
Building a High-Assurance
Unpiloted Air Vehicle

Lee Pike (speaker), Pat Hickey, James Bielman, Trevor Elliott, John
Launchbury, Erlend Hamberg, Thomas DuBuisson

MEMOCODE | Oct 2013

© 2013 Galois, Inc. All rights reserved.

The Problem

src: Kathleen Fisher, http://www.cyber.umd.edu/events/symposium

© 2013 Galois, Inc. All rights reserved.

The Challenge

High-Assurance Cyber-Military Systems (HACMS)

PM: Dr. Kathleen Fisher

http://www.darpa.mil/Our_Work/I2O/Programs/High-Assurance_Cyber_Military_Systems_(HACMS).aspx

© 2013 Galois, Inc. All rights reserved.

The “Air Team”

● Boeing: military vehicle

● Galois, Inc.: autopilot synthesis

● NICTA: networking/operating
systems

● Rockwell Collins/Univ. Minn.:
integration and architecture

● DRAPER/AIS/U. Oxford (Red
Team): vulnerability analysis

© 2013 Galois, Inc. All rights reserved.

SMACCMPilot

● Secure

● Mathematically

● Assured

● Composition of

● Control

● Models

© 2013 Galois, Inc. All rights reserved.

This Talk

How we built have nearly built

● Ivory: a memory-safe language/compiler

● Tower: an architectural coordination language

● SMACCMPilot: a high(er)-assurance autopilot

in 2-3 engineer-years (~1 calendar year).

© 2013 Galois, Inc. All rights reserved.

How We Did It

1.Collaborate with a vibrant open-source system/community

2.Build embedded domain-specific languages (EDSLs) and
type-safe macros

3.Synthesize the architecture

© 2013 Galois, Inc. All rights reserved.

In the Beginning...

There was Arduino

● Simple 8-bit AVR

● For DIY beginners in embedded
systems

● ArduPilot Mega Hardware

AVR Processor: 8 bit, 16MHz,

8k RAM, 256k Flash

© 2013 Galois, Inc. All rights reserved.

ArduPilot

● ArduPilot
● Arduino-based
● Open-source hardware and software
● 25 volunteer developers worldwide
● 1000s of users
● Starting to see commercial use

● DIYDrones.com
● 30,000 users, 99% amateurs and

hobbyists
● Home of the ArduPilot project
● Emphasis on beginner friendly

© 2013 Galois, Inc. All rights reserved.

ArduPilot Robustness

● Monolithic design

● Platform-specific C/C++

● Hobbyist use-cases
● No communication security, fault-tolerance

● But being adopted in security-critical environments

● No regimented testing/verification story

© 2013 Galois, Inc. All rights reserved.

The Hardware Abstraction Layer (HAL)

Gave back to the open-source community.
The foundation for ArduPilot now.

© 2013 Galois, Inc. All rights reserved.

Designing a Language for
Safety and Security

● Help ensure
● Memory safety

● Timing safety (i.e., easier WCET
analysis)

● Functional correctness

● While being flexible:
● bit-data manipulation

● memory-area manipulation

● “escaping” to/interrop with C

● readable generated code

Design goal: give the programmer a few centimeters less rope than required
to hang herself

© 2013 Galois, Inc. All rights reserved.

© 2013 Galois, Inc. All rights reserved.

Haskell

● Strong, static, polymorphic type checking and inference

● Pure, higher-order language—no side effects

● Functional programing for modularity: program composition is
function composition

Why Functional Programming Matters by John Hughes (1990)

© 2013 Galois, Inc. All rights reserved.

What if...

Can we have the high-level abstractions and type-safety of
functional programming in embedded systems programming?

Approaches:

● Design a new FP-inspired language/compiler from scratch?
No:
● Would take too long

● No library support

● Take the Haskell compiler and pair it down? No:
● The runtime system is 50KLOCs of C/C--

● And there's little control over memory usage (it's lazy) and it's a hog--”hello
world” takes over 1MB

© 2013 Galois, Inc. All rights reserved.

EDSL

“Just” a powerful Haskell library

Ivory language: 2.5KLOCs
Ivory compiler: 1.2KLOCs

● Building a programming language is hard!
● Get your programming language features for

free:
● Syntax & Parser
● Type Checker
● Macro language is type-safe and Turing-

complete

© 2013 Galois, Inc. All rights reserved.

Compiling and Running Ivory

© 2013 Galois, Inc. All rights reserved.

Who's Used EDSLs?

● Eaton: garbage truck controllers

● Boeing: component configuration

● Ericsson: DSP

● Xilinx: FPGA synthesis

● Soostone: high-speed trading

● ...

© 2013 Galois, Inc. All rights reserved.

Ivory Example

arrayExample :: Def('[Ref s (Array 4 (Stored Uint8))
 , Uint8
] :-> ())
arrayExample = proc "arrayExample"
 $ \arr x -> body
 $ arrayMap
 $ \ix -> do
 v <- deref (arr ! ix)
 store (arr ! ix) (v + x)

Loop over an array adding x to each element:

Type automatically
inferred

Guaranteed dereference arr at ix

Store v+x at index ix

Map over the elements of the array

© 2013 Galois, Inc. All rights reserved.

