RV for Ultra-Critical Systems

Lee Pike Galois, Inc. <leepike@galois.com>

Sebastian Niller National Institute of Aerospace
Alwyn Goodloe NASA Langley Research Center
Robin Morisset Ecole Normale Supérieure

Nis Wegmann Technical University of
Coppenhagen

FIE galois

© 2011 Galois, Inc.

3 themes and a case-study

RV for ultra-critical systems

= Distributed systems
= Hard real-time systems
= Monitor hardware and software faults

Using functional languages for monitor generation

embedded domain-specific languages (eDSL)

Low-cost, high assurance

Case-study: aircraft guidance systems

© 2011 Galois, Inc.

Runtime verification I1s needed!

How do you know your embedded software won't fail?
= Certification (e.g., DO-178B) is largely process-oriented
= Testing exercises a small fraction of the state-space

= It's probably not formally verified

= Even if so, just a small subsystem
= And making simplifying assumptions

I'll argue: need the ability to detect/respond at runtime

© 2011 Galois, Inc.

Software reliability is still a problem
(even In ultra-critical systems)

2005-2008:
= Malaysia Airlines Flight 124 (Boeing 777)

“Software anomaly”
= Qantas Airlines Flight 72 (Airbus A330)
Transient fault in the inertial reference unit

= Space Shuttle STS-124 aborted launch

Bad assumptions about distributed fault-tolerance

© 2011 Galois, Inc.

Monitoring constraints

Runtime monitoring for real-time embedded systems should satisfy the
FaCTS:

= Functionality: don’'t change the target’s behavior
No false positives!

= Certifiability: don't require re-certification, or make it easy
Don't go changing sources.

= Timing: don’t interfere with the target’s timing

= SWaP: don’t exhaust size, weight, power reserves

How do we monitor a system without violating these constraints?

© 2011 Galois, Inc.

Our answer

= Synthesize monitors

= From high-level specs, generate purely functional C99
Lustre-like stream language — Purely functional Misra-like C
= Hard real-time: easy to compute WCET

= Scheduler to give fine-grained timing control
= No RTOS needed

= Time-triggered monitoring-.
= Sample program variables periodically
= Keep histories as needed
= Not addressing control-flow

© 2011 Galois, Inc.

Sample Copllot specification

If the majority of the three engine temperature probes has exceeded 250 degrees, then
the cooler is engaged and remains engaged until the temperature of the majority

of the probes drop to 250 degrees or less. Otherwise, trigger an immediate

shutdown of the engine.

engineMonitor = do
trigger "shutoff" (not ok) [arg maj]

where

vals = map externwW8 ["tmp_probe_0", "tmp_probe_1", "tmp_probe_2"]
exceed = map (< 250) vals

maj = majority exceed

checkMaj = aMajority exceed maj

ok = alwaysBeen ((maj && checkMaj) ==> extern '"cooler")

Key: library functions trigger macros

© 2011 Galois, Inc.

Copilot Interpreter

evalExpr_ e0 exts locs strms = case e0 of
Const _ x -> X 'seq repeat X
Drop t i id -> strictList $
let Just xs = lookup id strms >>= fromDynF t
in P.drop (fromIntegral i) xs
Local t1 name el e2 -> strictList $

let xs evalExpr_ el exts locs strms
locs' = (name, toDynF t1 xs) : locs
in evalExpr_ e2 exts locs' strms
Var t name -> strictList $
let Just xs = lookup name locs >>= fromDynF t in xs
Externvar t name -> strictlList $ evalExtern t name exts
Opl op el -> strictList $ repeat (evalOpl op)
<*> evalExpr_ el exts locs strms
Op2 op el e2 -> strictList $ repeat (evalOp2 op)
<*> evalExpr_ el exts locs strms
<*> evalExpr_ e2 exts locs strms
Op3 op el e2 e3 -> strictList $ repeat (evalOp3 op)
<*> evalExpr_ el exts locs strms
<*> evalExpr_ e2 exts locs strms

<*> evalExpr_ e3 exts locs strms

© 2011 Galois, Inc.

Copilot architecture

LTL
ptLTL
Regular expressions Libraries
clocks)
fault-tolerance 4)
etc. Copilot specification
language
- ~/ Type-checking,
QL“CkCheCk [|nterpreter h Causality analySiS,
testing etc.
Core language
Hard real-time Hard real-time .
back-end + Kind, other

scheduler (C) back-end (C)

code generators

N/

CBMC: (C bounded
model-checker)

© 2011 Galois, Inc.

