
Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

The Philosophy of Formal Methods

Lee Pike

Formal Methods Group
NASA Langley Research Center

lee.s.pike@nasa.gov

September 21, 2004

(The contents herein are not necessarily endorsed by the United States

Government.)

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Introduction

Computers, Correctness, and Proofs
Computers
Correctness
Proofs

Trying to Answer Fetzer

Conclusions

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

A Warning to Formal Methods Practitioners

Simplifying assumptions are made throughout to extract the
central philosophical issues.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

What are Formal Methods?

A formal method is a method applying formal mathematical
techniques to prove (or disprove) a computer is correctly
implemented.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Why Formal Methods Matter

Pentium FDIV Bug: It is estimated that a hardware bug in Intel’s
Pentium chip cost the company around 1/2 a billion
dollars in the 1990’s.

Therac-25: A radiation-therapy killed or maimed 6 people in the
1980’s due to software bugs.

Missle Defense: A 1960’s early warning system falsely asserted that
a full-scale nuclear attack by the Soviets had occurred
due to unanticipated radiation from the moon.

Testing alone did not uncover these errors.

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Why Formal Methods Matter

Pentium FDIV Bug: It is estimated that a hardware bug in Intel’s
Pentium chip cost the company around 1/2 a billion
dollars in the 1990’s.

Therac-25: A radiation-therapy killed or maimed 6 people in the
1980’s due to software bugs.

Missle Defense: A 1960’s early warning system falsely asserted that
a full-scale nuclear attack by the Soviets had occurred
due to unanticipated radiation from the moon.

Testing alone did not uncover these errors.

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Why Formal Methods Matter

Pentium FDIV Bug: It is estimated that a hardware bug in Intel’s
Pentium chip cost the company around 1/2 a billion
dollars in the 1990’s.

Therac-25: A radiation-therapy killed or maimed 6 people in the
1980’s due to software bugs.

Missle Defense: A 1960’s early warning system falsely asserted that
a full-scale nuclear attack by the Soviets had occurred
due to unanticipated radiation from the moon.

Testing alone did not uncover these errors.

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Why Formal Methods Matter

Pentium FDIV Bug: It is estimated that a hardware bug in Intel’s
Pentium chip cost the company around 1/2 a billion
dollars in the 1990’s.

Therac-25: A radiation-therapy killed or maimed 6 people in the
1980’s due to software bugs.

Missle Defense: A 1960’s early warning system falsely asserted that
a full-scale nuclear attack by the Soviets had occurred
due to unanticipated radiation from the moon.

Testing alone did not uncover these errors.

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Why Formal Methods Matter

Pentium FDIV Bug: It is estimated that a hardware bug in Intel’s
Pentium chip cost the company around 1/2 a billion
dollars in the 1990’s.

Therac-25: A radiation-therapy killed or maimed 6 people in the
1980’s due to software bugs.

Missle Defense: A 1960’s early warning system falsely asserted that
a full-scale nuclear attack by the Soviets had occurred
due to unanticipated radiation from the moon.

Testing alone did not uncover these errors.

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

The Philosophical Challenge

“[Computers are] complex causal systems whose
behavior, in principle, can only be known with the
uncertainty that attends empirical knowledge as opposed
to the certainty that attends specific kinds of
mathematical demonstrations. For when the domain of
entities that is thereby described consists of purely
abstract entities, conclusive absolute verifications are
possible; but when the domain of entities that is thereby
described consists of non-abstract physical entities . . .
only inconclusive relative verifications are possible.”

James Fetzer: CACM, 1989

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

The Million Dollar Question
(a.k.a. Intel’s Half-Billion Dollar Question)

Can you prove a computer behaves correctly?

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Abstract and Physical Computers

I Abstract Computers
I E.g., Turing Machines, Rewrite-formalisms.
I These are models that can be mathematically manipulated.

