A Veritying Core for a Cryptographic Language
Compiler

Lee Pikel Mark Shields? John Matthews

Galois Connections

November 21, 2006

!Presenting. gal_ois

2Presently at Microsoft.

Thanks

Rockwell Collins Advanced Technology Center, especially David
Hardin, Eric Smith, and Tom Johnson

Konrad Slind, Bill Young, and our anonymous ACL2 Workshop
reviewers

» Matt Kaufmann and the other folks on the ACL2-Help list
» And of course, Pete Manolios and Matt Wilding for a heckuva

conference!

galois

Compiler Assurance: The Landscape

» Compilers are complex!

» Risk of bugs, especially for specialized DSL compilers.
» Easy target for backdoors and Trojan horses.

» How do we get assurance for correctness?

» Long-term and widespread use (e.g., gcc).
» Certification (e.g., Common Criteria, DO-178B).
» Mathematical proof.

galois

Proofs and Compilers: Two Approaches

1. A verified compiler is one associated with a mathematical proof.
» One monolithic proof of correctness for all time.
» Deep and difficult requiring parameterized proofs about the
language semantics and the compiler transformations.
2. A verifying compiler’ is one that emits both object code and a
proof that the object code implements the source code.
» Requires a proof for each compilation
(the proof process must be automated).
» But the proofs are only about concrete programs.
If you have a highly-automated theorem-prover (hmmm. .. where can |
find one of those?), a verifying compiler is easier.

We take the verifying compiler approach.

galois

3Unrelated to Tony Hoare's concept by the same name.

front-end

core

back-end

Overall Infrastructure

compiler

verifier

-

source uCryptol -------=------
compilation
shallow embedding

N M

» higher-order logic N

4 .
1\ equivalence
IV proof

_p higher-order logic

indexed uCryptol

4 :

Common Lisp N

shallow embedding

compilation
v

automated
equivalence
proof

(canonical uCryptol shallow embedding Common Lisp)

compilation

v

deep embedding

-

binary AAMP7 lisp simulator

equivalence
proof
(cutpoint

v reasoning)

binary AAMP7 /

Isabelle

ACL2

ACL2

What We've Done: Snapshot

» A “semi-decision procedure” in ACL2 for proving correspondence
between uCryptol programs in “indexed form” and in “canonical
form”.

» A semi-decision procedure for proving termination in ACL2 of
uCryptol programs (including mutually-recursive cliques of
streams).

» A simple translator for shallowly embedding uCryptol into ACL2.
» An ACL2 book of executable primitive operations for specifying
encryption protocols (including modular arithmetic, arithmetic in
Galois Fields, bitvector operations, and vector operations).
These results are germane to
» Verifying compilers for other functional languages
» The verification of cryptographic protocols in ACL2

» Industrial-scale automated theorem-proving galois

Applications and Informal Metrics

Framework for Automated translations, correspondence proofs, and
termination proofs for, e.g.,

» Fibonacci, factorial, etc.
» TEA, RC6, AES
Caveat: mcc doesn't output the correspondence proof itself yet.

ACL2 Condition of Nontriviality: for AES, ACL2 automatically
generates

» About 350 definitions
» 200 proofs
» 47,000 lines of proof output

galois

oA WN R

The Details: QOutline

Language overview

. Automated termination proofs
. Verifier infrastructure

. What's left

“Dirty laundry”

galois

1Cryptol in One Slide

fac : B"32 -> B78;
fac i = facs @0 i
where {
rec
index : B~87inf;
index = [0] ## [x + 1 | x <- index];
and
facs : B"87inf;
facs = [1] ## [x * y | x <- facs
| y <= drops{1} index];

}s
index = 0,1,2,3,4,...,255,0,1,...
facs = 1,1, 2,6,24, 120, 208, 176, ...
fac3 = facs©@@3 =06

galois

Well-Definedness

The “stream delay from stream x to occurrence of stream y is d”
means, for sufficiently large index k € N, that the k'th element of
stream x depends on the value of the (k — d)'th element of stream y.

