
© 2012 Galois, Inc.

Experience Report:
a Do-it-Yourself

High-Assurance Compiler
Lee Pike

Nis Wegmann
Sebastian Niller
Alwyn Goodloe

Galois, Inc. <leepike@galois.com>
University of Copenhagen
Unaffiliated
NASA Langley Research Center

© 2012 Galois, Inc.

Do-It-Yourself

© 2012 Galois, Inc.

Do-It-Yourself

© 2012 Galois, Inc.

Do-It-Yourself

© 2012 Galois, Inc.

Do-It-Yourself

© 2012 Galois, Inc.

????
????
????

High-Assurance

© 2012 Galois, Inc.

3 Not-So-Secret Weapons

1. Embedded domain-specific languages (EDSLs)

2. A verifying (not verified) compiler approach

3. Open source testing/verification libraries & tools

© 2012 Galois, Inc.

National Aeronautics
and Space Administration

??

© 2012 Galois, Inc.

National Aeronautics
and Space Administration

© 2012 Galois, Inc.

Copilot: a Run-Time Monitoring DSL

 Embedded DSL in Haskell

 Synthesize monitors for real-time embedded systems

 Stream language

 Generates Misra-like C

 Constant time, constant memory

 Synthesized scheduler

 No RTOS needed

© 2012 Galois, Inc.

Sample Copilot specification

fib :: [Word32]
fib = [0, 1] ++ zipWith (+) fib (drop 1 fib)

fib :: Stream Word32
fib = [0, 1] ++ (fib + drop 1 fib)

Haskell fib :: [Word32]
fib = [0, 1] ++ zipWith (+) fib (drop 1 fib)

Copilot

Special constructs for input (sampling) and output (triggers)

© 2012 Galois, Inc.

Copilot Architecture

Copilot specification
language

Libraries

Core language

Atom back-end
(C)

Interpreter

SBV back-end
(C)

Domain-specific
type-checking

bounded LTL
ptLTL

regular expressions
clocks

fault-tolerance
etc.

© 2012 Galois, Inc.

Lessons in DIY Assurance

 Who monitors the monitor?

 Challenges:

 EDSLs encourage rapid language design changes

 Industrial work often doesn't “pay” for assurance (but wants it)

© 2012 Galois, Inc.

Lessons in DIY Assurance

Solution: DIY assurance

 Turing incomplete DSLs, Turing complete macros

 Multi-level type-checking

 Cheap testing & proofs

 Unified host language

© 2012 Galois, Inc.

Lesson #1: Turing-Incompleteness

Turing incompleteness means:

 Compiler writing is simplified
 Compiler reasoning is better

(e.g., termination analysis)
 Security is improved
 Automated verification has a

chance of working!

© 2012 Galois, Inc.

Lesson #1: Turing-Incompleteness

Turing incompleteness means:

 Compiler writing is simplified
 Compiler reasoning is better

(e.g., termination analysis)
 Security is improved
 Automated verification has a

chance of working!

Have your cake and eat it, too:
In an embedded DSL, the host
language is Turing-complete!

Programs specialized at compile
time.

© 2012 Galois, Inc.

Lesson #2: Multi-Level Type-Checking

 Lean on Haskell's type system in the (DSL's) compiler's internal
representations: e.g., GADTs

 Leave the type system twice:
 Pretty-print C
 Translating between EDSLs (type-safe dynamic typing*).

 And ensure you aren't abusing it: Safe Haskell

*Baars and Swierstra. Typing dynamic typing. ICFP 2002.

© 2012 Galois, Inc.

Lesson #2: Multi-Level Type-Checking

 Lean on Haskell's type system in the (DSL's) compiler's internal
representations: e.g., GADTs

 Leave the type system twice:
 Pretty-print C
 Translate between EDSLs (type-safe dynamic typing*).

 And ensure you aren't abusing it: Safe Haskell

 Then a little domain-specific type-checking:

 Productiveness:

Rejected:

 Inputs are consistently typed (e.g., external functional calls)

x :: Stream Word64
x = [0] ++ drop 1 x

*Baars and Swierstra. Typing dynamic typing. ICFP 2002.

© 2012 Galois, Inc.

Lesson #3: Cheap Testing & Proofs
 QuickCheck:

 Small DSLs make program
generation easy with good
coverage

 Test ~1.5M programs/day

Core language

Atom back-end
(C)

Interpreter

QuickCheck
testing

© 2012 Galois, Inc.

Lesson #3: Cheap Testing & Proofs
 QuickCheck:

 Small DSLs make program
generation easy with good
coverage

 Test ~1.5M programs/day

Core language

Atom back-end
(C)

Interpreter

SBV back-end
(C)

CBMC: (C bounded
model-checker)

QuickCheck
testing

 Then prove back-ends agree:

 Model-checking works (better)
with Turing incomplete DSLs

 EDSL simplifies driver
generation

http://www.cprover.org/cbmc/

http://www.cprover.org/cbmc/

© 2012 Galois, Inc.

Lesson #4: a Unified Host Language

Embedded DSLs are a paradigm shift for safety-critical languages

 Fewer front-end, type-checker bugs

 “Bolting-on” new tools within the type system (no marshalling)

 The macro language is a build system, too!

© 2012 Galois, Inc.

Conclusions

© 2012 Galois, Inc.

Conclusions
Verified compiler

 Expensive
 Specialized skills
 Hard to make repairs
 But flawless when it works

© 2012 Galois, Inc.

Conclusions
Verified compiler

 Expensive
 Specialized skills
 Hard to make repairs
 But flawless when it works

src: http://designthatmatters.org/news/press/dtm-in-the-news/

http://designthatmatters.org/news/press/dtm-in-the-news/

© 2012 Galois, Inc.

Conclusions
Verified compiler

 Expensive
 Specialized skills
 Hard to make repairs
 But flawless when it works

DIY assurance

 Cheap
 Quick to build
 Easy to repair
 An “90% solution”

src: http://designthatmatters.org/news/press/dtm-in-the-news/

http://designthatmatters.org/news/press/dtm-in-the-news/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