I Physical Computers
I E.g., Digital wristwatches, laptops.
I Can be pushed, prodded, and tested...
I Only models of them can be mathematically manipulated.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Programs: Bridging the Great Divide

We want to prove that a program executed by a computer evokes
the desired behavior.

I A program is a syntactic entity with causal powers.
I A program can be given a semantics via

I An abstract computer.
I A concrete computer.

I A program is the “interface” between the abstract and
concrete.

From here on, “system” stands for a computer executing a
program.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Programs: Bridging the Great Divide

We want to prove that a program executed by a computer evokes
the desired behavior.

I A program is a syntactic entity with causal powers.

I A program can be given a semantics via
I An abstract computer.
I A concrete computer.

I A program is the “interface” between the abstract and
concrete.

From here on, “system” stands for a computer executing a
program.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Programs: Bridging the Great Divide

We want to prove that a program executed by a computer evokes
the desired behavior.

I A program is a syntactic entity with causal powers.
I A program can be given a semantics via

I An abstract computer.
I A concrete computer.

I A program is the “interface” between the abstract and
concrete.

From here on, “system” stands for a computer executing a
program.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Programs: Bridging the Great Divide

We want to prove that a program executed by a computer evokes
the desired behavior.

I A program is a syntactic entity with causal powers.
I A program can be given a semantics via

I An abstract computer.
I A concrete computer.

I A program is the “interface” between the abstract and
concrete.

From here on, “system” stands for a computer executing a
program.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Programs: Bridging the Great Divide

We want to prove that a program executed by a computer evokes
the desired behavior.

I A program is a syntactic entity with causal powers.
I A program can be given a semantics via

I An abstract computer.
I A concrete computer.

I A program is the “interface” between the abstract and
concrete.

From here on, “system” stands for a computer executing a
program.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations

I A specification describes how a system should behave.
I An implementation is a system that should satisfy a fixed

specification (e.g., it “adds detail”).

I Abstract systems may be abstract implementations.
I Physical systems may be concrete implementations.

I An implementation is correct if it in fact satisfies its
specification (?).

I An abstract implementation is also a formal specification.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations

I A specification describes how a system should behave.

I An implementation is a system that should satisfy a fixed
specification (e.g., it “adds detail”).

I Abstract systems may be abstract implementations.
I Physical systems may be concrete implementations.

I An implementation is correct if it in fact satisfies its
specification (?).

I An abstract implementation is also a formal specification.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations

I A specification describes how a system should behave.
I An implementation is a system that should satisfy a fixed

specification (e.g., it “adds detail”).

I Abstract systems may be abstract implementations.
I Physical systems may be concrete implementations.

I An implementation is correct if it in fact satisfies its
specification (?).

I An abstract implementation is also a formal specification.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations

I A specification describes how a system should behave.
I An implementation is a system that should satisfy a fixed

specification (e.g., it “adds detail”).
I Abstract systems may be abstract implementations.
I Physical systems may be concrete implementations.

I An implementation is correct if it in fact satisfies its
specification (?).

I An abstract implementation is also a formal specification.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations

I A specification describes how a system should behave.
I An implementation is a system that should satisfy a fixed

specification (e.g., it “adds detail”).
I Abstract systems may be abstract implementations.
I Physical systems may be concrete implementations.

I An implementation is correct if it in fact satisfies its
specification (?).

I An abstract implementation is also a formal specification.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations

I A specification describes how a system should behave.
I An implementation is a system that should satisfy a fixed

specification (e.g., it “adds detail”).
I Abstract systems may be abstract implementations.
I Physical systems may be concrete implementations.

I An implementation is correct if it in fact satisfies its
specification (?).

I An abstract implementation is also a formal specification.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations: An Example

I Specification:
For inputs x , y ∈ N, output z where z ≥ x and z ≥ y .

I Abstract Implementation1:
Output z = x + y .

I Abstract Implementation2:

plus(x , y)
def
= if x = 0 then y else plus(+1(x),+1(y))

...

