
© 2009, Galois Inc.

Building Consensus:
Foundations of Monitoring 
Ultra-Reliable Systems

Lee Pike leepike@galois.com
Galois, Inc.

Alwyn Goodloe alwyn.goodloe@nianet.org
National Institute of Aerospace

mailto:leepike@galois.com
mailto:alwyn.goodloe@nianet.org


© 2009, Galois Inc. 2

The Problem: Motivation

Space Shuttle
• In 2008, a pre-launch failure of STS-124 was reported in the Space 

Shuttle’s data processing system.
• Components:

– FA 2: the flight-aft mux/demux card
– GPC n: general-purpose computers n

• The incident:
1. A diode fails on FA 2.
2. GPC 4 receives bad data from FA 2;

in the data comparisons with GPC 1-3,
it is voted out.

3. Then similarly for GPC 2. 
4. GPC 3 also determined to be faulty.
5. With only one GPC remaining, the system was powered-down.

• Described as a “non-universal I/O error”

1 2

3 4



© 2009, Galois Inc. 3

Characterizing the Systems

The systems we focus on must be ultra-reliable, and so 
demand catastrophic-failure rates of ≥ 10-9 per hour of 
operation.

– They’re fault-tolerant, meaning they
– have replicated hardware & distributed architectures
– and have fault-management SW,
– and are hard real-time.



© 2009, Galois Inc. 4

Previous Efforts

Previous research on monitors mostly focuses on 
systems lacking one or more characteristics of 
ultra-reliable systems. 

– Much focus on inline monitors for software, particularly Java 
programs, e.g.,
•Run-time Monitoring and Checking (MaC) – Insup Lee et al.
•Monitoring-Oriented Programming (MOP) – Rosu et al.

– Efforts to compile specifications to efficient inline monitors.
– Specification-logics aim to capture properties about program traces.



© 2009, Galois Inc. 5

Previous Efforts

A few efforts have touched on aspects of safety-critical 
embedded systems.  Representative efforts include:

– MOP extensions to monitor distributed programs using a past-time modal 
logic.1

– BusMOP: synthesizing high-level specs onto FPGAs for zero-overhead bus 
monitoring.2

– Logics for monitoring real-time systems (particularly distributed Java 
programs).3

1[Sen, Vardhan, Agha, Rosu. Efficient Decentralized Monitoring of Safety in Distributed 

  Systems, ICSE’04.]
2[Pellizzoni, Meredith, Caccamo, Rosu.  Hardware Runtime Monitoring for Dependable COTS-

  based Real-Time Embedded Systems, RTSS’08.]
3[Mok and Liu.  Effi cient Run-Time Monitoring of Timing Constraints.  RTAS’97.]



© 2009, Galois Inc. 6

Research Agenda

• Our research aims at monitoring for faults.  Specifically, we 
want to know when a fault is systematic or beyond the 
system's fault model.

• We focus on monitor synthesis for checking consensus in 
distributed hard real-time systems.

• So what's new?
– Our approach marries runtime monitoring with fault detection.
– We propose that HW & SW cannot be separated when considering reliability.
– We focus on simple consensus properties.



© 2009, Galois Inc. 7

Outline

1. Context setting: previous work
2. Consensus properties

3. Monitor requirements
4. Conclusions



© 2009, Galois Inc. 8

Consensus Properties

• We propose to monitor for consensus in distributed 
systems.

• What faults can be couched in terms of consensus? 
1. Fault-model violations
2. Point-to-point error-checking
3. Timing violations



© 2009, Galois Inc. 9

Consensus Properties: Consensus
Monitoring fault-model violations

• A maximum fault assumption (MFA) states the maximum number 
of each kind of fault a system designed to withstand.

• An MFA along with the fault-arrival rate gives you its hypothesized 
reliability.

• Too often hypothesized reliability < actual reliability:
– Design errors (i.e., systematic faults) cause the actual MFA to be a 

subset of the hypothesized MFA.
– Designers underestimate the MFA required to achieve the desired 

reliability.  The Shuttle incident arguably resulted from an 
underestimated MFA.



