
© 2011 Galois, Inc.

RV for Ultra-Critical Systems

Lee Pike

Sebastian Niller

Galois, Inc. <leepike@galois.com>

National Institute of Aerospace

Alwyn Goodloe NASA Langley Research Center

Robin Morisset École Normale Supérieure

Nis Wegmann Technical University of
Coppenhagen

© 2011 Galois, Inc.

3 themes and a case-study

 RV for ultra-critical systems

 Distributed systems

 Hard real-time systems

 Monitor hardware and software faults

 Using functional languages for monitor generation

embedded domain-specific languages (eDSL)

 Low-cost, high assurance

 Case-study: aircraft guidance systems

© 2011 Galois, Inc.

Runtime verification is needed!

How do you know your embedded software won’t fail?

 Certification (e.g., DO-178B) is largely process-oriented

 Testing exercises a small fraction of the state-space

 It's probably not formally verified

 Even if so, just a small subsystem

 And making simplifying assumptions

I'll argue: need the ability to detect/respond at runtime

© 2011 Galois, Inc.

Software reliability is still a problem
(even in ultra-critical systems)

2005-2008:

 Malaysia Airlines Flight 124 (Boeing 777)

“Software anomaly”

 Qantas Airlines Flight 72 (Airbus A330)

Transient fault in the inertial reference unit

 Space Shuttle STS-124 aborted launch

Bad assumptions about distributed fault-tolerance

© 2011 Galois, Inc.

Monitoring constraints

Runtime monitoring for real-time embedded systems should satisfy the
FaCTS:

 Functionality: don’t change the target’s behavior

No false positives!

 Certifiability: don't require re-certification, or make it easy

Don't go changing sources.

 Timing: don’t interfere with the target’s timing

 SWaP: don’t exhaust size, weight, power reserves

How do we monitor a system without violating these constraints?

© 2011 Galois, Inc.

Our answer

 Synthesize monitors

 From high-level specs, generate purely functional C99

Lustre-like stream language → Purely functional Misra-like C

 Hard real-time: easy to compute WCET
 Scheduler to give fine-grained timing control
 No RTOS needed

 Time-triggered monitoring:

 Sample program variables periodically

 Keep histories as needed

 Not addressing control-flow

© 2011 Galois, Inc.

Sample Copilot specification

If the majority of the three engine temperature probes has exceeded 250 degrees, then
the cooler is engaged and remains engaged until the temperature of the majority
of the probes drop to 250 degrees or less. Otherwise, trigger an immediate
shutdown of the engine.

engineMonitor = do
 trigger "shutoff" (not ok) [arg maj]

 where

 vals = map externW8 ["tmp_probe_0", "tmp_probe_1", "tmp_probe_2"]
 exceed = map (< 250) vals
 maj = majority exceed
 checkMaj = aMajority exceed maj
 ok = alwaysBeen ((maj && checkMaj) ==> extern "cooler")

Key: library functions trigger macros

© 2011 Galois, Inc.

Copilot Interpreter

evalExpr_ e0 exts locs strms = case e0 of

 Const _ x -> x `seq` repeat x

 Drop t i id -> strictList $

 let Just xs = lookup id strms >>= fromDynF t

 in P.drop (fromIntegral i) xs

 Local t1 _ name e1 e2 -> strictList $

 let xs = evalExpr_ e1 exts locs strms

 locs' = (name, toDynF t1 xs) : locs

 in evalExpr_ e2 exts locs' strms

 Var t name -> strictList $

 let Just xs = lookup name locs >>= fromDynF t in xs

 ExternVar t name -> strictList $ evalExtern t name exts

 Op1 op e1 -> strictList $ repeat (evalOp1 op)

 <*> evalExpr_ e1 exts locs strms

 Op2 op e1 e2 -> strictList $ repeat (evalOp2 op)

 <*> evalExpr_ e1 exts locs strms

 <*> evalExpr_ e2 exts locs strms

 Op3 op e1 e2 e3 -> strictList $ repeat (evalOp3 op)

 <*> evalExpr_ e1 exts locs strms

 <*> evalExpr_ e2 exts locs strms

 <*> evalExpr_ e3 exts locs strms

© 2011 Galois, Inc.