I Concrete Implementation:
A machine that accepts and emits electomagnetic pulses.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations: An Example

I Specification:
For inputs x , y ∈ N, output z where z ≥ x and z ≥ y .

I Abstract Implementation1:
Output z = x + y .

I Abstract Implementation2:

plus(x , y)
def
= if x = 0 then y else plus(+1(x),+1(y))

...

I Concrete Implementation:
A machine that accepts and emits electomagnetic pulses.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations: An Example

I Specification:
For inputs x , y ∈ N, output z where z ≥ x and z ≥ y .

I Abstract Implementation1:
Output z = x + y .

I Abstract Implementation2:

plus(x , y)
def
= if x = 0 then y else plus(+1(x),+1(y))

...

I Concrete Implementation:
A machine that accepts and emits electomagnetic pulses.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations: An Example

I Specification:
For inputs x , y ∈ N, output z where z ≥ x and z ≥ y .

I Specification1:
Output z = x + y .

I Abstract Implementation2:

plus(x , y)
def
= if x = 0 then y else plus(+1(x),+1(y))

...

I Concrete Implementation:
A machine that accepts and emits electomagnetic pulses.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations: An Example

I Specification:
For inputs x , y ∈ N, output z where z ≥ x and z ≥ y .

I Specification1:
Output z = x + y .

I Abstract Implementation2:

plus(x , y)
def
= if x = 0 then y else plus(+1(x),+1(y))

...

I Concrete Implementation:
A machine that accepts and emits electomagnetic pulses.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations: An Example

I Specification:
For inputs x , y ∈ N, output z where z ≥ x and z ≥ y .

I Specification1:
Output z = x + y .

I Specification2:

plus(x , y)
def
= if x = 0 then y else plus(+1(x),+1(y))

...

I Concrete Implementation:
A machine that accepts and emits electomagnetic pulses.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations: An Example

I Specification:
For inputs x , y ∈ N, output z where z ≥ x and z ≥ y .

I Specification1:
Output z = x + y .

I Specification2:

plus(x , y)
def
= if x = 0 then y else plus(+1(x),+1(y))

...

I Concrete Implementation:
A machine that accepts and emits electomagnetic pulses.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

Specifications and Implementations: An Example

I Specification:
For inputs x , y ∈ N, output z where z ≥ x and z ≥ y .

I Specification1:
Output z = x + y .

I Specification2:

plus(x , y)
def
= if x = 0 then y else plus(+1(x),+1(y))

...

I Concrete Implementation:
A machine that accepts and emits electomagnetic pulses.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

The Structure of Proofs in Formal Methods

Im
p
le

m
en

ta
ti
on

s

S
p
ec

ifi
ca

ti
on

s

F
or

m
al

P
ro

of
s

A
b
stract

C
on

crete
Spec1

Spec2/Imp2

...

Spec3/Imp3

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Computers
Correctness
Proofs

The Structure of Proofs in Formal Methods

Im
p
le

m
en

ta
ti
on

s

S
p
ec

ifi
ca

ti
on

s

F
or

m
al

P
ro

of
s

A
b
stract

C
on

crete
Spec1

Spec2/Imp2

...

Spec3/Imp3

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Formal Methods & Science

“. . . The semantic gap is sufficiently small to render
Fetzer’s objections inconsequential. To deny any relation
. . . is to deny that there can be any useful mathematical
model of reality.”

Bevier, Smith, Young: CACM, 1989.

That is, if formal methods are not possible, than neither is applied
mathematics in any scientific field.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Formal Methods & Science

“. . . The semantic gap is sufficiently small to render
Fetzer’s objections inconsequential. To deny any relation
. . . is to deny that there can be any useful mathematical
model of reality.”

Bevier, Smith, Young: CACM, 1989.

