Antecedent	USE (inst)	USC (skolem)
Consequent	USC (skolem)	USC (inst)

Embedded quantifiers must be brought to the outermost level for quantifier rules to apply.

- ▶ There are several variants each for skolem and inst.
- skolem variants provide more automation than inst variants.

Using the Prover Intermediate Commands & Predicate Logic

Lee Pike

Introduction

Skolem Constants

Skolem constants are generated using explicit prover commands.

- ▶ There is a skolem command and several variants.
- Easiest to start with is the following:
 - ► Syntax: (skolem! &optional (fnums *) ...)
 - ► Generates Skolem constants for formulas given in fnums
 - Only top-level quantifiers may be skolemized.
 - Command is usually invoked without arguments, causing it to apply to the whole sequent.
 - ► The Emacs command M-x show-skolem-constants shows the currently active constants in a separate emacs buffer.

Using the Prover
II:
Intermediate
Commands &
Predicate Logic

Lee Pike

Quantifiers
Introduction
Skolemization
Instantiation

Intermediate Proof Commands Structural Rules

More Skolemization Rules

Some commands are available that combine low-level operations to increase degree of automation.

- ► A common sequence is skolem! followed by flatten.
- ▶ The following command does them both:
 - Syntax: (skosimp* &optional preds?)
 - Repeatedly applies skolem! followed by flatten until no more simplification occurs
 - Often used at the start of a proof to get to the point where you really want to start

Using the Prover II: Intermediate Commands & Predicate Logic

Lee Pike

Quantifiers
Introduction
Skolemization
Instantiation
Examples

Intermediate Proo Commands Structural Rules Decision Procedures

Instantiating Quantifiers

Eliminating quantifiers by instantiation requires substituting suitable terms for them in the current sequent.

- Basic command for doing this:
 - ► Syntax: (inst fnum &rest terms)
 - ► This command offers a way to instantiate variables in a formula with terms of the right type.
 - Typechecking is performed on the terms.
 - ▶ As a result, additional proof goals may be generated to make sure the terms can be used in substitution.
- Example:
 - ► Given that formula 3 is (EXISTS i: i > 1), instantiating with the substitution of 2 for i produces the formula 2 > 1.

```
(inst 3 "2")
```

Using the Prover
II:
Intermediate
Commands &
Predicate Logic

Lee Pike

Quantifiers
Introduction
Skolemization
Instantiation
Examples

Intermediate Proo Commands Structural Rules Decision Procedures

Instantiate & Copy

Using the Prover Intermediate Commands & Predicate Logic

Lee Pike

Instantiation

- Syntax: (inst-cp fnum &rest terms)
- Works just like inst, but saves a copy of the formula in quantified form
- This is useful if you want to use a lemma twice.
- One instance may need one term for the instantiation of a variable, while another instance may need a different term, so . . .
- ... inst-cp allows you to have it both ways.

Find my Constant

Using the Prover Intermediate Commands & Predicate Logic

Lee Pike

Instantiation

- ► Syntax: (inst? &optional (fnums *) ...)
- ▶ Similar to inst, but tries to automatically find the terms for substitution
- This is useful in most proof situations.
- ▶ There are usually expressions lying around in the sequent that are the terms you want to substitute.
- inst? is pretty good at finding them.
- ▶ The larger the sequent, however, the more candidate terms exist to choose from, causing the success rate to drop.

PVS Theory for Examples

We will be using a simple PVS theory to illustrate basic prover commands:

%%% Examples and exercises for basic prover commands

prover_basic: THEORY

BEGIN

arb: TYPE+ % Arbitrary nonempty type

a,b,c: arb % Constants of type arb

x,y,z: VAR arb % Variables of type arb

P,Q,R: arb_pred % Predicate names

:

Using the Prover II: Intermediate Commands & Predicate Logic

Lee Pike

roofs & uantifiers ntroduction kolemization stantiation

Examples

Sample Quantified Formulas

```
quant_0: LEMMA (FORALL x: P(x)) => P(a)
quant_1: LEMMA (FORALL x: P(x)) => (EXISTS y: P(y))
quant 2: LEMMA
                (EXISTS x: P(x)) OR (EXISTS x: Q(x))
                  IFF (EXISTS x: P(x) OR Q(x))
1,m,n: VAR int
distrib: LEMMA 1 * (m + n) = (1 * m) + (1 * n)
END prover_basic
```

Using the Prover II: Intermediate Commands & Predicate Logic

Lee Pike

Quantifiers
Introduction
Skolemization
Instantiation
Examples

Examp

Skolem Constants (Cont'd)

Starting proof of formula distrib from theory prover_basic:

The variables x, y, z have been replaced with the skolem constants x!1, y!1, z!1.