Let S be the set of stream names defined by a mutually-recursive
clique of stream definitions. Then we say the clique is well defined if
there exists a measure function

f:(NxS)—N

such that for each occurrence of a stream y in the body of the
definition of stream x with delay d, we have

VkeN.k>d=f(k—d,y) < f(k,x)

galois

Decidable! (Thanks, Mark)

The mcc compiler type system ensures well-definedness

» The compiler constructs a minimum delay graph for the clique of
streams.

» N.B.: Only linearly-recursive programs can be written in uCryptol.

This appears to be all you need for encryption protocols.

...But can we trust the compiler's type system?

galois

Well-Definedness Example (Indexed Form)

rec
index : B"87inf;
index = [0] ## [x + 1 | x <- index];
and
facs : B"87inf;
facs = [1] ## [x * y | x <~ facs
| y <~ drops{1} index];

(defun fac-measure (i s)
(acl2-count
(+ (x (+ 1 (cond ((eq s ’facs) 0)
((eq s ’index) 0))) 2)
(cond ((eq s ’facs) 1)
((eq s ’index) 0)))))

All termination proofs are automatic in ACL2. gal01 2

Transformations: Source to Canonical

Front-End Transformations

1.
2. Simplify vector comprehensions
3.
4,

Introduce safety checks

Eliminate patterns
Convert to indexed form

Indexed Form Generated

Begin Core Transformations

5.

© oo N o

Push stream applications
Collapse arms

Align arms
Takes/segments to indexes
Convert to iterator form

10.
11.
12.
13.
14.
15.
16.
17.

Eliminate simple primitives
Eliminate zero-sized values
Inline and simplify

Introduce temporaries
Eliminate nested definitions
Share top-level value definitions
Box top-level definitions
Eliminate shadowing

Canonical Form Generated

galois

Contributed ACL2 Book: Cryptographic Primitives

|

Arithmetic in Z>» (arithmetic modulo 2"): addition, negation, subtraction,
multiplication, division, remainder after division, greatest common divisor,
exponentiation, base-two logarithm, minimum, maximum, and negation.

Bitvector operations: shift left, shift right, rotate left, rotate right, append of
arbitrary width bitvectors, extraction of n bitvectors from a bitvector, append
of fixed-width bitvectors, split into fixed-width bitvectors, bitvector segment
extraction, bitvector transposition, reversal, and parity.

Arithmetic in GF.» (the Galois Field over 2"): polynomial addition,
multiplication, division, remainder after division, greatest common divisor,
irreducibility, and inverse with respect to an irreducible polynomial.

Pointwise extension of logical operations to bitvectors: bitwise
conjunction, bitwise disjunction, bitwise exclusive-or, and negation bitwise
complementation.

Vector operations: shift left, shift right, rotate left, rotate right, vector
append for an arbitrary number of vectors, extraction of n subvectors
extraction from a vector, flattening a vector vectors, building a vector of
vectors from a vector, taking an arbitrary segment from a vector, vector
transposition, and vector reverse. .
galois

Correspondence Proof

We prove the following property for the core transformations: for
source program S and compiled program C,

“If S has well-defined semantics (does not go wrong), then S and C

are observationally equivalent.”
— Xavier Leroy

galois

Example: Factorial Proof

(make-thm :name |inv-facs-thm]|
:thm-type invariant

:ind-name |idx_2_facs_2|
:itr-name |iter_idx_facs_3|

:init-hist ((0) (0))
:hist-widths (0 0)

:branches (|idx_2| |facs_21))

This top-level macro call, with the appropriate keys, generates the

correspondence theorem.

galois

Two Problems for Automated Proof Generation

Two problems:

» The proof infrastructure must be general enough to automatically
prove correspondence for arbitrary programs.

» The proof infrastructure must not fall over on real programs
(factorial took about a day; AES took a couple of months).

galois

Some Mitigations

The two difficulties are mitigated by ACL2 (and its community):

» Generality:
» Use powerful ACL2 books, particularly Rockwell Collins’

super-ihs (slated for public release).

» For any other “hard” lemmas, have the macros instantiate them
with concrete values (usually making their proofs trivial) and prove
them at “run-time" — these are usually bitvector theorems where
we want to fix the width of the bitvectors.

