
© 2012 Galois, Inc.

Experience Report:
a Do-it-Yourself

High-Assurance Compiler
Lee Pike

Nis Wegmann
Sebastian Niller
Alwyn Goodloe

Galois, Inc. <leepike@galois.com>
University of Copenhagen
Unaffiliated
NASA Langley Research Center

© 2012 Galois, Inc.

Do-It-Yourself

© 2012 Galois, Inc.

Do-It-Yourself

© 2012 Galois, Inc.

Do-It-Yourself

© 2012 Galois, Inc.

Do-It-Yourself

© 2012 Galois, Inc.

????
????
????

High-Assurance

© 2012 Galois, Inc.

3 Not-So-Secret Weapons

1. Embedded domain-specific languages (EDSLs)

2. A verifying (not verified) compiler approach

3. Open source testing/verification libraries & tools

© 2012 Galois, Inc.

National Aeronautics
and Space Administration

??

© 2012 Galois, Inc.

National Aeronautics
and Space Administration

© 2012 Galois, Inc.

Copilot: a Run-Time Monitoring DSL

 Embedded DSL in Haskell

 Synthesize monitors for real-time embedded systems

 Stream language

 Generates Misra-like C

 Constant time, constant memory

 Synthesized scheduler

 No RTOS needed

© 2012 Galois, Inc.

Sample Copilot specification

fib :: [Word32]
fib = [0, 1] ++ zipWith (+) fib (drop 1 fib)

fib :: Stream Word32
fib = [0, 1] ++ (fib + drop 1 fib)

Haskell fib :: [Word32]
fib = [0, 1] ++ zipWith (+) fib (drop 1 fib)

Copilot

Special constructs for input (sampling) and output (triggers)

© 2012 Galois, Inc.

Copilot Architecture

Copilot specification
language

Libraries

Core language

Atom back-end
(C)

Interpreter

SBV back-end
(C)

Domain-specific
type-checking

bounded LTL
ptLTL

regular expressions
clocks

fault-tolerance
etc.

© 2012 Galois, Inc.

Lessons in DIY Assurance

 Who monitors the monitor?

 Challenges:

 EDSLs encourage rapid language design changes

 Industrial work often doesn't “pay” for assurance (but wants it)

© 2012 Galois, Inc.

Lessons in DIY Assurance

Solution: DIY assurance

 Turing incomplete DSLs, Turing complete macros

 Multi-level type-checking

 Cheap testing & proofs

 Unified host language

© 2012 Galois, Inc.

Lesson #1: Turing-Incompleteness

Turing incompleteness means:

 Compiler writing is simplified
 Compiler reasoning is better

(e.g., termination analysis)
 Security is improved
 Automated verification has a

chance of working!

© 2012 Galois, Inc.

Lesson #1: Turing-Incompleteness

Turing incompleteness means:

 Compiler writing is simplified
 Compiler reasoning is better

(e.g., termination analysis)
 Security is improved
 Automated verification has a

chance of working!

Have your cake and eat it, too:
In an embedded DSL, the host
language is Turing-complete!

Programs specialized at compile
time.

© 2012 Galois, Inc.

Lesson #2: Multi-Level Type-Checking

 Lean on Haskell's type system in the (DSL's) compiler's internal
representations: e.g., GADTs

 Leave the type system twice:
 Pretty-print C
 Translating between EDSLs (type-safe dynamic typing*).

 And ensure you aren't abusing it: Safe Haskell

*Baars and Swierstra. Typing dynamic typing. ICFP 2002.

© 2012 Galois, Inc.

Lesson #2: Multi-Level Type-Checking

 Lean on Haskell's type system in the (DSL's) compiler's internal
representations: e.g., GADTs

 Leave the type system twice:
 Pretty-print C
 Translate between EDSLs (type-safe dynamic typing*).

 And ensure you aren't abusing it: Safe Haskell

 Then a little domain-specific type-checking:

 Productiveness:

Rejected:

 Inputs are consistently typed (e.g., external functional calls)

x :: Stream Word64
x = [0] ++ drop 1 x

*Baars and Swierstra. Typing dynamic typing. ICFP 2002.

© 2012 Galois, Inc.

Lesson #3: Cheap Testing & Proofs
 QuickCheck:

 Small DSLs make program
generation easy with good
coverage

 Test ~1.5M programs/day

Core language

Atom back-end
(C)

Interpreter

QuickCheck
testing

© 2012 Galois, Inc.

Lesson #3: Cheap Testing & Proofs
 QuickCheck:

 Small DSLs make program
generation easy with good
coverage

 Test ~1.5M programs/day

Core language

Atom back-end
(C)

Interpreter

SBV back-end
(C)

CBMC: (C bounded
model-checker)

QuickCheck
testing

 Then prove back-ends agree:

 Model-checking works (better)
with Turing incomplete DSLs

 EDSL simplifies driver
generation

http://www.cprover.org/cbmc/

http://www.cprover.org/cbmc/

© 2012 Galois, Inc.

Lesson #4: a Unified Host Language

Embedded DSLs are a paradigm shift for safety-critical languages

 Fewer front-end, type-checker bugs

 “Bolting-on” new tools within the type system (no marshalling)

 The macro language is a build system, too!

© 2012 Galois, Inc.

Conclusions

© 2012 Galois, Inc.

Conclusions
Verified compiler

 Expensive
 Specialized skills
 Hard to make repairs
 But flawless when it works

© 2012 Galois, Inc.

Conclusions
Verified compiler

 Expensive
 Specialized skills
 Hard to make repairs
 But flawless when it works

src: http://designthatmatters.org/news/press/dtm-in-the-news/

http://designthatmatters.org/news/press/dtm-in-the-news/

© 2012 Galois, Inc.

Conclusions
Verified compiler

 Expensive
 Specialized skills
 Hard to make repairs
 But flawless when it works

DIY assurance

 Cheap
 Quick to build
 Easy to repair
 An “90% solution”

src: http://designthatmatters.org/news/press/dtm-in-the-news/

http://designthatmatters.org/news/press/dtm-in-the-news/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