Using the Prover
II:
Intermediate
Commands &
Predicate Logic

Lee Pike

antifiers troduction colemization stantiation

Examples

Example of Instantiation

```
quant_0:
{1}
       (FORALL x: P(x)) => P(a)
Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
quant_0:
\{-1\} (FORALL x: P(x))
{1} P(a)
Rule? (inst -1 "a")
Instantiating the top quantifier in -1 with the terms: a,
Q.E.D.
```

Using the Prover II: Intermediate Commands & Predicate Logic

Lee Pike

Quantifiers
Introduction
Skolemization
Instantiation
Examples

Exam

Intermediate Proo Commands Structural Rules Decision Procedures

Another Example of Instantiation

Try getting the prover to automatically find the instantiation.

```
quant_1:
       ((FORALL x: P(x) \Rightarrow Q(x)) AND P(a)) \Rightarrow Q(a)
Rule? (flatten)
Applying disjunctive simplification to flatten sequent,
this simplifies to:
quant_1:
\{-1\} (FORALL x: P(x) => Q(x))
\{-2\} P(a)
\{1\} Q(a)
```

Looks like the constant "a" is what we want.

Using the Prover II: Intermediate Commands & Predicate Logic

Lee Pike

Quantifiers
Introduction
Skolemization
Instantiation
Examples

Intermediate Proc Commands Structural Rules

Another Instantiation Example (Cont'd)

```
Rule? (inst?)
Found substitution:
x gets a,
Instantiating quantified variables,
this simplifies to:
quant_1:
\{-1\} P(a) => Q(a)
[-2] P(a)
[1]
       Q(a)
Rule? (prop)
Applying propositional simplification,
Q.E.D.
```

The prover made the right pick!

Using the Prover II:
Intermediate
Commands &
Predicate Logic

Lee Pike

roofs & uantifiers ntroduction kolemization nstantiation

Examples

Intermediate Pro
Commands
Structural Rules
Decision Procedures

Can the Prover Always Find an Instantiation?

What will INST? do here?

Using the Prover II:
Intermediate
Commands &
Predicate Logic

Lee Pike

Proofs & Quantifiers Introduction Skolemization Instantiation Examples

Intermediate Pro

Structural Rules Decision Procedures

Find an Instantiation? (Cont'd)

The prover gives up — it can't do the "creative" work of finding a viable term if it's not present in the sequent.

Using the Prover
II:
Intermediate
Commands &
Predicate Logic

Lee Pike

coofs & uantifiers troduction colemization stantiation

Examples

Intermediate Proc Commands Structural Rules Decision Procedures

Find an Instantiation? (Cont'd)

```
Rule? (inst + "a")
Instantiating the top quantifier in + with the terms:
 a,
this simplifies to:
quant_2:
[-1] (FORALL x: P(x))
   -----
{1}
     P(a)
Rule? (inst?)
Found substitution:
x gets a,
Instantiating quantified variables,
Q.E.D.
```

Need to supply your own term in this case.

Using the Prover II:
Intermediate
Commands &
Predicate Logic

Lee Pike

roofs & luantifiers ntroduction skolemization nstantiation

Examples

Intermediate Proc Commands Structural Rules Decision Procedures

Hiding Formulas

Two commands tell the prover to temporarily forget information and then recall it later.

The first tells the prover which items to ignore

- Syntax: (hide &rest fnums).
- Causes the designated formulas to be hidden away.
- Those formulas will not be used in making deductions.
- ▶ This is useful if you have a complicated sequent and some of the formulas look irrelevant.
- Also useful if a formula has already served its purpose.
- Saves processing time during proof steps.

