galois %

Building Consensus:
Foundations of Monitoring
Ultra-Reliable Systems

Lee Pike | eepi ke@al oi s. com
Galois, Inc.

Alwyn Goodloe al wyn. goodl oe@i anet . org
National Institute of Aerospace


mailto:leepike@galois.com
mailto:alwyn.goodloe@nianet.org

The Problem: Motivation

Space Shuttle

 In 2008, a pre-launch failure of STS-124 was reported in the Space
Shuttle’s data processing system.

e Components:
- FA 2: the flight-aft mux/demux card
- GPC n: general-purpose computers n

e The incident:
1. Adiode fails on FA 2.
2. GPC 4 receives bad data from FA 2;

in the data comparisons with GPC 1-3, \ \
it is voted out.

3. Then similarly for GPC 2.
4, GPC 3 also determined to be faulty.
5. With only one GPC remaining, the system was powered-down.

e Described as a “non-universal I/0 error”

) galois %




Characterizing the Systems

The systems we focus on must be ultra-reliable, and so
demand catastrophic-failure rates of > 10-° per hour of
operation.

They’re fault-tolerant, meaning they

have replicated hardware & distributed architectures
and have fault-management SW,

and are hard real-time.

3 galois



Previous Efforts

Previous research on monitors mostly focuses on
systems lacking one or more characteristics of
ultra-reliable systems.

- Much focus on inline monitors for software, particularly Java
programs, e.g.,
e Run-time Monitoring and Checking (MaC) - Insup Lee et al.
e Monitoring-Oriented Programming (MOP) - Rosu et al.
- Efforts to compile specifications to efficient inline monitors.
- Specification-logics aim to capture properties about program traces.

4 galois



Previous Efforts

A few efforts have touched on aspects of safety-critical
embedded systems. Representative efforts include:

- MOP extensions to monitor distributed programs using a past-time modal
logic.’

- BusMOP: synthesizing high-level specs onto FPGAs for zero-overhead bus
monitoring.?

- Logics for monitoring real-time systems (particularly distributed Java
programs).3

'[Sen, Vardhan, Agha, Rosu. Efficient Decentralized Monitoring of Safety in Distributed
Systems, ICSE'04.]

2[Pellizzoni, Meredith, Caccamo, Rosu. Hardware Runtime Monitoring for Dependable COTS-
based Real-Time Embedded Systems, RTSS’08.]

3[Mok and Liu. Effcient Run-Time Monitoring of Timing Constraints. RTAS'97.]

. galois



Research Agenda

e Our research aims at monitoring for faults. Specifically, we
want to know when a fault is systematic or beyond the
system’s fault model.

e We focus on monitor synthesis for checking consensus in
distributed hard real-time systems.

e SO what's new?
- Our approach marries runtime monitoring with fault detection.
- We propose that HW & SW cannot be separated when considering reliability.
- We focus on simple consensus properties.

6 galois



Outline

1.-Contextsetting:previous-work
2. Consensus properties
3. Monitor requirements

4. Conclusions



Consensus Properties

* We propose to monitor for consensus in distributed
systems.

* What faults can be couched in terms of consensus?

1. Fault-model violations
2. Point-to-point error-checking
3. Timing violations

8 galois



Consensus Properties: Consensus

Monitoring fault-model violations

o A maximum fault assumption (MFA) states the maximum number
of each kind of fault a system designed to withstand.

 An MFA along with the fault-arrival rate gives you its hypothesized
reliability.
e Too often hypothesized reliability < actual reliability:

- Design errors (i.e., systematic faults) cause the actual MFA to be a
subset of the hypothesized MFA.

- Designers underestimate the MFA required to achieve the desired
reliability. The Shuttle incident arguably resulted from an
underestimated MFA.

9 galois %



Consensus Properties: Consensus

A monitor can observe consensus (or the lack thereof) between
distributed components.

This principally means observing classes of asymmetric or Byzantine
faults (including omissive faults).

It appears that Byzantine faults are also the most “malicious” and least
accounted-for faults.

Example: non-universal 1/0 error in the Shuttle!

Monitors are bound by the “laws” of distributed-system observation

(given real-time clocks). This means there's some probability of false-
positives and false-negatives.

Example:

—>
=

yibuans [eubis
? )
['s]
= |
[ah]
\J




Consensus Properties: CRCs

Monitoring point-to-point error-checking

e Point-to-point error-checking provides evidence to a
receiver that a message got corrupted in transit.

e Cyclic redundant checks (CRCs) are standard practice for
catching point-to-point communication errors in embedded
systems.

e They can catch both burst errors and random bit-errors.

1 galois %



Consensus Properties: CRCs

e Reliability figures for distributed embedded systems depend
on the error-checking reliability of CRCs...

e But reliability figures may be overly-optimistic:

“...The use of CRCs as a mechanism to provide ultra-dependable system
operation (10 failures/hour) is questionable in many cases. The main problem
is that network inter-stages can exhibit arbitrary faults, accidentally forging
valid CRC check sequences.”!

'[Paulitsch, Morris, Hall, Driscoll, Koopman, & Latronico. Coverage and the
Use of Cyclic Redundancy Codes in Ultra-Dependable Systems, DSN’05.]

12 galois



Consensus Properties: CRCs

For example, consider the case of “Schrodoinger’s CRCs”:!

11-Bit Message USB- 5
Receiver A 11111101101 1 0001
Transmtter 1111110110 % 1 %0 » 1
Receiver B 11111101100 11011

e (USB-5 has a Hamming Distance of 3 for 11-bit data.)

* No good data exists on the real-world probability of
Schrodoinger’s CRCs.

e Probably more likely than commonly believed.