Copilot architecture

Copilot specification
language

Libraries

Core language

Hard real-time
back-end +
scheduler (C)

Interpreter

Hard real-time
back-end (C)

. . .
Kind, other
code generators

CBMC: (C bounded
model-checker)

Type-checking,
causality analysis,
etc.

QuickCheck
testing

LTL
ptLTL

Regular expressions
clocks

fault-tolerance
etc.

© 2011 Galois, Inc.

Copilot architecture

Copilot specification
language

Libraries

Core language

Hard real-time
back-end +
scheduler (C)

Interpreter

Hard real-time
back-end (C)

. . .
Kind, other
code generators

CBMC: (C bounded
model-checker)

Type-checking,
causality analysis,
etc.

QuickCheck
testing

LTL
ptLTL

Regular expressions
clocks

fault-tolerance
etc.

Haskell
embedded domain-
specific language
(eDSL)

© 2011 Galois, Inc.

Flight Tests

© 2011 Galois, Inc.

Pitot tube failures

© 2011 Galois, Inc.

35+ years of failures

Failures cited in

 Northwest Orient Airlines Flight 6231 (1974)---3 killed

Increased climb/speed until uncontrollable stall

 Birgenair Flight 301, Boeing 757 (1996)---189 killed

One of three pitot tubes blocked; faulty air speed indicator

 Aeroperú Flight 603, Boeing 757 (1996)---70 killed

Tape left on the static port(!) gave erratic data

 Líneas Aèreas Flight 2553, Douglas DC-9 (1997)---74 killed

 Freezing caused spurious low reading, compounded with a failed alarm system

 Speed increased beyond the plane’s capabilities

 Air France Flight 447, Airbus A330 (2009)---228 killed

 Airspeed “unclear” to pilots

 Still under investigation

 ...

© 2011 Galois, Inc.

Experiment goals

 Monitors to check a distributed airspeed system

 Monitors also distributed & real-time

“Bolt-on” fault-tolerance

 While satisfy timing, certifiability, SWaP goals

 Inject both physical and software faults

© 2011 Galois, Inc.

Aircraft configuration
Edge 540T

© 2011 Galois, Inc.

Monitoring experiments

 Monitors communicate with one another over dedicated serial
lines in real-time

 Properties

 Agreement: return a fault-tolerant average of sensor values
 Used to diagnose local faults
 Diagnoses faults in the monitors

or the sensor systems
 Unrealistic sensor data

Senors values change “too fast”

 Upshot: decomposable

fault-tolerance

© 2011 Galois, Inc.

Monitoring results
One Byzantine-faulty processor, plus

© 2011 Galois, Inc.

Future work

 Another case-study on autopilot communication system

 Tools for scheduling monitors

 Used timer interrupts

 And scheduler to decompose monitor's tasks (variable sampling,
computation, etc.)

 Efficient compilation for eDSLs

 Automated mapping from real-time history to value history

E.g., state in monitor that the Δ in v over 1sec. → monitor
maintains a history buffer of x values.

© 2011 Galois, Inc.

Summary

 RV works and is needed for ultra-critical systems!

 Distributed systems

 Real-time systems

 Using functional languages for monitor generation

eDSLs: “the benefits of functional languages applied to real-time
embedded systems”

 Low-cost, high assurance

© 2011 Galois, Inc.

http://leepike.github.com/Copilot/

© 2011 Galois, Inc.

Differences From Lustre

 eDSL approach

 Polymorphic (embedded in Haskell)

 Simpler clock calculus—no projection operator

 BSD3

 V&V tools

© 2011 Galois, Inc.

Cheap assurance

Who watches the watchmen?

 Types are free proofs—use a typed language

 Reuse existing compiler infrastructure

 Automated random testing

Ensure interpreter == compiler, millions of times

 Test coverage (line, branch, functional call) using gcov

 Automated back-end equivalence proofs (CBMC)

And it's all cheap & easy.

© 2011 Galois, Inc.

The power of eDSLs

 Some problems for conventional compilers go away

 New language features are host-language macros

 Don't need scripting languages

 E.g., compiling distributed monitors is just another host-
language function:

compile program node
 (setCode (Just header)) baseOpts

distCompile program node headers =
 compile (program node) node
 (setCode (Just (headers node))) baseOpts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

