
How to Pretty-Print a Really Long Formula

Lee Pike
leepike@galois.com

Galois Inc.

September 9, 2008

Introduction

This is a talk about syntax.

So let me begin with a couple of less controversial points. . .

Outline

I Who you should vote for in the next election.

I The one true religion.

I How to pretty-print a really long formula.

Just kidding.

Outline

I Who you should vote for in the next election.

I The one true religion.

I How to pretty-print a really long formula.

Just kidding.

Credits

This work is completely inspired by Leslie Lamport’s, How to write a
long formula1 (and also his How to write a proof2).

All the good ideas are Lamport’s; the pedantic ones are mine. Here are
our modest contributions:

I An implemented pretty-printer.

I Small simplifications.

I Formatting for all of higher-order logic (HOL).

I A labeling scheme.

Primary goal: Develop an accepted “HOL normal form.”

1Formal Aspects of Computing, 1994.
2DEC TR, 1993.

Motivation

Consider the following formula:

((forall a , b . a = b and (exists b ,f, g. p(b, f, g)
or f(g)=b)) or not not (forall a. exists b. a=b and
(p(a)(f,g(a, foo(a, b, b), a)) and (not (not true)))))

I Is every existential quantifier within a universally-quantified
sentence?

I What is the outermost operator?

forall a, b.
a

= b
and exists b, f, g.

P(b, f, g)
or f(g)

= b
or not not forall a.

exists b.
a

= b
and P(a)

(f,
g(a, foo(a, b, b), a))

and not not true

I Is every existential quantifier within a universally-quantified
sentence?

I What is the outermost operator?

Desiderata

I No parentheses needed for precedence. Rather, we judiciously use
line breaks and indentation.

I Combine the intuition of infix with the clarity of prefix.

Remember: Yoda and Lisp-ers agree:

(prefixing (operator (is intuitive)))

I Automatic sub-formula numbering to reference portions of a
specification.

I A framework for automated specification clarity:
I Automated fitting for long terms and sentences.
I Automated definitions—i.e., where and let clauses (future work).

Approach

We’ll walk through one approach to satisfying these desiderata:

1. Functions & relations

2. Propositional logic

3. Predicate logic

4. Sub-formula numbering

In the following, we give verbatim input and output to our
currently-implemented pretty-printer.

Functions and Relations

By default, we enclose the arguments to functions and relations with
parentheses, and comma-delimit (both of which are configurable). For
readability, we provide a single space between arguments and
parentheses.

f(a, b, c) = g(1,2,3)

f(a, b, c)
= g(1, 2, 3)

Of course, a function might have no arguments.

f() = g(a)

f()
= g(a)

Functions and Relations

By default, we enclose the arguments to functions and relations with
parentheses, and comma-delimit (both of which are configurable). For
readability, we provide a single space between arguments and
parentheses.

f(a, b, c) = g(1,2,3)

f(a, b, c)
= g(1, 2, 3)

Of course, a function might have no arguments.

f() = g(a)

f()
= g(a)

Functions and Relations

Users can configure a maximum argument length. If an argument
exceeds the length, we split all arguments across lines.

P(reallyLongConstant, b, c)

P(reallyLongConstant,
b,
c)

In programs, we put delimiters before arguments for ease of editing.
Here, we only care about reading, so we put delimiters after.

Functions and Relations

Since this is HOL, a function can be an argument to another function
or relation.
P(f(g),b,c)

P(f(g), b, c)

We also allow currying. We always automatically split curried
arguments across lines.

P(a, b)(1)(42)

P(a, b)
(1)
(42)

Functions and Relations

Since this is HOL, a function can be an argument to another function
or relation.
P(f(g),b,c)

P(f(g), b, c)

We also allow currying. We always automatically split curried
arguments across lines.

P(a, b)(1)(42)

P(a, b)
(1)
(42)

Functions and Relations

If a relation or function contains any terms that are curried, we
automatically put each argument on a separate line for readability:

P(2, f(a)(b), 3, f(a)(b))

P(2,
f(a)
(b),
3,
f(a)
(b))

Functions and Relations

Deeply-nested functions become easy to parse visually.

f(g(f(2,3)(123456789, 1)(7,8)))(1) =
functName(anotherfunctName(1,2,3,4,5,6,7),
foo(h()(1,2,f(1,2))(3)), bar()(1))

f(g(f(2, 3)
(123456789, 1)
(7, 8)))

(1)
= functName(anotherfunctName(1, 2, 3, 4, 5, 6, 7),

foo(h()
(1, 2, f(1, 2))
(3)),

bar()
(1))

Propositional Logic

Binary operators (and, or, implies) are split across lines in infix, with
the first argument indented by the width of the operator.

true and false
true

and false

(true or false) implies false

true
or false

implies false

Propositional Logic

Binary operators (and, or, implies) are split across lines in infix, with
the first argument indented by the width of the operator.

true and false
true

and false

(true or false) implies false

true
or false

implies false

Propositional Logic

Unary operators are still parsed infix, noting indentation.

not (true and not false)
not true

and not false 3

3Thanks to Leslie Lamport for catching a bug in my rendering here.