That is, if formal methods are not possible, than neither is applied
mathematics in any scientific field.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Just Blame the Physicists

I The reply seems to rest on the assumption that a chain of
models is possible, all the way down to those of physics.

I In other words, if the concrete-abstract gap is small enough, it
is based on the models of physics.

I If the physical implementation is incorrect, but the abstract
implementations down to the models of physics are proved to
meet their specifications, then physics is wrong.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Just Blame the Physicists

I The reply seems to rest on the assumption that a chain of
models is possible, all the way down to those of physics.

I In other words, if the concrete-abstract gap is small enough, it
is based on the models of physics.

I If the physical implementation is incorrect, but the abstract
implementations down to the models of physics are proved to
meet their specifications, then physics is wrong.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Just Blame the Physicists

I The reply seems to rest on the assumption that a chain of
models is possible, all the way down to those of physics.

I In other words, if the concrete-abstract gap is small enough, it
is based on the models of physics.

I If the physical implementation is incorrect, but the abstract
implementations down to the models of physics are proved to
meet their specifications, then physics is wrong.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Just Blame the Physicists

I The reply seems to rest on the assumption that a chain of
models is possible, all the way down to those of physics.

I In other words, if the concrete-abstract gap is small enough, it
is based on the models of physics.

I If the physical implementation is incorrect, but the abstract
implementations down to the models of physics are proved to
meet their specifications, then physics is wrong.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Some Problems

I It is not a priori obvious that the models of physics and
computer science are continuous, and no formal verification
actually attempts this.

I It is not just computational models that are of concern (see
the examples).

I Formal method practitioners do not experimentally verify their
models. Indeed, formal methods are meant to replace
experimental verification.

Next

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Some Problems

I It is not a priori obvious that the models of physics and
computer science are continuous, and no formal verification
actually attempts this.

I It is not just computational models that are of concern (see
the examples).

I Formal method practitioners do not experimentally verify their
models. Indeed, formal methods are meant to replace
experimental verification.

Next

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Some Problems

I It is not a priori obvious that the models of physics and
computer science are continuous, and no formal verification
actually attempts this.

I It is not just computational models that are of concern (see
the examples).

I Formal method practitioners do not experimentally verify their
models. Indeed, formal methods are meant to replace
experimental verification.

Next

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Some Problems

I It is not a priori obvious that the models of physics and
computer science are continuous, and no formal verification
actually attempts this.

I It is not just computational models that are of concern (see
the examples).

I Formal method practitioners do not experimentally verify their
models. Indeed, formal methods are meant to replace
experimental verification.

Next

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Mind the Concrete-Abstract Gaps

I Computers are formally
modeled.

I The world is formally modeled.

I Computers’ models of the world
are formally modeled.

I The behavior we desire
is formally modeled.

I Proofs are formally modeled
(in a logic).

model of

model of

its

mode
l of

model of

model of

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Mind the Concrete-Abstract Gaps

I Computers are formally
modeled.

I The world is formally modeled.

I Computers’ models of the world
are formally modeled.

I The behavior we desire
is formally modeled.

I Proofs are formally modeled
(in a logic).

model of

model of

its

mode
l of

model of

model of

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Mind the Concrete-Abstract Gaps

I Computers are formally
modeled.

I The world is formally modeled.

I Computers’ models of the world
are formally modeled.

I The behavior we desire
is formally modeled.

I Proofs are formally modeled
(in a logic).

model of

model of

its

mode
l of

model of

model of

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Mind the Concrete-Abstract Gaps

I Computers are formally
modeled.

I The world is formally modeled.

I Computers’ models of the world
are formally modeled.

I The behavior we desire
is formally modeled.

I Proofs are formally modeled
(in a logic).

model of

model of

its

mode
l of

model of

model of

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Mind the Concrete-Abstract Gaps

I Computers are formally
modeled.

I The world is formally modeled.

I Computers’ models of the world
are formally modeled.

I The behavior we desire
is formally modeled.

