
A Framework for the Formal Verification of
Time-Triggered Systems

Lee Pike
leepike@galois.com

Indiana University, Bloomington
Department of Computer Science
Advisor: Prof. Steven D. Johnson

December 12, 2005



Acknowledgments

I Professors Steven Johnson, Geoffrey Brown, and Lawrence Moss

I Dr. Paul Miner and the SPIDER Research Team
(Alfons Geser, Jeffrey Maddalon, Mayhar Malekpour, Wilfredo
Torres-Pomales)

I Ricky Butler and the NASA Langley Research Center Formal
Methods Group



Talk Goals

I present a framework for the formal verification of a class of
safety-critical embedded systems.

I Introduce the domain of time-triggered embedded systems for
fly-by-wire and drive-by-wire systems.

I Overview the verification challenges.

I Describe a framework for carrying out verification based on
temporal abstraction.



Safety-Critical Embedded Systems

Digital control systems for commercial aircraft are safety-critical.
Failure rates must be on the order of 10−9 per hour of operation
(about the same probability as being hit by lightning in a given hour).



Time-Triggered Systems

To achieve fault-tolerance, control systems are implemented as
distributed systems. The nodes in a distributed system must
coordinate their behavior.

I Event-triggers signal the occurrence of some event.

I Time-triggers signal the passage of time, demarcated by a
schedule.

I focus on time-triggered systems.



A Generic Fault-Tolerant Bus
Architecture

BIU

BIU BIU

App. A

Host
App. B App. A App. C

Host

App. CApp. B

Host

Interconnect



Bus Architecture Desiderata

I Integration
I Off-the-shelf application integration
I Off-the-shelf fault-tolerance
I Eliminate redundancy

I Partitioning
I Fault-partitioning
I Modular certification

I Predictability
I Hard real-time guarantees
I A virtual time-division multi-access bus



SPIDER

“Time turns the improbable into the inevitable”



SPIDER Architecture

Processor
Elements

Middleware

OS Drivers

App. A
Software

ROBUS

PE 1 PE 2

Hardware

App. B App. B

RMU RMU RMU

Middleware

OS Drivers

Interface
PE−ROBUS

Interface
PE−ROBUS

BIU BIU BIU



BIU/RMU Modes of Operation

I Self-Test Mode
I Initialization Mode

I Initial Diagnosis
I Initial Synchronization
I Collective Diagnosis

I Preservation Mode
I Clock Synchronization
I Collective Diagnosis
I PE Communication

I Reintegration Mode

Continuous on-line diagnosis. . .



Formal Methods

Formal methods are used to prove the correctness of digital systems.

I Failure rates on the order of 10−9 make design assurance via
testing infeasible.

I Design errors dramatically and unexpectedly raise the failure rate.

I Certification documents (will) require formal verification.

I A “best practice” in the design of complex safety-critical systems.



Caveat

A verification of a fault-tolerant protocol guarantees only that if a
maximum fault assumption (MFA) holds, then the protocol is correct.
Experimental data and statistical analysis determines the probability of
the MFA holding.



Verification Technologies

I Mechanical Theorem-Proving (PVS)

I Induction proofs via infinite-state bounded model checking (SAL)

I Interactive hardware derivation methods are also used for
SPIDER, but not in this work.

Industrial verification challenges depend on the judicious combination
of tools and methods.



Verification Strategy for Time-Triggered
Systems

protocol A

time−triggered model

synchronous model

requirements

protocol B

time−triggered timing requirements

protocol B

implements

protocol C

protocol A protocol C

schedule (SAL)

partially−synchronous model

(PVS)

requirements

protocol D

satisfied by
(PVS)

assumes
(PVS)

assumes
(SAL) by (SAL)

satisfied
satisfied by



Essential characteristics of messages for
verifying fault-tolerance

I Its corruption

I Whether an arbitrary receiving process can detect its corruption

sender receiver

msg



Message Classifications

I Benign Message Any non-faulty process receiving it could
determine the message is corrupted, e.g.,

I The message arrives at the wrong time
(in a synchronized system).