'[Driscoll, Hall, Sivencrona, & Zumsteg. Byzantine Fault Tolerance, from Theory to Reality,

SAFECOMP’03.] 3 galois



Consensus Properties: Timing

Violated timing assumptions

Hard realtime systems have timeliness guarantees,
provided system timing assumptions hold.

- The timing assumptions are constraints on clock drift, skew, message
delays, resynchronization, etc.

- Constraints cannot be monitored directly.
- (A monitor has no more access to real-time than the what's monitored.)

14 galois



Consensus Properties: Timing

o Constraints talk about real-time (i.e., wall-clock time).
* For example: here’s a clock drift-rate constraint:

((L—p) - (t1 — )] S Clh) — Clie) < [(L+p) - (01 —12)]

NN NN

e But violations of constraints will manifest themselves as systematic faults (i.e.,
greater than the expected fault-arrival rates).

e And faults are likely to be slightly-out-of-spec timing errors.
» Challenge: determining when a fault is frequent enough to be a systematic fault.

e Techniques for probabilistic runtime checking in soft real-time systems are
applicable.*

'[Sammapun, Lee, Sokolsky, Regeher. Statistical runtime checking of probabilistic
properties, RTV'07.] . %
15 galois



Architectural Considerations

e What are monitors:

- Inputs are local state projections.

- Data are fault-arrive probabilities and state-collection times.
- State is occurrence frequencies.

- Qutputs are consensus violations.

 Where does the the monitor “go”?

- Two architectural approaches:

 Distributed: monitors at the distributed nodes, and interchange
“consensus data”.

» Central: nodes send “consensus data” to a central monitor.
- Resulting in various reliability/cost tradeoffs.
- Want to be able to synthesize multiple architectures.

16 galois



Monitor Architecture Requirements

 What general requirements are there for monitor
architectures?

 We propose three requirements covering

- Functionality
- Schedulability
- Reliability

New

monitor architecture

-

system under|
observation (SUO)k

JIX,

~N

)

17

galois %



Monitor Architecture Requirements

e Functionality: the monitor does not change the functionality of the
system under observation (SUO), unless the SUO violates its
specification.

- Unintentional: safe-guards must be in place to ensure that monitor faults do
not affect the SUQ’s functionality.

- Intentional: the monitor must signal a reset, etc. to the SUO only if the SUO
has (probably) violated its specification.

e Schedulability: the monitor architecture does not cause the SUO to
violate its hard real-time guarantees.

e Reliability: the reliability of the SUO in the context of the monitor
architecture is greater or equal to the reliability of the SUO alone.

A monitor might reduce the SUQO’s reliability for some class of faults of
(improbable) faults and yet increase the system’s overall reliability.

18 galois



Synthesis

 In other monitoring work, the synthesis challenge is

- Synthesizing efficient monitors from expressive high-level
specifications.

- Inlining the monitors into the system.

 In ours, the challenge is to

- Synthesize multiple architectures and ensure noninterference with
the observed system.

- Synthesize reliability data (to probabilistically distinguish systematic
and random faults).

- Synthesize temporal constraints on monitoring.

19 galois %



Anticipated Developer Workflow

In our context, the system designer

Instruments processes to make “consensus data” available to the
monitor (e.g., memory access).

Provides random fault-arrival probabilities.
Defines a monitor architecture.
Play a game:

* Do you assume consistency at this point in the
algorithm/architecture?

e Then assert consensus.
Orthogonal to any fault-tolerance in the system.

20 galois



Conclusions: Comments on the Approach

As compared to other monitoring frameworks...

Benefits:

- Thesis: consensus violations characterize a simple but
broad class of faults.
e Consensus violations characterize recent failures.
e Consensus is hard and the assumptions are often wrong.

e Many SW faults are about coordination and fault-tolerance rather
than the core GN&C algorithms.

- Takes a unifying view of HW and SW.
 Reliability is a function of (1) systematic and (2) random faults.
* Thus, we take a system-level viewpoint of monitoring.

71 galois



Conclusions: Comments on the Approach

As compared to other monitoring frameworks...
Challenges:

- In ad-hoc systems, which state-projections should be in
agreement at which times?

- Synthesizing monitoring architectures.

- Are false-positive/negative observations acceptable (for ultra-
reliable systems)?

- Is the 0-increase in reliability sufficient to warrant monitoring?

29 galois



Conclusions: Summary

o Ultra-reliable systems may benefit from runtime monitoring,
but new approaches are needed.

e Important classes of faults can be couched in terms of
consensus.

e The synthesis problem for these monitors include
architectural integration and including hypothesized fault-
arrival rates.

e Our hope is that “cheap and easy” consensus monitors
encourage better design practices.

23 galois



Conclusions

More details:

- Extended abstract accepted in the Software Health Management
Workshop (SHM’09).

- Submitted: paper on our real-time test-bed and automated-test
framework.

- In preparation: technical report survey & foundations of monitoring
real-time distributed systems.

- | eepi ke@al oi s. com and al wyn. goodl oe@i anet. org


mailto:leepike@galois.com
mailto:alwyn.goodloe@nianet.org

	Foundations of Monitoring Distributed Real-Time Systems 
	The Problem: Motivation
	Characterizing the Systems
	Previous Efforts
	Slide 5
	Slide 6
	Slide 7
	What the Watchmen Watch
	What the Watchmen Watch: Consensus
	Slide 10
	What the Watchmen Watch: CRCs
	Slide 12
	Slide 13
	What the Watchmen Watch: Timing
	Slide 15
	Slide 16
	Monitor Architecture Requirements
	Monitor Requirements: Functionality
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Next Steps

