Roll Your Own Test Bed for Embedded
Real-Time Protocols:
A Haskell Experience

Lee Pike, Galois, Inc.
leepike@galois.com

Geoffrey Brown, Indiana University
Alwyn Goodloe, National Institute of Aerospace

September 3, 2009

galois

117

This is a story about using Haskell. ..

galois

2117

...Haskell in Space!

galois

3/17

OK, just kidding.

Goals:

1. Teach you enough about physical-layer protocols to make you
dangerous.

2. Tell you how | easily modeled real-time distributed systems in a
lazy, pure language.

3. Tell you how | used QuickCheck as a “probability calculator”.

galois

417

(1) Physical-Layer Protocols

galois

517

Do you wonder how
» The credit-card slider reads your magnetic stripe?
» The CD player reads your Rolling Stones CD?
» The internet gets transmitted to your computer?

All are achieved using physical-layer protocols: a transmitter tx
sends a receiver rx a bit-stream in real-time.

galois

6/17

Biphase Mark Protocol

Period Encoded Bit
<+> <+——>
1 1 1 1 1 1 1 : O 1
Bits ! : L 1 ' |
Clocki L[L_| | | — 1|
BVPI LI L i i —
galois

mnv

Signal Strength Over Time

Period

~ ; I

Signal oS N | 5 Sampled
Strength F----cceeemeee e T | ° Value
< P> > 0
Stable Settle
Time
galois

8/17

-- | Realtime input parameters.

data Params = Params

{ tPeriod :: Time -- ~
, tSettle :: Time -- ~
, rScanMin :: Time —-
, rScanMax :: Time —-
, rSampMin :: Time --
, rSampMax :: Time --

} deriving (Show Eq)

Rx’s
Rx’s
Rx’s
Rx’s

917

min
max
min
max

Parameters

Tx’s clock period.
Nominal signal settling time.

scan duration.
scan duration.
sampling duration.
sampling duration.

galois

Some Constraints

paramsConst :: Params -> Bool
paramsConst p =

&&
&&
&&
&&
&&
&&
&&
&&

0 < tPeriod p -- tPeriod
0 <= tSettle p —-- tSettle
tSettle p < tPeriod p -- tSettle

0 < rScanMin p -- rScanMin
rScanMin p <= rScanMax p -- rScanMax
rScanMax p < tStable -- rScanMax

tPeriod p + tSettle p < rSampMin p -- rSampMin
rSampMin p <= rSampMax p -- rSampMax
rSampMax p < tPeriod p + tStable - rScanMax p

where tStable = tPeriod p - tSettle p

1017

galois

(2) Modeling Real-Time in Haskell

galois

1117

Modeling Real-Time

In a Lazy Functional Language

» Question: How do | model distributed real-time behavior in a
functional language?

More precisely, we want to model a partially-synchronous
real-time system with possibly non-deterministic bounds on
asynchrony.

» Answer: The discrete-event simulation folks figured this out a
few decades ago. We’'ll just borrow their ideas.

Claim: many practical real-time systems fit this model.

galois

12117

Let’'s Take Turns!

or Discrete-Event Simulation

» Suppose you have participants pg, p1, - - -, Pn-

galois

13117

Let’'s Take Turns!

or Discrete-Event Simulation

» Suppose you have participants pg, p1, - - -, Pn-
» Suppose the present time is time t.

galois

13117

Let’'s Take Turns!

or Discrete-Event Simulation

» Suppose you have participants pg, p1, - - -, Pn-
» Suppose the present time is time t.

» Each p; is scheduled to take some action in the future, when
its timeout is reached.
» Attime t + n (synchronous).
» Within (t 4+ n, t + n+ §) (partially-synchronous).

galois

13117

Let’'s Take Turns!

or Discrete-Event Simulation

» Suppose you have participants pg, p1, - - -, Pn-

» Suppose the present time is time t.
» Each p; is scheduled to take some action in the future, when
its timeout is reached.
» Attime t + n (synchronous).
» Within (t 4+ n, t + n+ §) (partially-synchronous).
» The current time f “leap frogs” to the least-valued scheduled
action.

galois

13117

Let’'s Take Turns!

or Discrete-Event Simulation

» Suppose you have participants pg, p1, - - -, Pn-
» Suppose the present time is time t.