I Proofs are formally modeled
(in a logic).

model of

model of

its

mode
l of

model of

model of

Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Mind the Concrete-Abstract Gaps

I Computers are formally
modeled.

I The world is formally modeled.

I Computers’ models of the world
are formally modeled.

I The behavior we desire
is formally modeled.

I Proofs are formally modeled
(in a logic).

model of

model of

its

mode
l of

model of

model of
Return

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Where Are We Left?

I The problem of mathematics in formal methods is not
reducible to the problem of mathematics in the empirical
sciences.

I The possible salvation of formal methods:
program semantics. . .

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Where Are We Left?

I The problem of mathematics in formal methods is not
reducible to the problem of mathematics in the empirical
sciences.

I The possible salvation of formal methods:
program semantics. . .

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Where Are We Left?

I The problem of mathematics in formal methods is not
reducible to the problem of mathematics in the empirical
sciences.

I The possible salvation of formal methods:
program semantics. . .

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Concluding Remarks

I Formal Methods is not an empirical science (is it an inchoate
engineering discipline?), and its philosophical problems are not
reducible to ones in science.

I A better philosophical understanding of formal models and
their interactions is needed.

I Better philosophical understanding of the programs,
algorithms, etc. is needed.

I These considerations comprise the foundation of inevitable
and important questions of ethics.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Concluding Remarks

I Formal Methods is not an empirical science (is it an inchoate
engineering discipline?), and its philosophical problems are not
reducible to ones in science.

I A better philosophical understanding of formal models and
their interactions is needed.

I Better philosophical understanding of the programs,
algorithms, etc. is needed.

I These considerations comprise the foundation of inevitable
and important questions of ethics.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Concluding Remarks

I Formal Methods is not an empirical science (is it an inchoate
engineering discipline?), and its philosophical problems are not
reducible to ones in science.

I A better philosophical understanding of formal models and
their interactions is needed.

I Better philosophical understanding of the programs,
algorithms, etc. is needed.

I These considerations comprise the foundation of inevitable
and important questions of ethics.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Concluding Remarks

I Formal Methods is not an empirical science (is it an inchoate
engineering discipline?), and its philosophical problems are not
reducible to ones in science.

I A better philosophical understanding of formal models and
their interactions is needed.

I Better philosophical understanding of the programs,
algorithms, etc. is needed.

I These considerations comprise the foundation of inevitable
and important questions of ethics.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Concluding Remarks

I Formal Methods is not an empirical science (is it an inchoate
engineering discipline?), and its philosophical problems are not
reducible to ones in science.

I A better philosophical understanding of formal models and
their interactions is needed.

I Better philosophical understanding of the programs,
algorithms, etc. is needed.

I These considerations comprise the foundation of inevitable
and important questions of ethics.

Lee Pike The Philosophy of Formal Methods



Outline
Introduction

Computers, Correctness, and Proofs
Trying to Answer Fetzer

Conclusions

Some Web Resources

NASA Langley Research Center Formal Methods Group

http://shemesh.larc.nasa.gov/fm/
Google: nasa formal methods

A Good Online Bibliography

http://www.cse.buffalo.edu/~rapaport/510/
canprogsbeverified.html
Google: rapaport programs verified

Lee Pike The Philosophy of Formal Methods

http://shemesh.larc.nasa.gov/fm/
http://www.cse.buffalo.edu/~rapaport/510/canprogsbeverified.html
http://www.cse.buffalo.edu/~rapaport/510/canprogsbeverified.html


Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Computational Models are Discrete

I In the physical sciences, small changes in the world mean
small changes in modeled behavior.

I In the computer sciences, small changes in the world may
mean huge changes in modeled behavior.

Example: Flipping a bit.

I 1000102 = 34.

I 1000102 −→ 0000102.

I 0000102 = 2.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Computational Models are Discrete

I In the physical sciences, small changes in the world mean
small changes in modeled behavior.