I The message fails error-detection.

I Accepted Message Any other message.



Two Ways Faults are Abstracted

I Fault-Location Abstractions Where in a system the fault occurs.

I Fault-Type Abstractions How a system is affected by the fault.



The Hybrid Fault Model1

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process

1Thambidurai and Park. Interactive consensus with multiple failure modes. 7th
Reliable Distributed Systems Symposium, 1988.



The Hybrid Fault Model1

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process
v

v

v

1Thambidurai and Park. Interactive consensus with multiple failure modes. 7th
Reliable Distributed Systems Symposium, 1988.



The Hybrid Fault Model1

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process

err

err

err

1Thambidurai and Park. Interactive consensus with multiple failure modes. 7th
Reliable Distributed Systems Symposium, 1988.



The Hybrid Fault Model1

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process
v’

v’

v’

1Thambidurai and Park. Interactive consensus with multiple failure modes. 7th
Reliable Distributed Systems Symposium, 1988.



The Hybrid Fault Model1

Let V be the uncorrupted message to be sent.

I Good processes send all messages correctly.

I Benign processes send only benign messages.

I Symmetric processes send the same arbitrary message.

I Asymmetric processes send arbitrary messages.

process

v

v’’

v’

1Thambidurai and Park. Interactive consensus with multiple failure modes. 7th
Reliable Distributed Systems Symposium, 1988.



Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

process



Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving

process



Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving

process

computing



Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving sending

process

computing



Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving sending

process

computing

fault
fault fault



Abstracting the Location of Faults

I A process can perform three basic actions.
I Receive messages
I Compute messages
I Send messages

I All of which can suffer faults.

I Reception and computation faults are abstracted as sending
faults.

receiving sending

process

computing

fault faultfault



Comparing Incoming Messages to Mask
Faults

I In fault-tolerant protocols, processes receive redundant messages
from other processes.

I Messages are compared to ensure the selected message is within
the range of those sent by non-faulty processes.



Two Means to Compare Messages

I Majority Voting The item that shows up most often is chosen (if
one exists).

I Middle-Value Selection The sequence of messages is put into
sorted order; then the item with the middle index is chosen.

I Majority of {1, 1, 1, 2, 2} is 1.

I Middle-Value of {1, 1, 3, 4, 7} is 3.

If a majority value exists, then majority voting and middle-value
selection are equivalent.



A Relational Model of Communication
and Voting

I A single relational model can be implemented by different
functional specifications.

I Independent of the architecture and fault-classifications.

I Simplifies specifications and proofs in the functional models.



Relational Models of Inexact and Exact
Sampling

We formulate two similar relational abstractions determined by the
kind of function sampled.

I Inexact Function Approximating (sampling) a function’s value.
Example: Temperature (a function of time) is approximated by a
digital thermometer.

I Exact Function Computing some function exactly.
Example: Ordering a set of values.

Prove: If the MFA is satisfied by the sending nodes, then the
computed result is within the range of non-faulty messages.



Examples

The verifications of the following protocols is based on these
abstractions:

I SPIDER Interactive Consistency Protocol

I SPIDER Distributed Diagnosis Protocol

I SPIDER Clock Synchronization Protcol



The Time-Triggered Model

Synchrony is an abstraction.

I In an independently-clocked distributed system, skew, drift,
latency, etc. place constraints on the scheduling of the system.

I In a time-triggered model, these constraints are explicit.

Goal: Demonstrate that the protocols verified in the synchronous
model are correctly implemented under the time-triggered constraints.
The original model is developed by John Rushby.2

2Systematic formal verification of time-triggered algorithms. IEEE Transactions
on Software Engineering. 1999.



Time-Triggered Communication and
Computation

run(rnd, state) =

IF r = 0 THEN state

ELSE LAMBDA p. comp(p)(run(r - 1, state)(p),

LAMBDA q. msg(q)(run(r - 1, state)(q), p))

clock-time

sched(r) sched(r + 1)+D(r) +P(r)

communication phase computation phase



Inconsistencies

I Three of the four system axioms are inconsistent, despite a formal
specification and verification in PVS.

