
Monitoring Distributed Hard Real-Time Systems
Lee Pike Alwyn Goodloe
Galois, Inc. National Institute of Aerospace

leepike@galois.com Alwyn.Goodloe@nianet.org

Can we make safety-critical embedded systems
ultra-reliable?
Modern aircraft and manned spacecraft rely on complex embedded
software for guidance, navigation, and control (GN&C). Software failures

This research is supported by NASA Contract NNL08AD13T from the Aviation Safety Program Office. Dr. Ben Di Vito of NASA Langley advises this research.

. . .

/* example.a_minus_b */
static void __r0(void) {
unsigned long int __0 = b;

i d l i t 1

Atom/Haskell specification Synthesized embedded C code
gcd:: Atom ()
gcd = do
-- External reference to value A.
a <- word32' "a"
-- External reference to value B.
b < d32' "b"

g , g , ()
can lead to the loss of the vehicle and human life.

Characteristics of safety-critical GN&C software:
Distributed and redundant (for fault-tolerance)
Hard real-time (i.e., constant time usage)
Constant memory usage (i.e., no dynamic memory allocation)
(Usually) C source code

Runtime monitoring

unsigned long int __1 = a;
unsigned char __2 = __0 < __1;
unsigned long int __3 = __1 - __0;
unsigned long int __4 = __2 ? __3 : __1;
a = __4;

}

void example(void) {
if (__clock % 1 == 0) {

__r0(); /* example.a_minus_b */
__r1(); /* example.b_minus_a */
__r2(); /* example.stop */

}

__clock = __clock + 1;
}

. . .

b <- word32' "b"

-- The external running flag.
running <- bool' "running"

-- A rule to modify A.
atom "a_minus_b" $ do

cond $ value a >. value b
a <== value a - value b

-- A rule to modify B.
atom "b_minus_a" $ do

cond $ value b >. value a
b <== value b - value a

-- A rule to clear the running flag.
atom "stop" $ doRuntime monitoring

Safety-critical software is rigorously designed using regimented coding
standards, testing standards, and formal methods to increase confidence
in its correctness. But these do not guarantee correctness at runtime.

NASA is supporting research into runtime monitoring, where a system is
observed in operation by a monitor to check conformance to safety-
properties. A monitor must be simpler than the software monitored.

Research Challenge
Runtime monitoring for general-purpose software in high-level languages
(e g Ja a) is a mat re field We are researching ho to adapt r ntime

Code Synthesis
A correct-by-construction approach generates low-level C code from high-
level models. Commercial code-generators like Simulink/Stateflow and
SCADE can generate embedded C from high-level models, but they are
l d t t ibl

. . .atom stop $ do
cond $ value a ==. value b
running <== false

Credit: Tom Hawkins.

(e.g., Java) is a mature field. We are researching how to adapt runtime
monitoring to safety-critical GN&C software with the named
characteristics.

A fundamental challenge our research addresses is compositionality: how
do monitors and the observed software interact?

Functionality: monitors must not change the functionality of the
observed system, unless it violates its specification.
Schedulability/Time: monitors must execute in constant time and not
interfere with the timing properties of the observed program.
Reliability: the reliability of the monitor + observed system is greater

l h li bili f h b d l

closed-source so are not extensible.

Customized Code Generation
Atom is an extensible, open-source, domain-specific library for the Haskell
functional programming language. The library rewrites an Atom/Haskell
program to embedded C source files. Eaton, Ltd. has used Atom to
synthesize control systems for commercial vehicles. Atom-synthesized C is
guaranteed to have deterministic memory usage and timing. Atom is not a
new compiler so can reuse all of the language infrastructure provided by
Haskell---thus, we get cheap, customized, embedded code generation!

Copilot
Copilot synthesizes monitors for
safety-critical GN&C software.
Copilot is built on top of Atom
and is an extensible, open-
source set of libraries for
specifying and synthesizing

or equal to the reliability of the observed system alone.
Certification: Monitors should require very few---if any---
modifications to the source code of the observed programs.

Synthesizing monitors
Our approach is to automatically synthesize monitors from high-level
specifications. The inputs are

A set of state variables to observe.

g p g

Inputs [Haskell]

Schedule

State variables
to observe

Distribution
configuration

Safety
properties

p y g y g
monitors, without requiring the
development of a new languages
or compiler infrastructure.

A set of monitor variables acting as “history variables” for
observed state variables.
A schedule for (1) when to observe state variables and (2) when to
check in variants.
A distribution configuration describing how monitors should be
distributed or centralized.

The output is an embedded C source files meeting the constraints. In a
distributed mode, a set of C source files are generated. The monitors
themselves are also hard real-time and execute in constant memory. Outputs [C]

Property
check [C]

Monitor
update [C]

…

Copilot
[Atom/Haskell]

Further Reading
1. Alwyn Goodloe and Lee Pike. Monitoring distributed real-time systems: a survey and future directions. To be published as a NASA Contractor Report.
2. Lee Pike, Geoffrey M. Brown, and Alwyn Goodloe. Roll your own test bed for embedded real-time protocols: a Haskell experience.

In the Haskell Symposium, 2009.
3. Alwyn Goodloe and Lee Pike. Toward monitoring fault-tolerant embedded systems (extended abstract). In the International Workshop on Software Health

Management (SHM'09), 2009.