© 2009, Galois Inc. 10

Consensus Properties: Consensus
• A monitor can observe consensus (or the lack thereof) between 

distributed components.
• This principally means observing classes of asymmetric or Byzantine 

faults (including omissive faults).
• It appears that Byzantine faults are also the most “malicious” and least 

accounted-for faults.
• Example: non-universal I/O error in the Shuttle!
• Monitors are bound by the “laws” of distributed-system observation 

(given real-time clocks).  This means there's some probability of  false-
positives and false-negatives.

Example: 



© 2009, Galois Inc. 11

Consensus Properties: CRCs

Monitoring point-to-point error-checking

• Point-to-point error-checking provides evidence to a 
receiver that a message got corrupted in transit.

• Cyclic redundant checks (CRCs) are standard practice for 
catching point-to-point communication errors in embedded 
systems.

• They can catch both burst errors and random bit-errors.



© 2009, Galois Inc. 12

Consensus Properties: CRCs

• Reliability figures for distributed embedded systems depend 
on the error-checking reliability of CRCs...

• But reliability figures may be overly-optimistic:
“...The use of CRCs as a mechanism to provide ultra-dependable system 
operation (10-9 failures/hour) is questionable in many cases. The main problem 
is that network inter-stages can exhibit arbitrary faults, accidentally forging 
valid CRC check sequences.”1

1[Paulitsch, Morris, Hall, Driscoll, Koopman, & Latronico. Coverage and the 
  Use of Cyclic Redundancy Codes in Ultra-Dependable Systems, DSN’05.]



© 2009, Galois Inc. 13

Consensus Properties: CRCs

For example, consider the case of “Schrödoinger’s CRCs”:1

   11-Bit Message       USB-5

Receiver A  1 1 1 1 1 1 0 1 1 0 1  1 0 0 0 1

Transmitter 1 1 1 1 1 1 0 1 1 0 ½     1 ½ 0 ½  1

Receiver B  1 1 1 1 1 1 0 1 1 0 0  1 1 0 1 1

• (USB-5 has a Hamming Distance of 3 for 11-bit data.)
• No good data exists on the real-world probability of 

Schrödoinger’s CRCs.
• Probably more likely than commonly believed.

1[Driscoll, Hall, Sivencrona, & Zumsteg. Byzantine Fault Tolerance, from Theory to Reality, 

  SAFECOMP’03.]



© 2009, Galois Inc. 14

Consensus Properties: Timing

Violated timing assumptions

Hard realtime systems have timeliness guarantees, 
provided system timing assumptions hold.

– The timing assumptions are constraints on clock drift, skew, message 
delays, resynchronization, etc.

– Constraints cannot be monitored directly.
– (A monitor has no more access to real-time than the what's monitored.)



© 2009, Galois Inc. 15

Consensus Properties: Timing
• Constraints talk about real-time (i.e., wall-clock time).

• For example: here’s a clock drift-rate constraint:

• But violations of constraints will manifest themselves as systematic faults (i.e., 
greater than the expected fault-arrival rates).

• And faults are likely to be slightly-out-of-spec timing errors.

• Challenge: determining when a fault is frequent enough to be a systematic fault.

• Techniques for probabilistic runtime checking in soft real-time systems are 
applicable.1

1[Sammapun, Lee, Sokolsky, Regeher.  Statistical runtime checking of probabilistic 
properties, RTV'07.]



© 2009, Galois Inc. 16

Architectural Considerations

• What are monitors:
– Inputs are local state projections.
– Data are fault-arrive probabilities and state-collection times.
– State is occurrence frequencies.
– Outputs are consensus violations.

• Where does the the monitor “go”?
– Two architectural approaches:

•Distributed: monitors at the distributed nodes, and interchange  
“consensus data”.

•Central: nodes send “consensus data” to a central monitor.
– Resulting in various reliability/cost tradeoffs.
– Want to be able to synthesize multiple architectures.



© 2009, Galois Inc. 17

Monitor Architecture Requirements

• What general requirements are there for monitor 
architectures?

