Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Diagnosing a Failed Proof in Fault-Tolerance: A
Disproving Challenge Problem

Lee Pike! (presenting), Galois Connections
leepike@galois.com

Paul Miner and Wilfredo Torres-Pomales

NASA Langley Research Center
{p.s.miner, w.torres-pomales}@larc.nasa.gov

August 16, 2006

Most of this work was performed while this author was employed at the
NASA Langley Research Center Formal Methods Group.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Goals and Non-Goals

Goals:

@ Provide a medium-sized real-world case-study/challenge
problem for disproving.

@ Describe the domain and tell a bit of the story about how this
bug arose.

© Describe (what the authors take to be) the best current
approach.

Non-Goals:

@ Present the protocol in detail (paper and formal (dis-)proof
artifacts are available).

@ Present new results in disproving research.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Fault-Tolerant Bus Architectures

@ Buses for fly- and drive-by-wire applications.

o Failure rates must be approx. 1072 /hour of operation for
fly-by-wire.
@ Examples:

Time-Triggered Architecture (TTTech)
FlexRay (auto consortium)

SafeBus (Honeywell)

SPIDER (NASA Langley)

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The SPIDER Architecture

PE1 PE2

Processor Middleware Middleware

El t
ements oS Drivers oS Drivers

Software

Hardware

ROBUS
SPIDER

(Scalable Processor-Independent Design for Extended Reliability)
ROBUS

(Reliable Optical bus)

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

ROBUS Protocols

Interactive Consistency Protocol (IC Protocol)
Clock Synchronization Protocol

Distributed Diagnosis Protocol
Startup/Restart Protocol

Reintegration Protocol

These are distributed, fault-tolerant, real-time protocols with
complex interdependencies.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model?

Let V be the uncorrupted message to be sent.

process

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model?

Let V be the uncorrupted message to be sent.

@ Good processes send all messages correctly.

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model?

Let V be the uncorrupted message to be sent.

@ Benign processes send only benign messages.

C1rr

cIr

process
err

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model?

Let V be the uncorrupted message to be sent.

@ Symmetric processes send the same arbitrary message.

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model?

Let V be the uncorrupted message to be sent.

@ Asymmetric processes send arbitrary messages.

9

\Y%

process

29

\%

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Dynamic Maximum Fault Assumption for the IC
Protocol

The kinds and number of faults under which the system is
hypothesized to behave correctly.

Informally,
@ Good BlUs trust strictly more good RMUs than symmetrically
or asymmetrically-faulty RMUS, and

@ Either no good RMU trusts an asymmetrically-faulty General,
or no good BIU trusts an asymmetrically-faulty RMU.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The SPIDER IC Protocol

BlUs RMUs BlUs

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

|C Protocol Correctness

The protocol is designed to reliably passes data from a designated
BIU (the “General") to the other BlUs.

e Agreement: All good BlUs compute the same value.

e Validity: If the General is good and broadcasts message v,
then the value computed by a good BIU is v.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

What must be specified to prove correctness?

@ System assumptions (i.e., guarantees of the other protocols).
@ A model of execution (to model synchronous
message-passing).
Goal: Prove

Let E = exec(protocol model) in
MFA & system assumptions = (Agreement(E) & Validity(E))

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Bug Origins

Incomplete/changing/ambiguous system requirements!
e Two coordinating domain experts (Paul Miner and Wilfredo
Torres-Pomales).
@ Ambiguity of the dynamic fault model and granularity of
timing.
o Changing fault assumptions and new reintegration
requirements.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

A Dastardly Bug

Why is this a “significant” bug?

@ The bug requires two simultaneous Byzantine faults to occur
(permitted by the MFA).

@ Thus, it would assuredly have been overlooked in
fault-injection testing.

Wilfredo discovered the bug by inspection. But. ..
@ Wilfredo is a one the world’s handful of experts in the domain.

@ The ROBUS is just small enough that a single engineer can
understand the whole design.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Our (Conventional) Approach

@ There was an on-going effort to verify the ROBUS protocols
via theorem-proving (PVS).

@ Thus, we wanted to see if we could “recreate” the bug
formally by discharging all branches of its proof except for the
buggy case.

@ We could! But, it left us with a bit of a mess. ..

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Mess (in PVS)

(Irrelevant formulas hidden)

[-1] good?(r_status!1(r!1))

[-2] asymmetric?(b_status!1(G!1))

[-3] IC_DMFA(b_status!l, r_status'!'l, F!1)

[-4] all_correct_accs?(b_status!l, r_status!l, F!1)