Copilot architecture Haskell galois|

LTL
ptLTL

------------------------------ ~

embedded domain-"+

Regular expreifgzrllz ! Libraries specific language
fault-tolerance 4 N (ebsL)
etc.

. | Copilot specification
. | language

\. ~/ Type-checking,
r—— Ccausality analysis,

QuickCheck [Interpreter
etc.

testing

.-------‘

Core language

Hard real-time Hard real-time .
back-end + back-end (C) Kind, other
scheduler (C) code generators

N/

CBMC: (C bounded
model-checker)

© 2011 Galois, Inc.

Flight Tests

© 2011 Galois, Inc.

Pitot tube failures

- i
*G 0 W Article Discussion
Vom0

e o =

WikpEpiA Air Data Inertlal Reference Unit

The Free Encyclopedia b Wi i D et — "

-

An Air Data Inertial Reference Unit (ADIRU) is a key compon

Main page

Failures and directives

e —

FAA Airworthiness directive 2000-07-27

On May 3, 2000, the FAA issued airnworthiness directive 2000-07-27, addred
Boeing 737, 757, Airbus A319, A320, A321, A330, and A340 models. [FIL0I

Airworthiness directive 2003-26-03
On 27 January 2004 the FAA issued airworthiness directive 2003-26-03 (lat

Aviation Today

Your First Destination For Global Industry Intelligence

Alitalia A-320

On 25 June 2005, an Alitalia Airbus A320-200 registered as I-BIKE departe
failed, leaving only one operable. In the subsequent confusion the third was

Home | Avionics | Rotor & Wing | Air Safeta_.r_WEEk Aircraft ¥alue Mews

View by Category: Military | Commercial | Business & General Aviation | Rotorcraft | Air Traffic Contr

SEARCH I .
Malaysia Airlines Flight 124

On 1 August 2005 a serious incident involving Malaysia Airlines Flight 124,
aircraft acting on false indications.[™ In that incident the incorrect data img

with tho otall swarpinn activatod Tho nilnde roc-oogrgd tho gireraft seith tha o

Advanced Search

Reliability of the air pressure sensors made by both Thales god oo

ek
particular prominence after the 2009 crash of an Air France ||§ AVIATIONWEEK.COM
- ""‘ : Din da Iongirn in Doric #hot cloimad 338 wintime Ditad T hn:[

© 2011 Galois, Inc. Lessons Of Air France 447 Start To Emerge

35+ years of failures

Failures cited in
= Northwest Orient Airlines Flight 6231 (1974)---3 killed

Increased climb/speed until uncontrollable stall
= Birgenair Flight 301, Boeing 757 (1996)---189 killed
One of three pitot tubes blocked; faulty air speed indicator
= Aeroperu Flight 603, Boeing 757 (1996)---70 killed
Tape left on the static port(!) gave erratic data
= Lineas Aereas Flight 2553, Douglas DC-9 (1997)---74 killed
= Freezing caused spurious low reading, compounded with a failed alarm system
= Speed increased beyond the plane’s capabilities
= Air France Flight 447, Airbus A330 (2009)---228 killed
= Airspeed “unclear” to pilots

= Still under investigation

© 2011 Galois, Inc.

Experiment goals

= Monitors to check a distributed airspeed systemf':_

= Monitors also distributed & real-time
“Bolt-on” fault-tolerance

= While satisfy timing, certifiability, SWaP goals

= Inject both physical and software faults

© 2011 Galois, Inc.

Aircraft configuration
Edge 540T

© 2011 Galois, Inc.

Monitoring experiments

= Monitors communicate with one another over dedicated serial
lines in real-time

= Properties

= Agreement. return a fault-tolerant average of sensor values

= Used to diagnose local faults
= Diagnoses faults in the monitors
or the sensor systems

= Unrealistic sensor data
Senors values change “too fast”

= Upshot: decomposable

fault-tolerance

© 2011 Galois, Inc.