I In the computer sciences, small changes in the world may
mean huge changes in modeled behavior.

Example: Flipping a bit.

I 1000102 = 34.

I 1000102 −→ 0000102.

I 0000102 = 2.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Computational Models are Discrete

I In the physical sciences, small changes in the world mean
small changes in modeled behavior.

I In the computer sciences, small changes in the world may
mean huge changes in modeled behavior.

Example: Flipping a bit.

I 1000102 = 34.

I 1000102 −→ 0000102.

I 0000102 = 2.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Computational Models are Discrete

I In the physical sciences, small changes in the world mean
small changes in modeled behavior.

I In the computer sciences, small changes in the world may
mean huge changes in modeled behavior.

Example: Flipping a bit.

I 1000102 = 34.

I 1000102 −→ 0000102.

I 0000102 = 2.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Computational Models are Discrete

I In the physical sciences, small changes in the world mean
small changes in modeled behavior.

I In the computer sciences, small changes in the world may
mean huge changes in modeled behavior.

Example: Flipping a bit.

I 1000102 = 34.

I 1000102 −→ 0000102.

I 0000102 = 2.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Computational Models are Discrete

I In the physical sciences, small changes in the world mean
small changes in modeled behavior.

I In the computer sciences, small changes in the world may
mean huge changes in modeled behavior.

Example: Flipping a bit.

I 1000102 = 34.

I 1000102 −→ 0000102.

I 0000102 = 2.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Computational Models are Discontinous

I Computational Fluid Dynamics can be used simulate
continuous airfoil behavior.

I Relatively simple programs can have billions of discontinuous
states.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Computational Models are Discontinous

I Computational Fluid Dynamics can be used simulate
continuous airfoil behavior.

I Relatively simple programs can have billions of discontinuous
states.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

The Difference Between Formal Methods and Science

In practice, the model-world gap is wider in formal methods than
in the sciences (e.g., physics):

I Formal verification requires a multitude of models; most other
science requires just one.

I Computer science is fledgling: new discoveries lead to new
models.

I The concrete objects are of enormous complexity (e.g.,
Windows XP has approx. 40 million lines of code), and so are
their models.

But these are differences of degree, not of kind.
Next

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

The Difference Between Formal Methods and Science

In practice, the model-world gap is wider in formal methods than
in the sciences (e.g., physics):

I Formal verification requires a multitude of models; most other
science requires just one.

I Computer science is fledgling: new discoveries lead to new
models.

I The concrete objects are of enormous complexity (e.g.,
Windows XP has approx. 40 million lines of code), and so are
their models.

But these are differences of degree, not of kind.
Next

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

The Difference Between Formal Methods and Science

In practice, the model-world gap is wider in formal methods than
in the sciences (e.g., physics):

I Formal verification requires a multitude of models; most other
science requires just one.

I Computer science is fledgling: new discoveries lead to new
models.

I The concrete objects are of enormous complexity (e.g.,
Windows XP has approx. 40 million lines of code), and so are
their models.

But these are differences of degree, not of kind.
Next

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

The Difference Between Formal Methods and Science

In practice, the model-world gap is wider in formal methods than
in the sciences (e.g., physics):

I Formal verification requires a multitude of models; most other
science requires just one.

I Computer science is fledgling: new discoveries lead to new
models.

I The concrete objects are of enormous complexity (e.g.,
Windows XP has approx. 40 million lines of code), and so are
their models.

But these are differences of degree, not of kind.
Next

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

The Difference Between Formal Methods and Science

In practice, the model-world gap is wider in formal methods than
in the sciences (e.g., physics):

I Formal verification requires a multitude of models; most other
science requires just one.

I Computer science is fledgling: new discoveries lead to new
models.

I The concrete objects are of enormous complexity (e.g.,
Windows XP has approx. 40 million lines of code), and so are
their models.

