
When Formal System Kill:
Computer Ethics and Formal Methods

Lee Pike (presenting)1 Darren Abramson2

1Galois Inc.
leepike@galois.com

2Department of Philosophy,
Dalhousie University

July 27, 2007
North American Computers and Philosophy (NA-CAP)

Conference

Lee Pike When Formal Systems Kill

leepike@galois.com

Brief biographical aside

. . . Or why would you listen to us?

Lee Pike When Formal Systems Kill

Our goals in this talk

We will argue that

1 Computers, considered as automated formal systems,
suggest they have a unique ethical status.

2 That there’s an open philosophical problem in the applied
ethics of formal methods (i.e., mathematically proving
computers correct).

3 Also, we will try to give you one practitioner’s perspective
on formal methods applications today.

Lee Pike When Formal Systems Kill

Our goals in this talk

We will argue that

1 Computers, considered as automated formal systems,
suggest they have a unique ethical status.

2 That there’s an open philosophical problem in the applied
ethics of formal methods (i.e., mathematically proving
computers correct).

3 Also, we will try to give you one practitioner’s perspective
on formal methods applications today.

Lee Pike When Formal Systems Kill

Our goals in this talk

We will argue that

1 Computers, considered as automated formal systems,
suggest they have a unique ethical status.

2 That there’s an open philosophical problem in the applied
ethics of formal methods (i.e., mathematically proving
computers correct).

3 Also, we will try to give you one practitioner’s perspective
on formal methods applications today.

Lee Pike When Formal Systems Kill

Our goals in this talk

We will argue that

1 Computers, considered as automated formal systems,
suggest they have a unique ethical status.

2 That there’s an open philosophical problem in the applied
ethics of formal methods (i.e., mathematically proving
computers correct).

3 Also, we will try to give you one practitioner’s perspective
on formal methods applications today.

Lee Pike When Formal Systems Kill

What we do NOT want to convince you of

It is not our goal to

1 Promote formal methods or argue that formal methods
should replace other kinds of system validation (e.g.,
random testing, MC/DC coverage, etc.).

2 Proscribe a particular ethical theory of formal verification.

3 Retread debates over the “metaphysical status” of formal
methods. (This was hashed out mostly in the late 80’s by
Fetzer & his commentators, Barwise, B.C. Smith, and
others).

Lee Pike When Formal Systems Kill

What we do NOT want to convince you of

It is not our goal to

1 Promote formal methods or argue that formal methods
should replace other kinds of system validation (e.g.,
random testing, MC/DC coverage, etc.).

2 Proscribe a particular ethical theory of formal verification.

3 Retread debates over the “metaphysical status” of formal
methods. (This was hashed out mostly in the late 80’s by
Fetzer & his commentators, Barwise, B.C. Smith, and
others).

Lee Pike When Formal Systems Kill

What we do NOT want to convince you of

It is not our goal to

1 Promote formal methods or argue that formal methods
should replace other kinds of system validation (e.g.,
random testing, MC/DC coverage, etc.).

2 Proscribe a particular ethical theory of formal verification.

3 Retread debates over the “metaphysical status” of formal
methods. (This was hashed out mostly in the late 80’s by
Fetzer & his commentators, Barwise, B.C. Smith, and
others).

Lee Pike When Formal Systems Kill

What we do NOT want to convince you of

It is not our goal to

1 Promote formal methods or argue that formal methods
should replace other kinds of system validation (e.g.,
random testing, MC/DC coverage, etc.).

2 Proscribe a particular ethical theory of formal verification.

3 Retread debates over the “metaphysical status” of formal
methods. (This was hashed out mostly in the late 80’s by
Fetzer & his commentators, Barwise, B.C. Smith, and
others).

Lee Pike When Formal Systems Kill

A warning to formal methods practitioners

Simplifying assumptions about are made throughout to extract
the central philosophical issues.

Lee Pike When Formal Systems Kill

What are formal methods?

