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3 Not-So-Secret Weapons

1. Embedded domain-specific languages (EDSLs)

2. A verifying (not verified) compiler approach

3. Open source testing/verification libraries & tools



© 2012 Galois, Inc.

National Aeronautics
and Space Administration

??



© 2012 Galois, Inc.

National Aeronautics
and Space Administration



© 2012 Galois, Inc.

Copilot: a Run-Time Monitoring DSL

 Embedded DSL in Haskell

 Synthesize monitors for real-time embedded systems

 Stream language

 Generates Misra-like C

 Constant time, constant memory

 Synthesized scheduler

 No RTOS needed
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Sample Copilot specification

fib :: [Word32]
fib =  [0, 1] ++ zipWith (+) fib (drop 1 fib)

fib :: Stream Word32
fib =  [0, 1] ++ (fib + drop 1 fib)

Haskell fib :: [Word32]
fib =  [0, 1] ++ zipWith (+) fib (drop 1 fib)

Copilot

Special constructs for input (sampling) and output (triggers)
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Copilot Architecture

Copilot specification
language

Libraries

Core language

Atom back-end
(C)

Interpreter

SBV back-end
(C)

Domain-specific
type-checking

bounded LTL
ptLTL

regular expressions
clocks

fault-tolerance
etc.
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Lessons in DIY Assurance

 Who monitors the monitor?

 Challenges:

 EDSLs encourage rapid language design changes

 Industrial work often doesn't “pay” for assurance (but wants it)
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Lessons in DIY Assurance

Solution: DIY assurance

 Turing incomplete DSLs, Turing complete macros

 Multi-level type-checking

 Cheap testing & proofs

 Unified host language
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Lesson #1: Turing-Incompleteness

Turing incompleteness means:

 Compiler writing is simplified
 Compiler reasoning is better 

(e.g., termination analysis)
 Security is improved
 Automated verification has a 

chance of working!
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Lesson #1: Turing-Incompleteness

Turing incompleteness means:

 Compiler writing is simplified
 Compiler reasoning is better 

(e.g., termination analysis)
 Security is improved
 Automated verification has a 

chance of working!

Have your cake and eat it, too:
In an embedded DSL, the host
language is Turing-complete!

Programs specialized at compile
time.
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Lesson #2: Multi-Level Type-Checking

 Lean on Haskell's type system in the (DSL's) compiler's internal 
representations: e.g., GADTs

 Leave the type system twice:
 Pretty-print C
 Translating between EDSLs (type-safe dynamic typing*).

 And ensure you aren't abusing it: Safe Haskell

*Baars and Swierstra. Typing dynamic typing.  ICFP 2002.
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Lesson #2: Multi-Level Type-Checking

 Lean on Haskell's type system in the (DSL's) compiler's internal 
representations: e.g., GADTs

 Leave the type system twice:
 Pretty-print C
 Translate between EDSLs (type-safe dynamic typing*).

 And ensure you aren't abusing it: Safe Haskell

 Then a little domain-specific type-checking:

 Productiveness:

Rejected:

     

 Inputs are consistently typed (e.g., external functional calls)

x :: Stream Word64
x = [0] ++ drop 1 x

*Baars and Swierstra. Typing dynamic typing.  ICFP 2002.
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Lesson #3: Cheap Testing & Proofs
 QuickCheck:

 Small DSLs make program 
generation easy with good 
coverage

 Test ~1.5M programs/day

Core language

Atom back-end
(C)

Interpreter

QuickCheck
testing
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Lesson #3: Cheap Testing & Proofs
 QuickCheck:

 Small DSLs make program 
generation easy with good 
coverage

 Test ~1.5M programs/day

Core language

Atom back-end
(C)

Interpreter

SBV back-end
(C)

CBMC: (C bounded
model-checker)

QuickCheck
testing

 Then prove back-ends agree:

 Model-checking works (better) 
with Turing incomplete DSLs

 EDSL simplifies driver 
generation

http://www.cprover.org/cbmc/

http://www.cprover.org/cbmc/
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Lesson #4: a Unified Host Language 

Embedded DSLs are a paradigm shift for safety-critical languages

 Fewer front-end, type-checker bugs

 “Bolting-on” new tools within the type system (no marshalling)

 The macro language is a build system, too!
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Conclusions
Verified compiler

 Expensive
 Specialized skills
 Hard to make repairs
 But flawless when it works
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Conclusions
Verified compiler

 Expensive
 Specialized skills
 Hard to make repairs
 But flawless when it works

src: http://designthatmatters.org/news/press/dtm-in-the-news/

http://designthatmatters.org/news/press/dtm-in-the-news/


© 2012 Galois, Inc.

Conclusions
Verified compiler

 Expensive
 Specialized skills
 Hard to make repairs
 But flawless when it works

DIY assurance

 Cheap
 Quick to build
 Easy to repair
 An “90% solution”

src: http://designthatmatters.org/news/press/dtm-in-the-news/

http://designthatmatters.org/news/press/dtm-in-the-news/
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