» Scaling:
» Package up large conjunctions in recursive definitions to prevent

gratuitous expensive rewrites.
» “Cascading” computed hints that iteratively enable definitions after
successive occurrences of being stable under simplification.

galois

Dirty (Clean?) Laundry

How hard was all this? Regarding the first author,

» Experience:
» Some Common Lisp experience.
» Little compiler experience.
» Little ACL2 experience.
» No uCryptol experience.
» No AAMP7? experience.

» Effort:
» Approx. 3 months to complete the core verifier.
» About 2 months investigating back-end verification.

DSL verifying compilers are feasible!

galois

Or..

>

vV v vy

What the ACL2 Folks Got Right

. "How an ACL2 novice can quickly do something useful.”

Powerful and easy macros:

» Avoid (hard) general proofs by simple instantiation of parameters.
» Simplifies creating a “proof framework” that is essential for an
automated verifying compiler.

“Industrial strength prover” — able to handle models as large as
the AAMP7 model and easily generate proofs tens of thousands of
lines long.

First-order language forces the user to consider specifications that
have more automated proofs from the get-go.

Engaged user-community and active acl2-help listserv.
Good documentation.
Powerful user-defined books (e.g., ihs books).
Work with the folks at Rockwell Collins :)
galois

What could have helped even more?

» A better way to find/search books (e.g., priorities on hints).
» Better integration with decision procedures/SMT?

» Heuristics for searching for inconsistent hypotheses.

galois

What's Left?

» Front end: in Isabelle (because of higher-order language
constructs); just a few transformations and pattern-matching.
» Back-end: more substantial: Galois helped do an initial
cutpoint-proof of factorial on the AAMP?.
» Without the AAMP7 model, the back-end verification is infeasible:
Stay tuned for the next talk!

galois

Additional Resources

Example uCryptol & ACL2 specs and cryptographic primitives

http://wuw.galois.com/files/core_verifier/

4

uCryptol design and compiler overview (solely authored by M. Shields)

http://www.cartesianclosed.com/pub/mcryptol/

uCryptol Reference Manual (solely authored by M. Shields)
http://galois.com/files/mCryptol_refman-0.9.pdf

galois

http://www.galois.com/files/core_verifier/
http://www.cartesianclosed.com/pub/mcryptol/
http://galois.com/files/mCryptol_refman-0.9.pdf

Shallow Embedding

mcc contains a small (1.2klocs, excluding libraries) translator from
uCryptol to Common Lisp (the translator is unverified). Some
highlights:

» uCryptol types as ACL2 predicates: B~32"2,

(defund |$ind_O_typepl| (x)
(and (true-listp x)
(natp (nth 0 x))
(< (nth 0 x) 4294967296)
(natp (nth 1 %))
(< (nth 1 x) 4294967296)))

defunded because AES has types like B"87474"11.
» uCryptol primitives: ...

galois

Proof Macros

Correspondence proofs are generated from a few macros:
» Function correspondence theorems of non-recursive definitions.
» Type correspondence theorems of type declarations.
» Vector comprehension correspondence theorems.
>

Stream-clique correspondence theorems of recursive cliques of
stream comprehensions.

» Vector-splitting correspondence theorems of type
correspondence for vectors that have been split into a vector of
subvectors.

» Inlined segments/takes correspondence theorems for inlined
segments and takes operators over streams.

galois

Factorial Correspondence Theorem

(defthm factorial-invariant
(implies
(and (natp i) (natp lim)
(true-listp hist) (<= i (+ lim 1))
(equal {\color{blue}(nth (loghead 0 i) (nth O hist))
{\color{red}(ind-facs i ’idx)})
(equal {\color{blue}(nth (loghead 1 i) (nth 1 hist))
\red{(ind-facs i ’facs)}))
(and (equal {\color{bluel}(nth (loghead O 1im)
(itr-facs i lim hist))}
{\color{red}(ind-facs lim ’idx))}
(equal {\color{blue}(nth (loghead 1 1lim)
(itr-facs i lim hist))}
{\color{red}(ind-facs lim ’facs)}))))

galois