Propositional Logic

If precedence doesn’t matter, we don’t need to indent (to save space)
and improve readability. Consider a conjunction with three conjuncts:

true and 1 = 2 and f(3) = g(2)

true
and 1

= 2
and f(3)

= g(2)

Conditionals

An if-then-else clause can be considered to be a 3-place operator:

if P(a) then f() = g(a) else P(b)

if P(a)
then f()

= g(a)
else P(b)

Let Expressions

Local definitions can be given with let-in expressions:

let a = if P(a) then f() = g(a) else P(b), b = forall a.
Q(a) in R(a, b)

let a = if P(a)
then f()

= g(a)
else P(b)

b = forall a.
Q(a)

in R(a, b)

Quantifiers

Following the style for binary operators in which we indent the
operands the width of the operators, we similarly indent a quantified
formula the width of the quantifiers.

forall b,a . true

forall b, a.
true

Of course we can nest quantifiers.

forall a, b. exists c. F(a,b,c)

forall a, b.
exists c.

F(a, b, c)

Quantifiers

Following the style for binary operators in which we indent the
operands the width of the operators, we similarly indent a quantified
formula the width of the quantifiers.

forall b,a . true

forall b, a.
true

Of course we can nest quantifiers.

forall a, b. exists c. F(a,b,c)

forall a, b.
exists c.

F(a, b, c)

Quantifiers

If the quantifiers are the same, we do not need to show precedence.

exists a, b. exists c. F(a,b,c)

exists a, b.
exists c.

F(a, b, c)

Sanity check: why didn’t we pretty-print this as the following?

exists a, b, c.
F(a, b, c)

Because we’re just trying to syntactically-transform formulas, not
semantically-transform them.

Quantifiers

If the quantifiers are the same, we do not need to show precedence.

exists a, b. exists c. F(a,b,c)

exists a, b.
exists c.

F(a, b, c)

Sanity check: why didn’t we pretty-print this as the following?

exists a, b, c.
F(a, b, c)

Because we’re just trying to syntactically-transform formulas, not
semantically-transform them.

Labeling Formulas

I Formula labels ease reference to sub-formulas. We automatically
label sub-formulas.

I Basic idea:
I How long the label is determines depth of sub-formula.
I Magnitude of the label tells me on what “side” the sub-formula is.

Labeling Formulas

I Think of the formula as a tree, such that operators and quantifiers
are at the nodes.

I n-ary operators have n children (we only have 1-, 2-, and 3-ary
operators).

I Predicates are at the leaves.

Labeling Formulas

We label nodes with children.

I The root is labeled with a 1.

I For a node labeled n with one child, if its child has children, it is
labeled n1.

I For a node labeled n with two children,
I if its left node has children, it is labeled n0.
I if its right node has children, it is labeled n2.

I For a node labeled n with three children, if its children have
children, they’re labeled n0, n1, and n2, respectively.

(All our operators have three or fewer children.)

Labeling Formulas

Here’s a simple formula with three binary operators.

true and false or (P() and Q())

| true
10| and false
1 | or P()
12| and Q()

The root of the tree.

Labeling Formulas

Here’s a simple formula with three binary operators.

true and false or (P() and Q())

| true
10| and false
1 | or P()
12| and Q()

Formula 1’s left node.

Labeling Formulas

Here’s a simple formula with three binary operators.

true and false or (P() and Q())

| true
10| and false
1 | or P()
12| and Q()

Formula 1’s right node.

Labeling Formulas

Here’s a simple formula with three binary operators.

true and false or (P() and Q())

| true
10| and false
1 | or P()
12| and Q()

An unlabeled leaf.

Labeling Formulas

Here’s a slightly more complicated formula.

forall a. true and ((P(a) and Q()) or false)

1 | forall a.
| true

11 | and P(a)
1120| and Q()
112 | or false

The root of the tree.

Labeling Formulas

Here’s a slightly more complicated formula.

forall a. true and ((P(a) and Q()) or false)

1 | forall a.
| true

11 | and P(a)
1120| and Q()
112 | or false

The root has one child.

Labeling Formulas

Here’s a slightly more complicated formula.

forall a. true and ((P(a) and Q()) or false)

1 | forall a.
| true

11 | and P(a)
1120| and Q()
112 | or false

Formula 11’s left child is a leaf and so is not labeled.

Labeling Formulas

Here’s a slightly more complicated formula.

forall a. true and ((P(a) and Q()) or false)

1 | forall a.
| true

11 | and P(a)
1120| and Q()
112 | or false

Formula 11’s right child is labeled.

Labeling Formulas

Here’s a slightly more complicated formula.

forall a. true and ((P(a) and Q()) or false)

1 | forall a.
| true

11 | and P(a)
1120| and Q()
112 | or false

Formula 112’s left child is labeled.

Labeling Formulas

Here’s a slightly more complicated formula.

forall a. true and ((P(a) and Q()) or false)

1 | forall a.
| true

11 | and P(a)
1120| and Q()
112 | or false

Neither child of 1120 gets labeled.

