
Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Diagnosing a Failed Proof in Fault-Tolerance: A
Disproving Challenge Problem

Lee Pike1 (presenting), Galois Connections
leepike@galois.com

Paul Miner and Wilfredo Torres-Pomales
NASA Langley Research Center

{p.s.miner, w.torres-pomales}@larc.nasa.gov

August 16, 2006

1Most of this work was performed while this author was employed at the
NASA Langley Research Center Formal Methods Group.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Goals and Non-Goals

Goals:

1 Provide a medium-sized real-world case-study/challenge
problem for disproving.

2 Describe the domain and tell a bit of the story about how this
bug arose.

3 Describe (what the authors take to be) the best current
approach.

Non-Goals:

1 Present the protocol in detail (paper and formal (dis-)proof
artifacts are available).

2 Present new results in disproving research.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Fault-Tolerant Bus Architectures

Buses for fly- and drive-by-wire applications.

Failure rates must be approx. 10−9/hour of operation for
fly-by-wire.

Examples:

Time-Triggered Architecture (TTTech)
FlexRay (auto consortium)
SafeBus (Honeywell)
SPIDER (NASA Langley)

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The SPIDER Architecture

Processor
Elements

Middleware

OS Drivers

App. A
Software

ROBUS

PE 1 PE 2

Hardware

App. B App. B

RMU RMU RMU

Middleware

OS Drivers

Interface
PE−ROBUS

Interface
PE−ROBUS

BIU BIU BIU

SPIDER
(Scalable Processor-Independent Design for Extended Reliability)

ROBUS
(Reliable Optical bus)

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

ROBUS Protocols

Interactive Consistency Protocol (IC Protocol)

Clock Synchronization Protocol

Distributed Diagnosis Protocol

Startup/Restart Protocol

Reintegration Protocol

These are distributed, fault-tolerant, real-time protocols with
complex interdependencies.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model2

Let V be the uncorrupted message to be sent.

Good processes send all messages correctly.

Benign processes send only benign messages.

Symmetric processes send the same arbitrary message.

Asymmetric processes send arbitrary messages.

process

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model2

Let V be the uncorrupted message to be sent.

Good processes send all messages correctly.

Benign processes send only benign messages.

Symmetric processes send the same arbitrary message.

Asymmetric processes send arbitrary messages.

process
v

v

v

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model2

Let V be the uncorrupted message to be sent.

Good processes send all messages correctly.

Benign processes send only benign messages.

Symmetric processes send the same arbitrary message.

Asymmetric processes send arbitrary messages.

process

err

err

err

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model2

Let V be the uncorrupted message to be sent.

Good processes send all messages correctly.

Benign processes send only benign messages.

Symmetric processes send the same arbitrary message.

Asymmetric processes send arbitrary messages.

process
v’

v’

v’

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Hybrid Fault Model2

Let V be the uncorrupted message to be sent.

Good processes send all messages correctly.

Benign processes send only benign messages.

Symmetric processes send the same arbitrary message.

Asymmetric processes send arbitrary messages.

process

v

v’’

v’

2Thambidurai and Park. Interactive consensus with multiple failure modes.
7th Reliable Distributed Systems Symposium, 1988.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Dynamic Maximum Fault Assumption for the IC
Protocol

The kinds and number of faults under which the system is
hypothesized to behave correctly.

Informally,

1 Good BIUs trust strictly more good RMUs than symmetrically
or asymmetrically-faulty RMUS, and

2 Either no good RMU trusts an asymmetrically-faulty General,
or no good BIU trusts an asymmetrically-faulty RMU.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The SPIDER IC Protocol

u

BIUs RMUs BIUs

G 1

2

3

1

2

1

2

G
v

v

u

v

u

v

v

u

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

IC Protocol Correctness

The protocol is designed to reliably passes data from a designated
BIU (the “General”) to the other BIUs.

Agreement: All good BIUs compute the same value.

Validity: If the General is good and broadcasts message v ,
then the value computed by a good BIU is v .

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

What must be specified to prove correctness?

System assumptions (i.e., guarantees of the other protocols).

A model of execution (to model synchronous
message-passing).

Goal: Prove

Let E = exec(protocol model) in
MFA & system assumptions =⇒ (Agreement(E) & Validity(E))

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Bug Origins

Incomplete/changing/ambiguous system requirements!

Two coordinating domain experts (Paul Miner and Wilfredo
Torres-Pomales).

Ambiguity of the dynamic fault model and granularity of
timing.

Changing fault assumptions and new reintegration
requirements.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

A Dastardly Bug

Why is this a “significant” bug?

The bug requires two simultaneous Byzantine faults to occur
(permitted by the MFA).

Thus, it would assuredly have been overlooked in
fault-injection testing.

Wilfredo discovered the bug by inspection. But. . .

Wilfredo is a one the world’s handful of experts in the domain.

The ROBUS is just small enough that a single engineer can
understand the whole design.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Our (Conventional) Approach

There was an on-going effort to verify the ROBUS protocols
via theorem-proving (PVS).

Thus, we wanted to see if we could “recreate” the bug
formally by discharging all branches of its proof except for the
buggy case.

We could! But, it left us with a bit of a mess. . .