A formal method is a tool or technique for formally proving (or
disproving) a (mathematical model of a) computer
implementation satisfies its specifications.

Lee Pike When Formal Systems Kill

(Intel’s 1/2 billion reasons) why formal methods matter

Therac-25: A radiation-therapy machine killed or maimed 6
people in the 1980’s due to software bugs.

Missle Defense: A 1960’s early warning system falsely
asserted that a full-scale nuclear attack by the
Soviets had occurred due to unanticipated
radiation from the moon.

Pentium FDIV Bug: It is estimated that a hardware bug in
Intel’s Pentium chip cost the company around 1/2
a billion dollars in the 1990’s.

Testing alone did not uncover these errors.
(Albeit we cannot claim that formal verification would have.)

Lee Pike When Formal Systems Kill

(Intel’s 1/2 billion reasons) why formal methods matter

Therac-25: A radiation-therapy machine killed or maimed 6
people in the 1980’s due to software bugs.

Missle Defense: A 1960’s early warning system falsely
asserted that a full-scale nuclear attack by the
Soviets had occurred due to unanticipated
radiation from the moon.

Pentium FDIV Bug: It is estimated that a hardware bug in
Intel’s Pentium chip cost the company around 1/2
a billion dollars in the 1990’s.

Testing alone did not uncover these errors.
(Albeit we cannot claim that formal verification would have.)

Lee Pike When Formal Systems Kill

(Intel’s 1/2 billion reasons) why formal methods matter

Therac-25: A radiation-therapy machine killed or maimed 6
people in the 1980’s due to software bugs.

Missle Defense: A 1960’s early warning system falsely
asserted that a full-scale nuclear attack by the
Soviets had occurred due to unanticipated
radiation from the moon.

Pentium FDIV Bug: It is estimated that a hardware bug in
Intel’s Pentium chip cost the company around 1/2
a billion dollars in the 1990’s.

Testing alone did not uncover these errors.
(Albeit we cannot claim that formal verification would have.)

Lee Pike When Formal Systems Kill

(Intel’s 1/2 billion reasons) why formal methods matter

Therac-25: A radiation-therapy machine killed or maimed 6
people in the 1980’s due to software bugs.

Missle Defense: A 1960’s early warning system falsely
asserted that a full-scale nuclear attack by the
Soviets had occurred due to unanticipated
radiation from the moon.

Pentium FDIV Bug: It is estimated that a hardware bug in
Intel’s Pentium chip cost the company around 1/2
a billion dollars in the 1990’s.

Testing alone did not uncover these errors.
(Albeit we cannot claim that formal verification would have.)

Lee Pike When Formal Systems Kill

Computers as automatic formal systems

Q: But why is mathematical proof so special for computers?

A: Automatic formal systems (AFS) define a computer in terms
of satisfying the following three properties [Haugeland 1989,
Fodor 1990]:

Token manipulation: computers manipulate symbolic
tokens according to formal rules (like games or logics).
Digital: computers have exact, repeatable results, as
opposed to continuous systems (e.g., billiards or the
weather).
Finite “playability”: no computations take infinite time or
require an oracle, etc.

Lee Pike When Formal Systems Kill

Computers as automatic formal systems

Q: But why is mathematical proof so special for computers?

A: Automatic formal systems (AFS) define a computer in terms
of satisfying the following three properties [Haugeland 1989,
Fodor 1990]:

Token manipulation: computers manipulate symbolic
tokens according to formal rules (like games or logics).
Digital: computers have exact, repeatable results, as
opposed to continuous systems (e.g., billiards or the
weather).
Finite “playability”: no computations take infinite time or
require an oracle, etc.

Lee Pike When Formal Systems Kill

Computers as automatic formal systems

Q: But why is mathematical proof so special for computers?

A: Automatic formal systems (AFS) define a computer in terms
of satisfying the following three properties [Haugeland 1989,
Fodor 1990]:

Token manipulation: computers manipulate symbolic
tokens according to formal rules (like games or logics).
Digital: computers have exact, repeatable results, as
opposed to continuous systems (e.g., billiards or the
weather).
Finite “playability”: no computations take infinite time or
require an oracle, etc.