• We propose three requirements covering
– Functionality
– Schedulability
– Reliability

monitor architecture

system under
observation (SUO)

New



© 2009, Galois Inc. 18

Monitor Architecture Requirements

• Functionality: the monitor does not change the functionality of the 
system under observation (SUO), unless the SUO violates its 
specification.
– Unintentional: safe-guards must be in place to ensure that monitor faults do 

not affect the SUO’s functionality.
– Intentional: the monitor must signal a reset, etc. to the SUO only if the SUO 

has (probably) violated its specification.

• Schedulability: the monitor architecture does not cause the SUO to 
violate its hard real-time guarantees.

• Reliability: the reliability of the SUO in the context of the monitor 
architecture is greater or equal to the reliability of the SUO alone.
A monitor might reduce the SUO’s reliability for some class of faults of 
(improbable) faults and yet increase the system’s overall reliability.



© 2009, Galois Inc. 19

Synthesis

• In other monitoring work, the synthesis challenge is
– Synthesizing efficient monitors from expressive high-level 

specifications.
– Inlining the monitors into the system.

• In ours, the challenge is to
– Synthesize multiple architectures and ensure noninterference with 

the observed system.
– Synthesize reliability data (to probabilistically distinguish systematic 

and random faults).
– Synthesize temporal constraints on monitoring.



© 2009, Galois Inc. 20

Anticipated Developer Workflow

In our context, the system designer

– Instruments processes to make “consensus data” available to the 
monitor (e.g., memory access).

– Provides random fault-arrival probabilities.
– Defines a monitor architecture.
– Play a game:

•Do you assume consistency at this point in the 
algorithm/architecture?

•Then assert consensus.
– Orthogonal to any fault-tolerance in the system.



© 2009, Galois Inc. 21

Conclusions: Comments on the Approach

As compared to other monitoring frameworks...
Benefits:

– Thesis: consensus violations characterize a simple but 
broad class of faults.
•Consensus violations characterize recent failures.
•Consensus is hard and the assumptions are often wrong.
•Many SW faults are about coordination and fault-tolerance rather 

than the core GN&C algorithms.

– Takes a unifying view of HW and SW.
•Reliability is a function of (1) systematic and (2) random faults.
•Thus, we take a system-level viewpoint of monitoring.



© 2009, Galois Inc. 22

Conclusions: Comments on the Approach

As compared to other monitoring frameworks...
Challenges:

– In ad-hoc systems, which state-projections should be in 
agreement at which times?

– Synthesizing monitoring architectures.
– Are false-positive/negative observations acceptable (for ultra-

reliable systems)?
– Is the δ-increase in reliability sufficient to warrant monitoring?



© 2009, Galois Inc. 23

Conclusions: Summary

• Ultra-reliable systems may benefit from runtime monitoring, 
but new approaches are needed.

• Important classes of faults can be couched in terms of 
consensus.

• The synthesis problem for these monitors include 
architectural integration and including hypothesized fault-
arrival rates.

• Our hope is that “cheap and easy” consensus monitors 
encourage better design practices.



© 2009, Galois Inc. 24

Conclusions

More details:
– Extended abstract accepted in the Software Health Management 

Workshop (SHM’09).
– Submitted: paper on our real-time test-bed and automated-test 

framework.
– In preparation: technical report survey & foundations of monitoring 

real-time distributed systems.
– leepike@galois.com and alwyn.goodloe@nianet.org

mailto:leepike@galois.com
mailto:alwyn.goodloe@nianet.org

	Foundations of Monitoring Distributed Real-Time Systems 
	The Problem: Motivation
	Characterizing the Systems
	Previous Efforts
	Slide 5
	Slide 6
	Slide 7
	What the Watchmen Watch
	What the Watchmen Watch: Consensus
	Slide 10
	What the Watchmen Watch: CRCs
	Slide 12
	Slide 13
	What the Watchmen Watch: Timing
	Slide 15
	Slide 16
	Monitor Architecture Requirements
	Monitor Requirements: Functionality
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Next Steps