Using the Prover Intermediate Commands & Predicate Logic

Lee Pike

Structural Rules

Revealing Formulas

The second command allows you to bring hidden formulas back

- Syntax: (reveal &rest fnums)
- Restores the designated formulas to the current sequent
- ▶ Makes the deletion of information through the hide command safe
- ▶ The Emacs command M-x show-hidden-formulas tells you what is hidden and what their current formula numbers are.

Using the Prover Intermediate Commands & Predicate Logic

Lee Pike

Structural Rules

Decision Procedures

PVS uses decision procedures to supplement logical reasoning.

- Terminating algorithms that can decide whether a logical formula is valid or invalid
- ► These constitute *automated theorem-proving*, so they usually provide no derivations.

Example: a truth table for propositional logic

- PVS integrates a number of decision procedures including
 - Theory of equality with uninterpreted functions
 - Linear arithmetic over natural numbers and reals
 - PVS-specific language features such as function overrides

Various prover rules apply decision procedures in combination with other reasoning techniques.

- ▶ Important feature for achieving automation
- ▶ At the cost of visibility into intermediate steps

Using the Prover II: Intermediate Commands & Predicate Logic

Lee Pike

roofs & luantifiers ntroduction Skolemization instantiation

ntermediate Prod Commands Structural Rules Decision Procedures

Deductive Hammers: Small To Large

Using the Prover Intermediate Commands & Predicate Logic

Lee Pike

Decision Procedures

The prover has a hierarchy of increasingly muscular simplification rules.

Repeated application of flatten and split PR.NP

Propositional simplification using BDDSTMP

Binary Decision Diagrams (BDDs)

Applies type-appropriate decision procedures ASSERT

and auto-rewrites

Propositional simplification plus decision procedures GROUND

Repeatedly tries BDDSIMP, ASSERT, and LIFT-IF SMASH

All of the above plus definition expansion and INST? GRIND

Automated Deduction Tips

- ➤ Typically, these simplification rules are invoked without arguments.
- Examples: (assert), (ground), (grind)
- ► Caution: GRIND is fairly aggressive
 - ▶ Can take a while to complete
 - Might leave you in a strange place when it's done
 - ▶ Might need to be interrupted to abort runaway behavior

Using the Prover II:
Intermediate
Commands &
Predicate Logic

Lee Pike

croofs & Quantifiers ntroduction Skolemization nstantiation Examples

Intermediate Proc Commands Structural Rules Decision Procedures

Using Type Information

The prover needs to be asked to reveal information about typed expressions

- ▶ A command for importing type predicate constraints:
 - Syntax: (typepred &rest exprs)
 - Causes type constraints for expressions to be added to sequent
 - Subtype predicates are often recalled this way

Using the Prover Intermediate Commands & Predicate Logic

Lee Pike

Decision Procedures

Type-Predicate Example

```
bounded1:
  I ----
{1} FORALL (a: \{x: real \mid abs(x) < 1\}):
         a * a < 1
Rule? (skosimp*)
Repeatedly Skolemizing and flattening,
this simplifies to:
bounded1 :
      a!1 * a!1 < 1
Rule? (typepred "a!1")
Adding type constraints for a!1,
this simplifies to:
bounded1 :
\{-1\} abs(a!1) < 1
      a!1 * a!1 < 1
[1]
```

Using the Prover II:
Intermediate
Commands &
Predicate Logic

Lee Pike

Proofs & Quantifiers Introduction Skolemization Instantiation Examples

Summary

- ► A constant companion:

 Skolem universals in the consequent & existentials in the antecedent.
- For one and all: inst universals in the antecedent & existentials in the consequent.
- ► Hide 'n Seek: hide & reveal
- ► Automatic for the provers: prop, assert, ground, grind.
- Hey formula, what's your type? typepred & typepred!

Using the Prover
II:
Intermediate
Commands &
Predicate Logic

Lee Pike

Proofs & Quantifiers Introduction Skolemization Instantiation Examples

Intermediate Proo Commands Structural Rules Decision Procedures