Lee Pike When Formal Systems Kill

Abstract vs. physical computers

In this talk, we are considering abstract computers.

Abstract computers (are AFSes)
These are models that can be mathematically manipulated.
E.g., Turing Machines, Rewrite-formalisms, algorithms.
Realizable in a variety of mediums (e.g., silicon, Lincoln
Logs, etc.).
But any realization should be behaviorally equivalent.

Physical computers (that realize AFSes)
E.g., Digital wristwatches, laptops.
Can be pushed, prodded, and tested...
Only models of them can be mathematically manipulated.

Lee Pike When Formal Systems Kill

Mind the (metaphysical) gap

Abstract computers can be arbitrarily close to the physical
computers (unlike, say, mathematical models of bridges or
planes).
The formal methods metaphysical debate principally
centered around how small the gap is between abstract
computers and concrete computers (for our purposes, we’ll
assume it’s “sufficiently small”).
We call this assumption the Fundamental Formal Methods
Hypothesis.

Lee Pike When Formal Systems Kill

Mind the (metaphysical) gap (continued)

Formally showing that a higher-fidelity model implements a
more abstract one is called refinement.
Digital systems allow for nearly arbitrary levels of
refinement.
The “many-models” paradox of AFSes: because the
system can be modeled at so many levels of abstraction,
ambiguity exists in the claim that a system is formally
verified.

Lee Pike When Formal Systems Kill

Q: If computers are AFSs, why not use formal methods all the
time?

A: The model & proof of software is (very, very roughly)
exponential in the conjunction of

The size of the program.
How “interesting” the properties to be proved are (e.g.,
divide by zero vs. termination).
How “interesting” the program is—(real-time, concurrency,
complicated semantics (e.g., object-oriented, complex
types, etc.), exception-handling, runtime-systems, etc.).

Lee Pike When Formal Systems Kill

Q: If computers are AFSs, why not use formal methods all the
time?

A: The model & proof of software is (very, very roughly)
exponential in the conjunction of

The size of the program.
How “interesting” the properties to be proved are (e.g.,
divide by zero vs. termination).
How “interesting” the program is—(real-time, concurrency,
complicated semantics (e.g., object-oriented, complex
types, etc.), exception-handling, runtime-systems, etc.).

Lee Pike When Formal Systems Kill

Why not? Programs are huge

In next-generation commercial aircraft (Airbus 380), there
is an estimated one billion lines of code.
A model with 1020 states is very small—this captures the
behaviors of simple communication protocols. “Interesting”
systems have an approximately-infinite state-space.
(Today’s automated tools regularly handle state-spaces on
the order of 10300).

Lee Pike When Formal Systems Kill

Why not? Digital systems are hard to verify

Recall that a characteristic of AFSs is that they’re digital.
A difficulty of modeling large digital systems is that small
changes to a program can mean big changes to the overall
program properties:

if a < b then ... vs.
if a > b then ...

This is the 2nd paradox of formal methods: digital systems
are easy to model but hard to verify.

Lee Pike When Formal Systems Kill

A note on digital systems (continued)

Compare this to computational fluid dynamics:
Small changes to an airfoil mean small changes to the
aerodynamics.
That is, models of continuous systems are usually
compositional, whereas models of discrete systems are
usually non-compositional.

Lee Pike When Formal Systems Kill

Getting traction: economy vs. ethics

Economic—not ethical—motivations have driven large-scale
formal methods adoption for the general consumer market.
E.g.,

Microsoft—maintaining market share by mitigating the
perception of minimal security and numerous bugs.
Intel, AMD, etc.: hardware can’t be “patched” like software
can, so mistakes are more costly.
And others for “niche” uses: e.g., telecommunication
protocols, language design, hardware compiler
correctness, etc.

Lee Pike When Formal Systems Kill

Safety-critical & security-critical software

Q: Why have the inroads been made there?