Labeling Formulas

Sometimes unary operators (not) and quantifier labels clash with
binary operator labels, so we compute their labels but do not show
them.
true and ((forall a. P(a) and not Q()) or false)

| true
1 | and forall a.

| P(a)
1201| and not Q()
12 | or false

Notice formula 1201 gets a label showing its a child of the quantifier
(which would have label 120).

Labeling Formulas

Labels can disambiguate intended precedence between operators with
the same indentation.
true or (not (P() and Q()) or false)

| true
1 | or P()
120| not and Q()
12 | or false

Labeling Formulas

We think of a let . . . in . . . expression as a binary operator that is
distributed across the expression. Thus, we distribute the label, too.

let a = P(123456,78,910), b = P(f(), 12, 34, 56) in
R(a,b)

1| let a = P(123456, 78, 910)
| b = P(f(), 12, 34, 56)
1| in R(a, b)

Labeling Formulas

We similarly distribute a label for if-then-else expressions:

if (forall a. P(a)) then (exists b. Q(b)) else (forall
c. R(c))

1 | if forall a.
| P(a)

1 | then exists b.
| Q(b)

1 | else forall c.
| R(c)

Labeling Formulas

If there are sub-formulas to be labeled in an if-then-else expression,
they are labeled 0, 1, and 2:

if a = b then b=c else c=d

1 | if a
10| = b
1 | then b
11| = c
1 | else c
12| = d

Labeling Formulas

For let-expressions, we do not label the defining equations since (1)
these are usually short (otherwise use another let expression), and
they’re ancillary to the formula:

let x = (a = b), y = (c = d), z = (x = y) in Q(x,y) and
P(x, y , z)

1 | let x = a
| = b
| y = c
| = d
| z = x
| = y

1 | in Q(x, y)
11| and P(x, y, z)

We do label sub-formulas of in.

Implementation

I I began the tool as a project to learn Haskell (inspired by Iavor
Diatchki’s Haskell class).

I Uses the BNF Converter (GPL) by Bj orn Bringert, Markus
Forsberg, and Aarne Ranta:

I http://www.cs.chalmers.se/Cs/Research/
Language-technology/BNFC/ (google: “bnf converter”).

I Generates lexer/parser for the BNF specification.

I Most of this work results in heavy modifications to the
pretty-printer and user-interface (enter --help to get options and
usage).

Quick demo. . .

http://www.cs.chalmers.se/Cs/Research/Language-technology/BNFC/
http://www.cs.chalmers.se/Cs/Research/Language-technology/BNFC/

Implementation

I I began the tool as a project to learn Haskell (inspired by Iavor
Diatchki’s Haskell class).

I Uses the BNF Converter (GPL) by Bj orn Bringert, Markus
Forsberg, and Aarne Ranta:

I http://www.cs.chalmers.se/Cs/Research/
Language-technology/BNFC/ (google: “bnf converter”).

I Generates lexer/parser for the BNF specification.

I Most of this work results in heavy modifications to the
pretty-printer and user-interface (enter --help to get options and
usage).

Quick demo. . .

http://www.cs.chalmers.se/Cs/Research/Language-technology/BNFC/
http://www.cs.chalmers.se/Cs/Research/Language-technology/BNFC/

(Intended) Usage
Most likely, take hard-to-read specs from verification tools (e.g.,
theorem-provers, model-checkers) and produce easier-to read specs for
documentation (LATEXand other documentation).

ACL2

Coq

Isabelle

PVS

TLA+2

HOL
Normal
Form

Pretty-
Printer

ASCII

LaTeX

Other
Formats

HOL
Prover

Haskell
HOL can be

written in
Haskell itself!

It’s easy to modify the input and output syntax.

(Intended) Usage

I Probably not useful for generating specs that these tools can parse
themselves (most theorem-provers can’t parse output in this
form)—but it’d be great if this were a “standard input” in the
future.

I Email me (preferably with a BNF of your favorite input language)
if you have a specific input/output language you’d like
pretty-printed.

To Do/Future Work (Help Solicited!)

I Language constructs
I Binary set-theoretic notation (e.g., ∈, ⊆, ∪, etc.)
I Records & arrays

I Automatically generating let clauses/definitions if a formula is
too large:

“Hierarchical description or decomposition means specifying a
system in terms of its pieces, specifying each of those pieces in
terms of lower-level pieces, and so on. Mathematics provides a
very simple, powerful mechanism for doing this: the definition”
(High-Level Specifications: Lessons from Industry, Batson &
Lamport, 2003).

Conclusions

I Your specifications are complex enough semantically; don’t make
them complex syntactically.

Example: I was developing formalizations of fault-tolerant specs
on a NASA project for the FAA to potentially evaluate. The specs
were sometimes pages long. I had trouble parsing them
sometimes. If I couldn’t parse them, how could the FAA evaluate
them for correctness?

I We have standard syntax for programming language specification
(BNF); why not for HOL formulas? I propose the foregoing to be
“HOL Normal Form.”