Each p; is scheduled to take some action in the future, when
its timeout is reached.

» Attime t + n (synchronous).

» Within (t 4+ n, t + n+ §) (partially-synchronous).
The current time t “leap frogs” to the least-valued scheduled
action.

If two participants have overlapping timeouts, one is arbitrarily
chosen.

galois

13117

Let’'s Take Turns!

or Discrete-Event Simulation

» Suppose you have participants pg, p1, - - -, Pn-
» Suppose the present time is time t.

v

Each p; is scheduled to take some action in the future, when
its timeout is reached.

» Attime t + n (synchronous).
» Within (t 4+ n, t + n+ §) (partially-synchronous).

The current time t “leap frogs” to the least-valued scheduled
action.

If two participants have overlapping timeouts, one is arbitrarily
chosen.

p;i takes its action, and updates its timeout.

galois

13117

Example

0 from [0, 1]

galois

14117

Example

0from [0, 1] <«

galois

14117

Example

t=0
Po \ P1
0 0from [0, 1] <«
7

galois

14117

Example

0 0 from [0, 1]

7

galois

14117

Example

Po \ P1

0 0 from [0, 1]

7

9.89 from (8.5, 10)

galois

14117

Example

Po \ P1

0 0 from [0, 1]

7

9.89 from (8.5, 10)

galois

14117

Example

Po \ P1

0 0 from [0, 1]

7 =

9.89 from (8.5, 10)

galois

14117

Example

t=7
Po \ P1
0 0 from [0, 1]
7 =
9.89 from (8.5, 10)
9

galois

14117

Example

t=9
Po \ P1
0 0 from [0, 1]
7
9.89 from (8.5, 10)
9

galois

14117

Example

t=9
Po \ P1
0 0 from [0, 1]
7
9.89 from (8.5, 10)
9 —=

galois

14117

Example

t=9
Po \ P1
0 0 from [0, 1]
7
9.89 from (8.5, 10)
9 —=
10

galois

14117

Example

t=9.89
Po \ P1
0 0 from [0, 1]
7
9.89 from (8.5, 10)
9
10

galois

14117

Example

t=9.89
Po \ P1
0 0 from [0, 1]
7
= 9.89 from (8.5, 10)
9
10

14117

galois

Example

t=9.89
Po \ P1
0 0 from [0, 1]
7
= 9.89 from (8.5, 10)
9
10

(10, 12)

14117

galois

Example

t=10
Po \ P1
0 0 from [0, 1]
7
9.89 from (8.5, 10)
9
10

(10, 12)

galois

14117

Example

t=10
Po \ P1
0 0 from [0, 1]
7
9.89 from (8.5, 10)
9
10 =

(10, 12)

galois

14117

(3) QuickCheck

| galois |

15/17

v

A Tale of Two QuickCheck Uses

In One Slide

1 Testing: we’ll feed the model QC-generated real-time
parameters satisfying the constraints.

About 100,000 tests-runs per minute on a MacBook.

» # 2 Probability Calculating: QC for use in stochastic testing.
» For both, we use monadic QuickCheck, since the model itself

is within the 10 monad. (A small patch is needed to QC.)

And we use the super-fast System.Random.Mersenne for
generating timeouts.

But with no optimizations, testing is surprisingly fast!

galois

16/17

Conclusions

» Emulating real-time is real easy in a pure, lazy language.

» Generating real-time parameters is quick with QuickCheck.

» And QuickCheck can be used for probabilistic reliability
analysis.

» Google: biphase quickcheck to get the code & QuickCheck
patch.

galois

1717

leepike@galois.com

Conclusions

» Emulating real-time is real easy in a pure, lazy language.

» Generating real-time parameters is quick with QuickCheck.

» And QuickCheck can be used for probabilistic reliability
analysis.

» Google: biphase quickcheck to get the code & QuickCheck
patch.

Shameless plug: I'm looking for a summer student (undergrad or
Ph.D.) in 2010 and/or 2011 who’d like to do some hacking &
research on a NASA-sponsored project. . .

leepike@galois.com

galois

1717

leepike@galois.com