A:
Mandated certification/evaluation: (e.g., DO-178B for
FAA-certified software; Common Criteria for
security-critical government systems).
Economic motivation: à la the ultimate financial cost to
Ford in the Pinto debacle.
National security and military advantage.

But it’s not clear to what extent ethical considerations are the
driving force.

Lee Pike When Formal Systems Kill

Safety-critical & security-critical software

Q: Why have the inroads been made there?

A:
Mandated certification/evaluation: (e.g., DO-178B for
FAA-certified software; Common Criteria for
security-critical government systems).
Economic motivation: à la the ultimate financial cost to
Ford in the Pinto debacle.
National security and military advantage.

But it’s not clear to what extent ethical considerations are the
driving force.

Lee Pike When Formal Systems Kill

The “conventional” wisdom

Some formal methods practitioners have been waiting for the
day they’d be heralded as prophets. Particularly in the 80’s,
many believed that

Lawsuits: software vendors would be held legally liable for
faulty software (despite faulty software costing the U.S.
economy some $5 billion annually.)
Complexity: the complexity of systems could be managed
only by formal proof.

Systems have too many states.
Safety-critical reliability requirements are too high (e.g.,
10−9hour for catastrophic error).

Ubiquity: software system pervading medical devices,
automobiles, aircraft, banks, etc. would necessitate higher
assurance.

None became prime motivators. But, these issues may factor
into a an ethical theory. . .

Lee Pike When Formal Systems Kill

Traditional computer ethics

Our contention is that computer ethics research focuses on
potentially novel aspects of physical computers, such as

Persistent data storage.
Rapid & widespread data transfer.
Rapid and pervasive data analysis.
The ubiquity of computers (e.g., nano-computers).

Lee Pike When Formal Systems Kill

Other considerations for an “ethical theory of formal
methods”

Stallman’s (et al.) call for open software.
How culpability is divided amongst performers in software
systems (e.g., architects, developers, formal methodists,
integraters, managers, requirements developers,
salespeople, testers, users, etc.). See Douglas Birsch,
2004.
How formal methods is integrated with the overall
validation of the system. Validation is about providing
evidence that a system meets its specification. See John
Rushby’s 2007 articles on a science of certification.

Lee Pike When Formal Systems Kill

Proposed outcomes

A significant contribution to computer ethics would be made by
answering the following questions:

(Historical/empirical) why has the “best engineering
practice” of formal methods not become a part of software
system development?
What moral obligation is there to provide correctly
functioning software and to provide evidence that this is
so?
Under what conditions should systems should be proved
correct and what ethical obligations demand it?

Lee Pike When Formal Systems Kill

Recent Related Work

Computers, justification, and mathematical knowledge

by Konstantine Arkoudas and Selmer Bringsjord. Minds and Machines, 2007.
Discusses philosophical issues of mechanical-proof certification.

Ethical protocols design

by Matteo Turilli. Ethics and Information Tech., 2007.
Proposes a method for realizing ethical protocols.

Computer systems and responsibility: a normative look at technological com-
plexity

by Debrah Johnson and Thomas Powers. Ethics and Information Tech., 2005.
Investigates the special role of computer technology-assisted moral actions.

Moral responsibility for harm caused by computer system failures

by Douglas Birsch. Ethics and Information Tech., 2004.
Investigates, by case-study of the Therac-25 incident, how and why humans
are responsible in technology malfunctions.

Lee Pike When Formal Systems Kill

Web Resources

Slides from this talk
http://www.cs.indiana.edu/~lepike
Google: lee pike

Online bibliography for the philosophical of formal methods
http://www.cse.buffalo.edu/~rapaport/510/
canprogsbeverified.html
Google: rapaport programs verified

Lee Pike When Formal Systems Kill

http://www.cs.indiana.edu/~lepike
http://www.cse.buffalo.edu/~rapaport/510/canprogsbeverified.html
http://www.cse.buffalo.edu/~rapaport/510/canprogsbeverified.html

