
Roll Your Own Test Bed for Embedded
Real-Time Protocols:
A Haskell Experience

Lee Pike, Galois, Inc.
leepike@galois.com

Geoffrey Brown, Indiana University
Alwyn Goodloe, National Institute of Aerospace

September 3, 2009

1/17



This is a story about using Haskell. . .

2/17



. . .Haskell in Space!

3/17



Ok, just kidding.

Goals:
1. Teach you enough about physical-layer protocols to make you

dangerous.
2. Tell you how I easily modeled real-time distributed systems in a

lazy, pure language.
3. Tell you how I used QuickCheck as a “probability calculator”.

4/17



(1) Physical-Layer Protocols

5/17



Do you wonder how
I The credit-card slider reads your magnetic stripe?
I The CD player reads your Rolling Stones CD?
I The internet gets transmitted to your computer?

All are achieved using physical-layer protocols: a transmitter tx
sends a receiver rx a bit-stream in real-time.

6/17



Biphase Mark Protocol

1 1 0 1 0 0
Bits

BMP

Clock

Period Encoded Bit

7/17



Signal Strength Over Time

Period

SettleStable

1

0
? Sampled

Value

Time

Signal
Strength

8/17



Parameters

-- | Realtime input parameters.
data Params = Params

{ tPeriod :: Time -- ^ Tx’s clock period.
, tSettle :: Time -- ^ Nominal signal settling time.
, rScanMin :: Time -- ^ Rx’s min scan duration.
, rScanMax :: Time -- ^ Rx’s max scan duration.
, rSampMin :: Time -- ^ Rx’s min sampling duration.
, rSampMax :: Time -- ^ Rx’s max sampling duration.
} deriving (Show, Eq)

9/17



Some Constraints

paramsConst :: Params -> Bool
paramsConst p =

0 < tPeriod p -- tPeriod
&& 0 <= tSettle p -- tSettle
&& tSettle p < tPeriod p -- tSettle
&& 0 < rScanMin p -- rScanMin
&& rScanMin p <= rScanMax p -- rScanMax
&& rScanMax p < tStable -- rScanMax
&& tPeriod p + tSettle p < rSampMin p -- rSampMin
&& rSampMin p <= rSampMax p -- rSampMax
&& rSampMax p < tPeriod p + tStable - rScanMax p
where tStable = tPeriod p - tSettle p

10/17



(2) Modeling Real-Time in Haskell

11/17



Modeling Real-Time
In a Lazy Functional Language

I Question: How do I model distributed real-time behavior in a
functional language?
More precisely, we want to model a partially-synchronous
real-time system with possibly non-deterministic bounds on
asynchrony.

I Answer: The discrete-event simulation folks figured this out a
few decades ago. We’ll just borrow their ideas.

Claim: many practical real-time systems fit this model.

12/17



Let’s Take Turns!
or Discrete-Event Simulation

I Suppose you have participants p0, p1, . . ., pn.

I Suppose the present time is time t .
I Each pi is scheduled to take some action in the future, when

its timeout is reached.

I At time t + n (synchronous).
I Within (t + n, t + n + δ) (partially-synchronous).

I The current time t “leap frogs” to the least-valued scheduled
action.
If two participants have overlapping timeouts, one is arbitrarily
chosen.

I pi takes its action, and updates its timeout.

13/17



Let’s Take Turns!
or Discrete-Event Simulation

I Suppose you have participants p0, p1, . . ., pn.
I Suppose the present time is time t .

I Each pi is scheduled to take some action in the future, when
its timeout is reached.

I At time t + n (synchronous).
I Within (t + n, t + n + δ) (partially-synchronous).

I The current time t “leap frogs” to the least-valued scheduled
action.
If two participants have overlapping timeouts, one is arbitrarily
chosen.

I pi takes its action, and updates its timeout.

13/17



Let’s Take Turns!
or Discrete-Event Simulation

I Suppose you have participants p0, p1, . . ., pn.
I Suppose the present time is time t .
I Each pi is scheduled to take some action in the future, when

its timeout is reached.
I At time t + n (synchronous).
I Within (t + n, t + n + δ) (partially-synchronous).

I The current time t “leap frogs” to the least-valued scheduled
action.
If two participants have overlapping timeouts, one is arbitrarily
chosen.

I pi takes its action, and updates its timeout.

13/17



Let’s Take Turns!
or Discrete-Event Simulation

I Suppose you have participants p0, p1, . . ., pn.
I Suppose the present time is time t .
I Each pi is scheduled to take some action in the future, when

its timeout is reached.
I At time t + n (synchronous).
I Within (t + n, t + n + δ) (partially-synchronous).

I The current time t “leap frogs” to the least-valued scheduled
action.

If two participants have overlapping timeouts, one is arbitrarily
chosen.

I pi takes its action, and updates its timeout.

