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This is a story about using Haskell. . .
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. . .Haskell in Space!
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Ok, just kidding.

Goals:
1. Teach you enough about physical-layer protocols to make you

dangerous.
2. Tell you how I easily modeled real-time distributed systems in a

lazy, pure language.
3. Tell you how I used QuickCheck as a “probability calculator”.
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(1) Physical-Layer Protocols
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Do you wonder how
I The credit-card slider reads your magnetic stripe?
I The CD player reads your Rolling Stones CD?
I The internet gets transmitted to your computer?

All are achieved using physical-layer protocols: a transmitter tx
sends a receiver rx a bit-stream in real-time.
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Parameters

-- | Realtime input parameters.
data Params = Params

{ tPeriod :: Time -- ^ Tx’s clock period.
, tSettle :: Time -- ^ Nominal signal settling time.
, rScanMin :: Time -- ^ Rx’s min scan duration.
, rScanMax :: Time -- ^ Rx’s max scan duration.
, rSampMin :: Time -- ^ Rx’s min sampling duration.
, rSampMax :: Time -- ^ Rx’s max sampling duration.
} deriving (Show, Eq)

9/17



Some Constraints

paramsConst :: Params -> Bool
paramsConst p =

0 < tPeriod p -- tPeriod
&& 0 <= tSettle p -- tSettle
&& tSettle p < tPeriod p -- tSettle
&& 0 < rScanMin p -- rScanMin
&& rScanMin p <= rScanMax p -- rScanMax
&& rScanMax p < tStable -- rScanMax
&& tPeriod p + tSettle p < rSampMin p -- rSampMin
&& rSampMin p <= rSampMax p -- rSampMax
&& rSampMax p < tPeriod p + tStable - rScanMax p
where tStable = tPeriod p - tSettle p
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(2) Modeling Real-Time in Haskell
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Modeling Real-Time
In a Lazy Functional Language

I Question: How do I model distributed real-time behavior in a
functional language?
More precisely, we want to model a partially-synchronous
real-time system with possibly non-deterministic bounds on
asynchrony.

I Answer: The discrete-event simulation folks figured this out a
few decades ago. We’ll just borrow their ideas.

Claim: many practical real-time systems fit this model.
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Let’s Take Turns!
or Discrete-Event Simulation

I Suppose you have participants p0, p1, . . ., pn.

I Suppose the present time is time t .
I Each pi is scheduled to take some action in the future, when

its timeout is reached.

I At time t + n (synchronous).
I Within (t + n, t + n + δ) (partially-synchronous).

I The current time t “leap frogs” to the least-valued scheduled
action.
If two participants have overlapping timeouts, one is arbitrarily
chosen.

I pi takes its action, and updates its timeout.
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(3) QuickCheck
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A Tale of Two QuickCheck Uses
In One Slide

I # 1 Testing: we’ll feed the model QC-generated real-time
parameters satisfying the constraints.
About 100,000 tests-runs per minute on a MacBook.

I # 2 Probability Calculating: QC for use in stochastic testing.
I For both, we use monadic QuickCheck, since the model itself

is within the IO monad. (A small patch is needed to QC.)
I And we use the super-fast System.Random.Mersenne for

generating timeouts.
I But with no optimizations, testing is surprisingly fast!
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Conclusions

I Emulating real-time is real easy in a pure, lazy language.
I Generating real-time parameters is quick with QuickCheck.
I And QuickCheck can be used for probabilistic reliability

analysis.
I Google: biphase quickcheck to get the code & QuickCheck

patch.

Shameless plug: I’m looking for a summer student (undergrad or
Ph.D.) in 2010 and/or 2011 who’d like to do some hacking &
research on a NASA-sponsored project. . .

leepike@galois.com
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