Monitoring results

One Byzantine-faulty processor, plus

4096
3840 F
3584 |
__‘gﬂﬂﬂ 1
=3072 %
J2s6}
2560 |
2304 f
Bl
Cirezf
51536 F
2 4280
cpinz4 |
TE8 |
gﬁ - iy

o

Shared clock (2'7Hz), 16 samples and agresmants per second

(c) All tubes unmodified

0 56+06 16+071 5e+0726+072 56+0738+073 Bas0 e+ 074 5ar0758+07

‘mﬁ T T T T mgﬁ‘
as40 } ‘ng 3840 F
3584 F & rarectS oo Walued 3584 F
aas | R lomiSargrvaine {328
Saorz | otk vty { o072}
L3816 | ZrocfeE] W 2B16F

(3] L3 I3

2560 | i s — | —ose0}
$2304 | | { Q=304
22048 f) { Sooast
Tyrazf Direat
51536 | f 51536 |
1230 } | { 2q280f
cp1o24 f { 1024
768 | 7E8 |

L5 = . ’ ; T 512

256 : r % i 256

08 5es08 18s07 156407 De:07 BBerd7 desa7

Shared clack (2'Hz), 16 samples and agreements per second
© 2011 Galois, Inc.

(e) Two tubes stuck

3840 F

30:06 45:06 Go<06 8o:08 18-07 1 .26:071 46-071 68+071 Bo<07

Sharad clock [2'?Hz), 16 samples and agreements per second

(d) One tube stuck

i
QRooooooon

bt
» R E g &

:
3
|

=

0

5e+06

Te:07 150:07 D28+07 2.56:07 36+07 35e+07

Sharad clock (2'3Hz), 16 samples and agreemeants per sacond

(f) Three tubes stuck

Future work

= Another case-study on autopilot communication system

= Tools for scheduling monitors

= Used timer interrupts

= And scheduler to decompose monitor's tasks (variable sampling,
computation, etc.)

= Efficient compilation for eDSLs
= Automated mapping from real-time history to value history

E.g., state in monitor that the A in v over 1sec. — monitor
maintains a history buffer of x values.

© 2011 Galois, Inc.

Summary

= RV works and is needed for ultra-critical systems!

= Distributed systems
= Real-time systems

= Using functional languages for monitor generation

eDSLs: “the benefits of functional languages applied to real-time
embedded systems”

= Low-cost, high assurance

© 2011 Galois, Inc.

http:/lleepike.github.com/Copilot/

anNne leepike/Copilot @ GitHub =

@' (e) () (M) ([nup//leepike.gitB.com/ Copilot/ vr v) (M Google Q)
0 o -

leepike/Copilot @ GitHub

|
L] P :
%
Copilot N, |
(3 |
|
|
A (Haskell DSL) stream language for generating hard real-time C code. :
Can you write a list in Haskell? Then you can write embedded C code using Copilot. :
Here's a Copilot program that computes the Fibonacci sequence (over Word 64s) and tests for even numbers: |
|
|
fib 1: Streams :
fib = do
"fib" .= [0,1] ++ var "fib" + (drop 1 $ varWéd4 "fib") .
"t" .= even (var "fib")
where even :: Spec Word6é4 -> Spec Bool
even w = w mod~ const 2 == const 0
Copilot contains an interpreter, a compiler, and uses a model-checker to check the correctness of your
program. The compiler generates constant time and constant space C code via Tom Hawkin's Atom
Language (thanks Tom!). Copilot is specifically developed to write embedded software monitors for more
complex embedded systems, but it can be used to develop a variety of functional-style embedded code.
Executing
generates fib.c and fib.h (with a main() for simulation---other options change that). We can then run
to check that the Copilot program does what we expect. Finally, if we have CBMC installed, we can run
to prove a bunch of memory safety properties of the generated program. :
L

© 2011 Galois, Inc.

Differences From Lustre

eDSL approach

Polymorphic (embedded in Haskell)

Simpler clock calculus—no projection operator
BSD3
V&V tools

© 2011 Galois, Inc.

Cheap assurance

Who watches the watchmen?

Types are free proofs—use a typed language

Reuse existing compiler infrastructure

Automated random testing

Ensure interpreter == compiler, millions of times

Test coverage (line, branch, functional call) using gcov
= Automated back-end equivalence proofs (CBMC)

And it's all cheap & easy.

© 2011 Galois, Inc.

The power of eDSLs

= Some problems for conventional compilers go away
= New language features are host-language macros
= Don't need scripting languages

= E.g., compiling distributed monitors is just another host-
language function:

complle program node
(setCode (Just header)) baseOpts

distCompile program node headers =
compile (program node) node
(setCode (Just (headers node))) baseOpts

© 2011 Galois, Inc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

