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In The Beginning. . .

You have some monolithic system. . .
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In The Beginning. . .

To make it more secure, you decompose it. . .

3/26



In The Beginning. . .

But then you connect the components to deliver functionality.
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In The Beginning. . .

?
Wait: is this decomposition any more secure than what we started

with?
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Security by Decomposition

The answer depends:
1. Are the channels “better” (more secure APIs, more secure

channels, etc.) in the decomposition than in the monolithic
system?

2. Has our decomposed architecture reduced the possible
information flow in the system?

This talk will address the 2nd issue by describing graph algorithms
for analyzing basic information flow properties.
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Motivations

Kinds of questions we’d like to answer:
I Which entities cannot transmit or receive data of some

datatype?
I From an entity e, if n entities were to be compromised, to

which other entities could data be leaked?
I Could data get from one entity to another in n or fewer steps?
I What channels between entities would have to be omitted to

satisfy some separation policy?
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Approach & Motivation

I Describe a simple model of information flow based on graphs.
I Describe how to combine graph algorithms for heuristics in

information flow analyses.
I Why?

I We’ve seen these ideas in the “folklore”.
I But not collected together coherently.
I And they’ve proven useful to us.
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Non-goals

Non-goals include modeling
I covert channels analysis
I information hiding/encoding
I cryptographic analysis
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A Model for Information Flow
Details

I A system is a directed labeled graph (V , L, →).
I V is a finite set of vertices (modeling computers, virtual

machines, files, processes, threads, ports, etc.).
I L is a finite set of edge labels (modeling data type restrictions).
I → ⊆ L×V ×V : a nonempty relation between edges and labels

(modeling shared bits, shared pages, firewalls with rules, ports,
etc.).

I ≤ be a partial-order on edge labels giving an ordering to
information flow.
For example, for channels c and c′, c ≤ c′ if c′ expects
integers and c expects natural numbers.
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Transitive Closures

For analyses, we’ll be taking the transitive closure of vertices with
respect to labels, including all dominating channels in the relation:
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k -Transitive Closures

We’ll also take k -transitive closures, which are transitive closures
(with respect to a label) to some depth:
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Confidentiality & Integrity

I Confidentiality: From a fixed vertex, to which other vertices can
data of type l flow?

I Integrity: To a fixed vertex, from which other vertices can data
of type l flow?

So in our model, integrity is the dual of confidentiality (i.e., reverse
the edge relation).
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Transitive Closures
Interpretation

I (k )-transitive closures give us an intuition about what
information can go where, from a specific vertex.

I But this is a local picture of information flow.
I We want graph abstractions.

I Maximum confidentiality closures (Max CC) w.r.t. a label. Max
CCs are the sets of transitive closures that have no strict
supersets as transitive closures.
Intuition: Max CCs represent the greatest distribution of
information from sources.

I Minimum confidentiality closures (Min CC) w.r.t. a label. Min
CCs are the sets of transitive closures that have no strict
subsets as transitive closures.
Intuition: Min CCs represent the data sinks in a system.

14/26



Maximum Confidentiality Closures

I Max CC:
{{A, E}, {B, E}, {C, E}, {D, E}}

I Min CC: {{E}}

I Max CC: {{A, B, C, D, E}}
I Min CC:
{{A}, {B}, {C}, {D}}
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Separation Policies

I In the beginning, we talked about system decomposition,
ostensibly to make the system “more secure”.

I By “more secure”, we might mean federated according to
some separation policy.

I Challenge: how can channels be modified to deliver
functionality while ensuring separation?
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Separation Policies
Definition

I Our notion of a separation policy is a relation between vertices,
w.r.t. a lablel: 9 ⊆ L× V × V .

I A graph respects a separation policy iff for all v , v ′, v 9 v ′

implies v ′ 6∈ TC(v) (TC is the transitive closure), w.r.t. to a
label.
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Three Separation Algorithms

1. Separate the source.

2. Separate the sink.

3. Take a minimum cut.
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Minimum Cut
Details

I Reducible to the hitting set problem:
Given a set X and a collection of subsets S of X , find the
subset of S exactly covering X , if one exists.

I The hitting set problem is NP-complete.
I A greedy approximation exists, polynomial in the size of the

separation policy. The error is bounded by ln(x) + 1, where x
is the maximal number of paths violating a policy element.
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Heuristics
For Describing Separation Policies

Idea: how to carve a system at the joints.
I Compute cliques and independent sets.
I Find graph partitions (NP-complete) to find subgraphs with

minimized edges between subgraphs. Borrows from workload
balancing.
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Putting Things Together
Extended Example

I Set of
processes with
access to a
shared file
system.

I Labels: r ≤ rw
and w ≤ rw .
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Discretionary access control: processes can provide other
processes with read and/or write privileges on files for which they
have those privileges.
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Some Analyses
(1/4)

Let’s take max confidentiality closures first:
I read(): {{A, C, D, E , F , G, H, I}, {B}}}
I write(): {{A, B, C, D, E , F , G, H}, {A, B, F , H, I}}
I read − write(): {{A, F , H, I}, {B}, {C, D, G}, {C, E , G}}

I So B cannot obtain read privileges from any other process.
I Some process can (transitively) provide every process but B

with read permissions.
I The 2nd write() closure is I’s confidentiality closure.
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Some Analyses
(2/4)

Let’s look specifically at D now:
I The 4-TC of D w.r.t. reading is {A, C, D, E , F , G, H}.

So D can provide read privileges to every process but I within
four steps.

I But the 1-TC of D w.r.t. reading is {D, G}.
I So D can only reach G in one step.
I So, if our threat model is that only one process gets

compromised, and it’s D, then at most D can maliciously
provide read privileges to G.
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Some Analyses
(3/4)

Let’s stipulate the following separation policy:
I If a process x can provide another process y read permissions

on a file, then y cannot provide x with any write permissions:
I For edge x r→ y , there is a corresponding x w9 y , where x 6= y .

Let’s apply the separation algorithms:
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Some Analyses
(4/4)
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I Sink-separation and source-separation: A rw→ H, E rw→ G,
G rw→ C, H rw→ F , I rw→ A, I rw→ F , C r→ A, C r→ F , F r→ E , and
H r→ I.

I Greedy hitting set: A rw→ H and E rw→ G.
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Conclusions

I We’ve presented a simple model of allowed information flow to
help in system analysis.

I Useful, sometimes with surprising analyses.
I Many ideas from the folklore but I haven’t seen them collected.

I We’ve described simple confidentiality and integrity analyses.
I We’ve described algorithms for analyzing separation policies in

our model.
I Future work:

I Automatic translation from access control policies, linkers, etc.,
and visualization of abstractions.

I Heuristics/advice for system designers: “Perhaps you can
separate components A and B?”

I Tool: http:
//www.cs.indiana.edu/∼lepike/pubpages/infoflow.html

or google post-hoc lee pike
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