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This is a story about using Haskell. ..
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...Haskell in Space!
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OK, just kidding.

Goals:

1. Teach you enough about physical-layer protocols to make you
dangerous.

2. Tell you how | easily modeled real-time distributed systems in a
lazy, pure language.

3. Tell you how | used QuickCheck as a “probability calculator”.
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(1) Physical-Layer Protocols
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Do you wonder how
» The credit-card slider reads your magnetic stripe?
» The CD player reads your Rolling Stones CD?
» The internet gets transmitted to your computer?

All are achieved using physical-layer protocols: a transmitter tx
sends a receiver rx a bit-stream in real-time.
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-- | Realtime input parameters.

data Params = Params

{ tPeriod :: Time -- ~
, tSettle :: Time -- ~
, rScanMin :: Time —-
, rScanMax :: Time —-
, rSampMin :: Time --
, rSampMax :: Time --

} deriving (Show Eq)
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Parameters

Tx’s clock period.
Nominal signal settling time.

scan duration.
scan duration.
sampling duration.
sampling duration.
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Some Constraints

paramsConst :: Params -> Bool
paramsConst p =

&&
&&
&&
&&
&&
&&
&&
&&

0 < tPeriod p -- tPeriod
0 <= tSettle p —-- tSettle
tSettle p < tPeriod p -- tSettle

0 < rScanMin p -- rScanMin
rScanMin p <= rScanMax p -- rScanMax
rScanMax p < tStable -- rScanMax

tPeriod p + tSettle p < rSampMin p -- rSampMin
rSampMin p <= rSampMax p -- rSampMax
rSampMax p < tPeriod p + tStable - rScanMax p

where tStable = tPeriod p - tSettle p
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(2) Modeling Real-Time in Haskell
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Modeling Real-Time

In a Lazy Functional Language

» Question: How do | model distributed real-time behavior in a
functional language?

More precisely, we want to model a partially-synchronous
real-time system with possibly non-deterministic bounds on
asynchrony.

» Answer: The discrete-event simulation folks figured this out a
few decades ago. We’'ll just borrow their ideas.

Claim: many practical real-time systems fit this model.
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Let’'s Take Turns!

or Discrete-Event Simulation

» Suppose you have participants pg, p1, - - -, Pn-
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Let’'s Take Turns!

or Discrete-Event Simulation

» Suppose you have participants pg, p1, - - -, Pn-
» Suppose the present time is time t.

» Each p; is scheduled to take some action in the future, when
its timeout is reached.
» Attime t + n (synchronous).
» Within (t 4+ n, t + n+ §) (partially-synchronous).
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or Discrete-Event Simulation
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action.

If two participants have overlapping timeouts, one is arbitrarily
chosen.
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Let’'s Take Turns!

or Discrete-Event Simulation

» Suppose you have participants pg, p1, - - -, Pn-
» Suppose the present time is time t.

v

Each p; is scheduled to take some action in the future, when
its timeout is reached.

» Attime t + n (synchronous).
» Within (t 4+ n, t + n+ §) (partially-synchronous).

The current time t “leap frogs” to the least-valued scheduled
action.

If two participants have overlapping timeouts, one is arbitrarily
chosen.

p;i takes its action, and updates its timeout.
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Example

0 from [0, 1]
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Example

0from [0, 1] <«

galois

14117



Example

t=0
Po \ P1
0 0from [0, 1] <«
7
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Example

Po \ P1

0 0 from [0, 1]
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9.89 from (8.5, 10)
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Example
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Example

t=7
Po \ P1
0 0 from [0, 1]
7 =
9.89 from (8.5, 10)
9
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Example

t=9
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Example
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Example

t=10
Po \ P1
0 0 from [0, 1]
7
9.89 from (8.5, 10)
9
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Example

t=10
Po \ P1
0 0 from [0, 1]
7
9.89 from (8.5, 10)
9
10 =

(10, 12)
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(3) QuickCheck
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A Tale of Two QuickCheck Uses

In One Slide

# 1 Testing: we’ll feed the model QC-generated real-time
parameters satisfying the constraints.

About 100,000 tests-runs per minute on a MacBook.

» # 2 Probability Calculating: QC for use in stochastic testing.
» For both, we use monadic QuickCheck, since the model itself

is within the 10 monad. (A small patch is needed to QC.)

And we use the super-fast System.Random.Mersenne for
generating timeouts.

But with no optimizations, testing is surprisingly fast!
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Conclusions

» Emulating real-time is real easy in a pure, lazy language.

» Generating real-time parameters is quick with QuickCheck.

» And QuickCheck can be used for probabilistic reliability
analysis.

» Google: biphase quickcheck to get the code & QuickCheck
patch.
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Conclusions

» Emulating real-time is real easy in a pure, lazy language.

» Generating real-time parameters is quick with QuickCheck.

» And QuickCheck can be used for probabilistic reliability
analysis.

» Google: biphase quickcheck to get the code & QuickCheck
patch.

Shameless plug: I'm looking for a summer student (undergrad or
Ph.D.) in 2010 and/or 2011 who’d like to do some hacking &
research on a NASA-sponsored project. . .

leepike@galois.com
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