Haskell as Type-Safe Macro Language

arrAdd :: (Num a, SingI len, IvoryStore a)
 => Ref s (Array len (Stored a))
 -> a
 -> Ix len
 -> Ivory eff ()
arrAdd arr x ix = do
 v <- deref (arr ! ix)
 store (arr ! ix) (v + x)

arrayExample :: Def('[Ref s (Array 4 (Stored Uint8))
 , Uint8] :-> ()
)
arrayExample = proc "arrayExample"
 $ \arr x -> body
 $ arrayMap
 $ \ix -> do
 v <- deref (arr ! ix)
 store (arr ! ix) (v + x)

(arrAdd arr x)

Can be used for arbitrary-length arrays

And arbitrary data-types

Type-safe Haskell function call:
No overhead in generated code

© 2013 Galois, Inc. All rights reserved.

Macros, Example 2

data Cond eff = Cond IBool (Ivory eff ())

(==>) = Cond

cond [] = return ()

cond (Cond b f : cs) = ifte_ b f (cond cs)

 ifte (x >? 100)

 (store result 10)

 (ifte (x >? 50)

 (store result 5)

 (ifte (x >? 0)

 (store result 1)

 (store result 0)))

cond
 [x >? 100 ==> store result 10
 , x >? 50 ==> store result 5
 , x >? 0 ==> store result 1
 , true ==> store result 0
]

© 2013 Galois, Inc. All rights reserved.

Ivory Memory-Safety

● No null pointer dereferences

● No out-of-bounds array-indexing

● No unsafe implicit casting

● No unexpected type coercions—even satisfying the C
standard!

Distilled ArduPilot bug discovered by Galois:
...
uint8_t a = 10;
uint8_t b = 250;
printf("Answer: %i, %i", a-b > 0, (uint8_t)(a-b) > 0);
...

Answer: 0, 1
Assuming int > uint8_t

© 2013 Galois, Inc. All rights reserved.

Ivory: What We Removed

● No heap allocation (only stack)

● Unbounded looping combinators

Except for a single forever combinator

● void type

● Machine-dependent sizes (modulo float, double)

● Side-effecting expressions

● Pointer arithmetic

© 2013 Galois, Inc. All rights reserved.

Ivory: What We Added

● Effect types
● Allocation effects: “This function can't (stack) allocate memory”

● Escape effects: “No break is allowed in this loop”

● Return effects: “This macro cannot contain a return statement”

● References (guaranteed non-null pointers)

● Array map/fold combinators

● Automatic assertions
● arithmetic underflow/overflow

● div-by-zero

● user-specified assertions

© 2013 Galois, Inc. All rights reserved.

Ivory: TBD

● Sum types (unions)

● Fat pointers/strings

● Function pointers

● A better module system

● Interpreters for embedded software

© 2013 Galois, Inc. All rights reserved.

Tower

© 2013 Galois, Inc. All rights reserved.

Tower: a Glue Code Macro Language

● Goal: address the “glue code” problem: task initialization and
communication.
● Specifies how a tasks are scheduled and communicate

 Pub/sub model
● Provides both time-triggered and event-triggered behaviors

● Channels (queues) and data-ports (shared data) communication

● Able to specify both interrupt handlers and user tasks

● Tower is “just” Ivory macros so has all the type-safety
guarantees of Ivory—and no new code generator!

© 2013 Galois, Inc. All rights reserved.

Tower example

Signal task LED hardware
controller task

On/off?

© 2013 Galois, Inc. All rights reserved.

Signal Task

blink :: SingI n
 => ChannelSource n (Stored IBool)
 -> Task ()
blink chan = do
 tx <- withChannelEmitter chan "bTx"
 onPeriod period
 (body tx period)

 where period = 100 :: Integer

body ::(SingI Nat n, GetAlloc eff ~ Scope cs)
 => ChannelEmitter n (Stored IBool)
 -> Integer
 -> a
 -> Ivory eff ()
body tx period currTime = emitV_ tx (even currTime)
 where
 even = currTime .% (2*p) <? p
 p = fromIntegral period

Specify the output channel
Specify when computation takes place

What the task actually does

Send 0,1,0,1 ...
Ivory

Tower

© 2013 Galois, Inc. All rights reserved.

SMACCMPilot

© 2013 Galois, Inc. All rights reserved.

The Hardware

● ArduPilot Mega Hardware (Legacy)

AVR Processor: 8 bit, 16MHz,

8k RAM, 256k Flash

● PX4 Hardware (SMACCMPilot)

ARM Cortex M4 Processor: 32 bit,

168Mhz, 192k RAM, 1024k Flash

https://pixhawk.ethz.ch/px4/en/start

© 2013 Galois, Inc. All rights reserved.

SMACCMPilot Architecture
RC Receiver

Modem

Gyro + Accel

Compass

Barometer

GPS

UART
Driver

Timer
Driver

Input
Decoder

I2C, SPI
Drivers

UART
Driver

Sensor
Fusion

Packet
Decode

Stabilization

GCS
Comms

Auto
Flight Modes

Motors

Packet
Encode

Motor
Mixing

UART
Driver

Modem

UART
Driver

Decrypt/
Auth.

Encrypt/
Sign

Approx. 5x code generation

https://pixhawk.ethz.ch/px4/en/start

© 2013 Galois, Inc. All rights reserved.

smaccmpilot.org

© 2013 Galois, Inc. All rights reserved.

Lessons Learned/Open Problems

● Memory safety isn't a pancea
● We still test/debug/verify

● Traceability from DSLs to object code is necessary

● But the kinds of bugs is restricted: seg-faults, memory leaks don't happen

● EDSL shortcomings:
● Reusing a general-purpose type-checker

● Requires host-language knowledge

● Abstractions/macros can affect performance

● Compilation cycle

● Interpreters for embedded systems are hard

● Have not proved architectural properties or verified controllers

© 2013 Galois, Inc. All rights reserved.

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37