I The problem: no model is given to demonstrate the consistency of
the axioms.

I Example: (Clock Monotonicity) Let Cp be a total function from R
to N. Then t1 < t2 implies Cp(t1) < Cp(t2).

I Inconsistent: there is no injection from R to N.



Amendments to the Model

The model is augmented to reason about

I event-triggered behavior,

I communication delays,

I reception windows,

I non-static clock skew,

I pipelined rounds.



Verification

The theory is formulated in PVS, and two verifications are given:

I The model is shown to satisfy the synchrony hypothesis: a
simulation relation exists between the time-triggered model and
the synchronous model.

I A theory interpretation is given to show relative consistency.

The time-triggered model demonstrates that provided a uninterpreted
algorithm satisfies the scheduling constraints, then it implements a
synchronous protocol.



Schedule Verification

Bounded model-checking and decision procedures are used to prove
automatically that a protocol schedule satisfies the theory constraints.

1. State the system assumptions (maximum drift rate, minimum and
maximum delays, skew, etc.).

2. State the implemented schedule for the protocol as a state
machine, and check the satisfaction of the scheduling constraints
in each round.



Examples

I SPIDER Distributed Diagnosis Protocol schedule verified.

I SPIDER Clock Synchronization Protocol schedule verified.

I Optimized and parameterized schedules verified.



Reintegration Protocol: an
Unsynchronized Protocol

The protocol allows a faulty node to rejoin the operational nodes.

I Preliminary Diagnosis Mode

I Frame Synchronization Mode

I Synchronization Capture Mode

Safety Properties:

Theorem (No Operational Accusations)

The reintegrator never accuses an operational node.

Theorem (Synchronization Acquisition)

The reintegrator’s clock is synchronized with those of the other nodes,
up to the nominal skew.



Why Not Theorem-Proving?3

3Credit: NASA Langley Formal Methods Humor Page



Infinite-State Bounded Model-Checking

I Combines SAT solving and decision procedures to prove safety
properties.

I Strengthens the induction schema by inducting over trajectories of
fixed length rather than just single transitions: k-induction.



No Free Lunch

k-induction is exponential, so discovering the sufficiently-strong
inductive invariant is still difficult.

Goal: reduce the number of steps necessary in the induction step.



Time-Triggered Simulation

I Typically, a state transition is taken each time the state changes.

I Another approach: “time-triggered simulation.”
I At fixed intervals of time

I Determine the events observed by the reintegrator (i.e., after the
reintegrator’s current timeout and before its next timeout).

I Update the state of the reintegrator based on these observations
simultaneously.



Summary

I Time-triggered bus architectures are being designed to provide
fault-tolerance, coordination, and a communication infrastructure
for embedded control systems.

I A strategy for the formal verification of these systems has been
presented based on temporal abstraction.

I Judicious use of verification tools eases the difficulty of
verification.



Further Information

More Details

http://www.cs.indiana.edu/∼lepike/
Google: lee pike

SPIDER Homepage

http://shemesh.larc.nasa.gov/fm/spider/
Google: formal methods spider

NASA Langley Research Center Formal Methods Group

http://shemesh.larc.nasa.gov/fm/
Google: nasa formal methods

http://www.cs.indiana.edu/~lepike/
http://shemesh.larc.nasa.gov/fm/spider/
http://shemesh.larc.nasa.gov/fm/

	Time-Triggered Systems
	SPIDER Overview
	Formal Methods

	Formal Verification Requirements
	Verifying Synchronous Protocols
	Four Abstractions
	Abstracting Messages
	Abstracting Faults
	Abstracting Fault-Masking
	Abstracting Communication

	Verifying Time-Triggered Implementations
	Verifying Partially-Synchronous Protocols
	The Verification
	SAL
	k-Induction