13/17



Let’s Take Turns!
or Discrete-Event Simulation

I Suppose you have participants p0, p1, . . ., pn.
I Suppose the present time is time t .
I Each pi is scheduled to take some action in the future, when

its timeout is reached.
I At time t + n (synchronous).
I Within (t + n, t + n + δ) (partially-synchronous).

I The current time t “leap frogs” to the least-valued scheduled
action.
If two participants have overlapping timeouts, one is arbitrarily
chosen.

I pi takes its action, and updates its timeout.

13/17



Let’s Take Turns!
or Discrete-Event Simulation

I Suppose you have participants p0, p1, . . ., pn.
I Suppose the present time is time t .
I Each pi is scheduled to take some action in the future, when

its timeout is reached.
I At time t + n (synchronous).
I Within (t + n, t + n + δ) (partially-synchronous).

I The current time t “leap frogs” to the least-valued scheduled
action.
If two participants have overlapping timeouts, one is arbitrarily
chosen.

I pi takes its action, and updates its timeout.

13/17



Example

t = 0

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7 ⇐=

=⇒ 9.89 from (8.5, 10)

9 ⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 0

p0 p1

=⇒

0 0 from [0, 1] ⇐=

7 ⇐=

=⇒ 9.89 from (8.5, 10)

9 ⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 0

p0 p1

=⇒

0 0 from [0, 1] ⇐=

7

⇐=

=⇒ 9.89 from (8.5, 10)

9 ⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 0

p0 p1

=⇒ 0 0 from [0, 1]

⇐=

7

⇐=

=⇒ 9.89 from (8.5, 10)

9 ⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 0

p0 p1

=⇒ 0 0 from [0, 1]

⇐=

7

⇐=

=⇒

9.89 from (8.5, 10)

9 ⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 7

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7

⇐=

=⇒

9.89 from (8.5, 10)

9 ⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 7

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7 ⇐=

=⇒

9.89 from (8.5, 10)

9 ⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 7

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7 ⇐=

=⇒

9.89 from (8.5, 10)

9

⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 9

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7

⇐=

=⇒

9.89 from (8.5, 10)

9

⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 9

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7

⇐=

=⇒

9.89 from (8.5, 10)

9 ⇐=

10 ⇐=

(10, 12)

14/17



Example

t = 9

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7

⇐=

=⇒

9.89 from (8.5, 10)

9 ⇐=

10

⇐=

(10, 12)

14/17



Example

t = 9.89

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7

⇐=

=⇒

9.89 from (8.5, 10)

9

⇐=

10

⇐=

(10, 12)

14/17



Example

t = 9.89

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7

⇐=

=⇒ 9.89 from (8.5, 10)

9

⇐=

10

⇐=

(10, 12)

14/17



Example

t = 9.89

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7

⇐=

=⇒ 9.89 from (8.5, 10)

9

⇐=

10

⇐=

(10, 12)

14/17



Example

t = 10

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7

⇐=

=⇒

9.89 from (8.5, 10)

9

⇐=

10

⇐=

(10, 12)

14/17



Example

t = 10

p0 p1

=⇒

0 0 from [0, 1]

⇐=

7

⇐=

=⇒

9.89 from (8.5, 10)

9

⇐=

10 ⇐=

(10, 12)

14/17



(3) QuickCheck

15/17



A Tale of Two QuickCheck Uses
In One Slide

I # 1 Testing: we’ll feed the model QC-generated real-time
parameters satisfying the constraints.
About 100,000 tests-runs per minute on a MacBook.

I # 2 Probability Calculating: QC for use in stochastic testing.
I For both, we use monadic QuickCheck, since the model itself

is within the IO monad. (A small patch is needed to QC.)
I And we use the super-fast System.Random.Mersenne for

generating timeouts.
I But with no optimizations, testing is surprisingly fast!

16/17



Conclusions

I Emulating real-time is real easy in a pure, lazy language.
I Generating real-time parameters is quick with QuickCheck.
I And QuickCheck can be used for probabilistic reliability

analysis.
I Google: biphase quickcheck to get the code & QuickCheck

patch.

Shameless plug: I’m looking for a summer student (undergrad or
Ph.D.) in 2010 and/or 2011 who’d like to do some hacking &
research on a NASA-sponsored project. . .

leepike@galois.com

17/17

leepike@galois.com


Conclusions

I Emulating real-time is real easy in a pure, lazy language.
I Generating real-time parameters is quick with QuickCheck.
I And QuickCheck can be used for probabilistic reliability

analysis.
I Google: biphase quickcheck to get the code & QuickCheck

patch.

Shameless plug: I’m looking for a summer student (undergrad or
Ph.D.) in 2010 and/or 2011 who’d like to do some hacking &
research on a NASA-sponsored project. . .

leepike@galois.com

17/17

leepike@galois.com