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Mess (in PVS)

(Irrelevant formulas hidden)
[-1] good?(r_status!1(r!1))

[-2] asymmetric?(b_status!1(G!1))

[-3] IC_DMFA(b_status!1, r_status!1, F!1)

[-4] all_correct_accs?(b_status!1, r_status!1, F!1)

|-------

[1] trusted?(F!1‘BR(r!1)(G!1))

[2] declared?(F!1‘BB(b2!1)(G!1))

{3} (FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b1!1)(p_1)) =>

NOT asymmetric?(r_status!1(p_1))))

&

(FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b2!1)(p_1)) =>

NOT asymmetric?(r_status!1(p_1))))

[4] declared?(F!1‘BB(b1!1)(G!1))

[5] robus_ic(b_status!1, r_status!1,

F!1‘BB(b1!1)(G!1), F!1‘RB(b1!1))

(G!1, msg!1, b1!1)

=

robus_ic(b_status!1, r_status!1,

F!1‘BB(b2!1)(G!1), F!1‘RB(b2!1))

(G!1, msg!1, b2!1)

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Getting a Counterexample

The first author of this paper was competent at PVS but not a
domain expert at the time of the proof. Left to his own devices, he
would not have been able to tell if the undischarged subgoal was
the result of

going down a blind alley in the proof,

an invariant that was too weak,

a problem with the formal model,

a bug in the protocol.

But a model-checker (SAL) will give a counterexample...

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Undischarged Sequent as a Safety Property

counterex: THEOREM SYSTEM |-

G((pc = 4 AND

r_status[1] = good AND

G_status = asymmetric AND

IC_DMFA(r_status, F_RB, F_BR, G_status) AND

all_correct_accs(r_status, F_RB,

G_status, F_BR, F_BB))

=>

(F_BR[1] = trusted OR

F_BB[2] = declared OR

(FORALL (r: RMUs): F_RB[1][r] = trusted =>

r_status[r] /= asymmetric AND

FORALL (r: RMUs): F_RB[2][r] = trusted =>

r_status[r] /= asymmetric) OR

F_BB[1] = declared OR

robus_ic[1] = robus_ic[2]));

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Shortcomings of Our Approach

Two models of the protocol, assumptions, and requirements
built, one in PVS and one in SAL (no automated translation).

Manual instantiation of parameters.

Manual translation of correctness conditions (HOL → LTL).

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Challenge

From a parameterized specification of the protocol (from which a
general proof can be obtained), provide a concrete instance of the
bug in a way that requires as little effort from the user as possible.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Success Criteria

An approach that is simpler and more efficient than ours:
The upper bound on effort is the time required for a
moderately-skilled theorem-prover with some domain expertise to
uncover the error by inspecting the failed proof in a mechanical
theorem-prover.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Possible Approaches(?)

Warning: Half-baked speculation.

Quickcheck or a FOL automated prover (for counterexample
generation).

Automated translator from a theorem-prover to a
model-checker.

Automated parameter interpretation.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Bonus Challenge

But what we’d really like is. . .
To prove the correctness of the parameterized protocol in the first
place in a more automated way.
What makes this problem hard?

Parameterized design.

Nontrivial mathematical reasoning.

Nondeterminism introduced by modeling faults (both the kind
of fault and the when they occur).

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

But don’t take my word about their difficulty. . .

Pat Lincoln and John Rushby describe a flawed Oral Messages
algorithm (uncovered via theorem proving) and a verified fixed
algorithm (CAV, ’93).

William Young compares Interactive Consistency (IC) in PVS
vs. ACL2 – IC had been proposed as a benchmark for
interactive theorem-proving (Conference on Computer
Assurance, ’96).

John Rushby, Shmuel Katz, and Pat Lincoln themselves
incorrectly specified a Group Membership algorithm. The
error was spotted and revised, but a formal proof of the
revised algorithm was not discovered by Katz, Lincoln, and
Rushby for a year (CAV, 2000).

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

The Future

A (mostly) automated proof of this protocol would be a boon to
fault-tolerant system designers and demonstrate that what is still
considered a difficult interactive proving challenge can be
completed much more easily.

What will the future look like?

Satisfiability modulo theories (SMT) provers?

Specialized tactics/proof strategies?

Specialized provers for fault-tolerant protocols?

Parameterized model-checking?

Some combination thereof?

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Additional Information

Specs & (Dis-)Proofs in PVS and SAL

http://www.cs.indiana.edu/∼lepike/pub pages/disprove.
html
Google: Pike disproving

SPIDER Website

http://shemesh.larc.nasa.gov/fm/spider/
Google: fm program spider

http://www.cs.indiana.edu/~lepike/pub_pages/disprove.html
http://www.cs.indiana.edu/~lepike/pub_pages/disprove.html
http://shemesh.larc.nasa.gov/fm/spider/

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

Appendix.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

IC Protocol Description

1 The General, G , broadcasts its message, v , to all RMUs.

2 For each RMU, if it receives a benign message from G , then it
broadcasts the special message source error to all BIUs.
Otherwise it relays the message it received.

3 For each BIU b, if b has declared G , then b outputs the
special message source error. Otherwise, if b received a
benign message from an RMU, then that RMU is accused. b
performs a majority vote over the values received from those
RMUs it trusts. If no majority exists, source error is the result;
otherwise, the majority value is the result.

Diagnosing a Failed Proof in Fault-Tolerance: A Disproving Challenge Problem

IC Maximum Fault Assumption

1 |GR ∩ Tb| > |SR ∩ Tb|+ |AR ∩ Tb| ;

2 G ∈ AB ∩ Tr implies |AR ∩ Tb| = 0 .

