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3 themes and a case-study

RV for ultra-critical systems

= Distributed systems
= Hard real-time systems
= Monitor hardware and software faults

Using functional languages for monitor generation

embedded domain-specific languages (eDSL)

Low-cost, high assurance

Case-study: aircraft guidance systems
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Runtime verification I1s needed!

How do you know your embedded software won't fail?
= Certification (e.g., DO-178B) is largely process-oriented
= Testing exercises a small fraction of the state-space

= It's probably not formally verified

= Even if so, just a small subsystem
= And making simplifying assumptions

I'll argue: need the ability to detect/respond at runtime
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Software reliability is still a problem
(even In ultra-critical systems)

2005-2008:
= Malaysia Airlines Flight 124 (Boeing 777)

“Software anomaly”
= Qantas Airlines Flight 72 (Airbus A330)
Transient fault in the inertial reference unit

= Space Shuttle STS-124 aborted launch

Bad assumptions about distributed fault-tolerance
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Monitoring constraints

Runtime monitoring for real-time embedded systems should satisfy the
FaCTS:

= Functionality: don’'t change the target’s behavior
No false positives!

= Certifiability: don't require re-certification, or make it easy
Don't go changing sources.

= Timing: don’t interfere with the target’s timing

= SWaP: don’t exhaust size, weight, power reserves

How do we monitor a system without violating these constraints?
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Our answer

= Synthesize monitors

= From high-level specs, generate purely functional C99
Lustre-like stream language — Purely functional Misra-like C
= Hard real-time: easy to compute WCET

= Scheduler to give fine-grained timing control
= No RTOS needed

= Time-triggered monitoring-.
= Sample program variables periodically
= Keep histories as needed
= Not addressing control-flow
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Sample Copllot specification

If the majority of the three engine temperature probes has exceeded 250 degrees, then
the cooler is engaged and remains engaged until the temperature of the majority

of the probes drop to 250 degrees or less. Otherwise, trigger an immediate

shutdown of the engine.

engineMonitor = do
trigger "shutoff" (not ok) [arg maj]

where

vals = map externwW8 ["tmp_probe_0", "tmp_probe_1", "tmp_probe_2"]
exceed = map (< 250) vals

maj = majority exceed

checkMaj = aMajority exceed maj

ok = alwaysBeen ((maj && checkMaj) ==> extern '"cooler")

Key: library functions trigger macros
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Copilot Interpreter

evalExpr_ e0 exts locs strms = case e0 of
Const _ x -> X 'seq repeat X
Drop t i id -> strictList $
let Just xs = lookup id strms >>= fromDynF t
in P.drop (fromIntegral i) xs
Local t1 name el e2 -> strictList $

let xs evalExpr_ el exts locs strms
locs' = (name, toDynF t1 xs) : locs
in evalExpr_ e2 exts locs' strms
Var t name -> strictList $
let Just xs = lookup name locs >>= fromDynF t in xs
Externvar t name -> strictlList $ evalExtern t name exts
Opl op el -> strictList $ repeat (evalOpl op)
<*> evalExpr_ el exts locs strms
Op2 op el e2 -> strictList $ repeat (evalOp2 op)
<*> evalExpr_ el exts locs strms
<*> evalExpr_ e2 exts locs strms
Op3 op el e2 e3 -> strictList $ repeat (evalOp3 op)
<*> evalExpr_ el exts locs strms
<*> evalExpr_ e2 exts locs strms

<*> evalExpr_ e3 exts locs strms

© 2011 Galois, Inc.