But these are differences of degree, not of kind.
Next

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Reasoning About Computers

I The mathematical domain used to model computers is logic
and discrete mathematics.

I The mathematical domain used to model most other physical
objects is The Calculus. Behavior is simulated by solving
(differential) equations.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Reasoning About Computers

I The mathematical domain used to model computers is logic
and discrete mathematics.

I The mathematical domain used to model most other physical
objects is The Calculus. Behavior is simulated by solving
(differential) equations.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Mathematics in the Sciences

In science...

I Theories about the behavior of
the world are formulated.

I Then these theories are tested
by experimentation.

In Formal Methods...

I Theories about the behavior of
the world (and computers, and
their interactions) are
formulated.

I Formal methods does not test
these theories!

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Mathematics in the Sciences

In science...

I Theories about the behavior of
the world are formulated.

I Then these theories are tested
by experimentation.

In Formal Methods...

I Theories about the behavior of
the world (and computers, and
their interactions) are
formulated.

I Formal methods does not test
these theories!

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Mathematics in the Sciences

In science...

I Theories about the behavior of
the world are formulated.

I Then these theories are tested
by experimentation.

In Formal Methods...

I Theories about the behavior of
the world (and computers, and
their interactions) are
formulated.

I Formal methods does not test
these theories!

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Formal Methods as an Engineering Discipline

I Formal methods practitioners do not attempt to develop and
test new theories.

I Rather, established theories are used to develop and validate
new designs.

The bane of formal methods: The engineering practice is being
developed concurrently with the science of computation.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Formal Methods as an Engineering Discipline

I Formal methods practitioners do not attempt to develop and
test new theories.

I Rather, established theories are used to develop and validate
new designs.

The bane of formal methods: The engineering practice is being
developed concurrently with the science of computation.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Formal Methods as an Engineering Discipline

I Formal methods practitioners do not attempt to develop and
test new theories.

I Rather, established theories are used to develop and validate
new designs.

The bane of formal methods: The engineering practice is being
developed concurrently with the science of computation.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Shrinking the Gap

I The behavior of a program executed on an abstract computer
can be verified.

I If the semantics we give to programs match those computers
give to them, we’re home free.

I How to do this? Compile to a small, simple instruction set
that we can check relatively easily.

I Programs are the complex, changing part of a system. We
might gather enough empirical evidence that computers give
the right semantics to trust our formal verification of the
program.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Shrinking the Gap

I The behavior of a program executed on an abstract computer
can be verified.

I If the semantics we give to programs match those computers
give to them, we’re home free.

I How to do this? Compile to a small, simple instruction set
that we can check relatively easily.

I Programs are the complex, changing part of a system. We
might gather enough empirical evidence that computers give
the right semantics to trust our formal verification of the
program.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Shrinking the Gap

I The behavior of a program executed on an abstract computer
can be verified.

I If the semantics we give to programs match those computers
give to them, we’re home free.

I How to do this? Compile to a small, simple instruction set
that we can check relatively easily.

I Programs are the complex, changing part of a system. We
might gather enough empirical evidence that computers give
the right semantics to trust our formal verification of the
program.

Lee Pike The Philosophy of Formal Methods



Appendix: Other Issues
Testing Systems (is Infeasible)
Comparing Formal Methods and Science

Shrinking the Gap

I The behavior of a program executed on an abstract computer
can be verified.

I If the semantics we give to programs match those computers
give to them, we’re home free.

I How to do this? Compile to a small, simple instruction set
that we can check relatively easily.

I Programs are the complex, changing part of a system. We
might gather enough empirical evidence that computers give
the right semantics to trust our formal verification of the
program.

Lee Pike The Philosophy of Formal Methods


	Outline
	Introduction
	Computers, Correctness, and Proofs
	Computers
	Correctness
	Proofs

	Trying to Answer Fetzer
	Conclusions
	Appendix: Other Issues
	Testing Systems (is Infeasible)
	Comparing Formal Methods and Science