[1] trusted?(F!1‘BR(r!1) (G!1))
[2] declared?(F!1‘BB(b2!1)(G!'1))
{3} (FORALL (p_1: below(R)):
(trusted?(F!1‘RB(b1!1) (p_1)) =>
NOT asymmetric?(r_status!1(p_1))))
&
(FORALL (p_1: below(R)):
(trusted?(F!1‘RB(b2!1) (p_1)) =>
NOT asymmetric?(r_status!1(p_1))))
[4] declared?(F!1‘BB(b1!1)(G!1))
[5] robus_ic(b_status!1l, r_status!'1l,
F!1°BB(b1!1) (G!1), F!1‘RB(b1!1))
(G!'1, msg!l, b1'l)

robus_ic(b_status!1l, r_status!l,
F!1‘BB(b2!1) (G!1), F!1‘RB(b2!1))
(G!'1, msg!l, b2!1)

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Getting a Counterexample

The first author of this paper was competent at PVS but not a
domain expert at the time of the proof. Left to his own devices, he
would not have been able to tell if the undischarged subgoal was
the result of

@ going down a blind alley in the proof,
@ an invariant that was too weak,

@ a problem with the formal model,

@ a bug in the protocol.

But a model-checker (SAL) will give a counterexample...

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Undischarged Sequent as a Safety Property

counterex: THEOREM SYSTEM |-
G((pc = 4 AND
r_status[1] = good AND
G_status = asymmetric AND
IC_DMFA(r_status, F_RB, F_BR, G_status) AND
all_correct_accs(r_status, F_RB,
G_status, F_BR, F_BB))
=>
(F_BR[1] = trusted OR
F_BB[2] = declared OR
(FORALL (r: RMUs): F_RB[1][r] = trusted =>
r_status[r] /= asymmetric AND
FORALL (r: RMUs): F_RB[2][r] = trusted =>
r_status[r] /= asymmetric) OR
F_BB[1] = declared OR
robus_ic[1] = robus_ic[2]));

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Shortcomings of Our Approach

@ Two models of the protocol, assumptions, and requirements
built, one in PVS and one in SAL (no automated translation).

@ Manual instantiation of parameters.

@ Manual translation of correctness conditions (HOL — LTL).

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Challenge

From a parameterized specification of the protocol (from which a
general proof can be obtained), provide a concrete instance of the
bug in a way that requires as little effort from the user as possible.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Success Criteria

An approach that is simpler and more efficient than ours:
The upper bound on effort is the time required for a
moderately-skilled theorem-prover with some domain expertise to

uncover the error by inspecting the failed proof in a mechanical
theorem-prover.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Possible Approaches(?)

Warning: Half-baked speculation.

@ Quickcheck or a FOL automated prover (for counterexample
generation).

@ Automated translator from a theorem-prover to a
model-checker.

@ Automated parameter interpretation.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Bonus Challenge

But what we'd really like is. . .
To prove the correctness of the parameterized protocol in the first
place in a more automated way.
What makes this problem hard?
o Parameterized design.
@ Nontrivial mathematical reasoning.
e Nondeterminism introduced by modeling faults (both the kind
of fault and the when they occur).

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

But don’t take my word about their difficulty. . .

@ Pat Lincoln and John Rushby describe a flawed Oral Messages
algorithm (uncovered via theorem proving) and a verified fixed
algorithm (CAV, '93).

e William Young compares Interactive Consistency (IC) in PVS
vs. ACL2 — IC had been proposed as a benchmark for
interactive theorem-proving (Conference on Computer
Assurance, '96).

@ John Rushby, Shmuel Katz, and Pat Lincoln themselves
incorrectly specified a Group Membership algorithm. The
error was spotted and revised, but a formal proof of the
revised algorithm was not discovered by Katz, Lincoln, and
Rushby for a year (CAV, 2000).

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Future

A (mostly) automated proof of this protocol would be a boon to
fault-tolerant system designers and demonstrate that what is still
considered a difficult interactive proving challenge can be
completed much more easily.

What will the future look like?
e Satisfiability modulo theories (SMT) provers?
@ Specialized tactics/proof strategies?
@ Specialized provers for fault-tolerant protocols?
@ Parameterized model-checking?

@ Some combination thereof?

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Additional Information

Specs & (Dis-)Proofs in PVS and SAL

http://www.cs.indiana.edu/~1lepike/pub_pages/disprove.
html

Google: Pike disproving

SPIDER Website

http://shemesh.larc.nasa.gov/fm/spider/
Google: fm program spider

|

http://www.cs.indiana.edu/~lepike/pub_pages/disprove.html
http://www.cs.indiana.edu/~lepike/pub_pages/disprove.html
http://shemesh.larc.nasa.gov/fm/spider/

Appendix.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

IC Protocol Description

© The General, G, broadcasts its message, v, to all RMUs.

@ For each RMU, if it receives a benign message from G, then it
broadcasts the special message source error to all BlUs.
Otherwise it relays the message it received.

© For each BIU b, if b has declared G, then b outputs the
special message source error. Otherwise, if b received a
benign message from an RMU, then that RMU is accused. b
performs a majority vote over the values received from those
RMUs it trusts. If no majority exists, source error is the result;
otherwise, the majority value is the result.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

|C Maximum Fault Assumption

@ |GRNTp| >|SRNTp|+ |ARNTy| ;
@ G € ABNT, implies JARNT,| =0.