Copilot architecture
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Flight Tests
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Pitot tube failures
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35+ years of failures

Failures cited in
= Northwest Orient Airlines Flight 6231 (1974)---3 killed

Increased climb/speed until uncontrollable stall
= Birgenair Flight 301, Boeing 757 (1996)---189 killed
One of three pitot tubes blocked; faulty air speed indicator
= Aeroperu Flight 603, Boeing 757 (1996)---70 killed
Tape left on the static port(!) gave erratic data
= Lineas Aereas Flight 2553, Douglas DC-9 (1997)---74 killed
= Freezing caused spurious low reading, compounded with a failed alarm system
= Speed increased beyond the plane’s capabilities
= Air France Flight 447, Airbus A330 (2009)---228 killed
= Airspeed “unclear” to pilots

= Still under investigation
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Experiment goals

= Monitors to check a distributed airspeed systemf':_

= Monitors also distributed & real-time
“Bolt-on” fault-tolerance

= While satisfy timing, certifiability, SWaP goals

= Inject both physical and software faults
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Aircraft configuration
Edge 540T
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Monitoring experiments

= Monitors communicate with one another over dedicated serial
lines in real-time

= Properties

= Agreement. return a fault-tolerant average of sensor values

= Used to diagnose local faults
= Diagnoses faults in the monitors
or the sensor systems

= Unrealistic sensor data
Senors values change “too fast”

= Upshot: decomposable

fault-tolerance
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Monitoring results

One Byzantine-faulty processor, plus
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(e) Two tubes stuck
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Future work

= Another case-study on autopilot communication system

= Tools for scheduling monitors

= Used timer interrupts

= And scheduler to decompose monitor's tasks (variable sampling,
computation, etc.)

= Efficient compilation for eDSLs
= Automated mapping from real-time history to value history

E.g., state in monitor that the A in v over 1sec. — monitor
maintains a history buffer of x values.
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Summary

= RV works and is needed for ultra-critical systems!

= Distributed systems
= Real-time systems

= Using functional languages for monitor generation

eDSLs: “the benefits of functional languages applied to real-time
embedded systems”

= Low-cost, high assurance
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http:/lleepike.github.com/Copilot/

anNne leepike/Copilot @ GitHub =

@' (e ) () (M) ([ nup//leepike.gitB.com/ Copilot/ vr v ) (M Google Q)
0 o -

leepike/Copilot @ GitHub

|
L ] P :
%
Copilot N, |
(3 |
|
|
A (Haskell DSL) stream language for generating hard real-time C code. :
Can you write a list in Haskell? Then you can write embedded C code using Copilot. :
Here's a Copilot program that computes the Fibonacci sequence (over Word 64s) and tests for even numbers: |
|
|
fib 1: Streams :
fib = do
"fib" .= [0,1] ++ var "fib" + (drop 1 $ varWéd4 "fib") .
"t" .= even (var "fib")
where even :: Spec Word6é4 -> Spec Bool
even w = w mod~ const 2 == const 0
Copilot contains an interpreter, a compiler, and uses a model-checker to check the correctness of your
program. The compiler generates constant time and constant space C code via Tom Hawkin's Atom
Language (thanks Tom!). Copilot is specifically developed to write embedded software monitors for more
complex embedded systems, but it can be used to develop a variety of functional-style embedded code.
Executing
generates fib.c and fib.h (with a main() for simulation---other options change that). We can then run
to check that the Copilot program does what we expect. Finally, if we have CBMC installed, we can run
to prove a bunch of memory safety properties of the generated program. :
L
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Differences From Lustre

eDSL approach

Polymorphic (embedded in Haskell)

Simpler clock calculus—no projection operator
BSD3
V&V tools
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Cheap assurance

Who watches the watchmen?

Types are free proofs—use a typed language

Reuse existing compiler infrastructure

Automated random testing

Ensure interpreter == compiler, millions of times

Test coverage (line, branch, functional call) using gcov
= Automated back-end equivalence proofs (CBMC)

And it's all cheap & easy.
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The power of eDSLs

= Some problems for conventional compilers go away
= New language features are host-language macros
= Don't need scripting languages

= E.g., compiling distributed monitors is just another host-
language function:

complle program node
(setCode (Just header)) baseOpts

distCompile program node headers =
compile (program node) node
(setCode (Just (headers node))) baseOpts
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