Monitoring Distributed Hard Real-Time Systems

Lee Pike Alwyn Goodloe
a lo -l S Galois, Inc. National Institute of Aerospace
g leepike@galois.com Alwyn.Goodloe@nianet.org

This research is supported by NASA Contract NNLOBAD13T from the Aviation Safety Program Office. Dr. Ben Di Vito of NASA Langley advises this research.

Can we make safety-critical embedded systems Atom/Haskell specification Synthesized embedded C code
ultra-reliable? ged:: Atom O ce
: ged = do
. -- Ext 1 e b 1 A. /2 le. i b */
Modern aircraft and manned spacecraft rely on complex embedded el stai)i(;msoidaf:‘(n)?\slaid) {
software for guidance, navigation, and control (GN&C). Software failures - Bdernal referenice to value B unstgned long e 0 - O
. - b <- word32 b’ unsigned long int 1 = a;
can lead to the loss of the vehicle and human life. unsigned char _ 2 = 0 < _ 1;
L. . - Tf_\e external running flag. unsigned long int gt o0 00
Characteristics of safety-critical GN&C software: running <- bool* “running” uns-gnjd longint _4= 2?2 3: 1
. . as=_4;
= Distributed and redundant (for fault-tolerance) -- A rule to modify A. }
. . . atom "a_minus_b" $ do
- Hard real'tlme (I-e-| constant time usage) cond $ value a >. value b void example(void) {
i i i a <== value a - value b if (_clock % 1 ==0) {
= Constant memory usage (i.e., no dynamic memory allocation) W0/ empts s winis b~
-- A rule to modify B. _riQ; /* example.b_minus_a */
- (Usually) C source code atom "b_minus_a" $ do _r2Q; /* example.stop */
Eond $ V?Iuebb = \I/alue a }
<== value - value a
_clock = _clock + 1;
R t t 4 -- A rule to clear the running flag.
untime monitorin aton “stop” $ do ce
g cond_$ value a ==. value b . 4
Safety-critical software is rigorously designed using regimented coding funning === false

standards, testing standards, and formal methods to increase confidence
in its correctness. But these do not guarantee correctness at runtime. Credit: Tom Hawkins.

NASA is supporting research into runtime monitoring, where a system is
observed in operation by a monitor to check conformance to safety-
properties. A monitor must be simpler than the software monitored. Code Synthesis

A correct-by-construction approach generates low-level C code from high-

Research Challenge level models. Commercial code-generators like Simulink/Stateflow an

Runtime mc_)nitoring for_general—purpose softv_vare in high-level Ian_guages SCADE can generate embedded C from high-level models, but they are
(e.g., Java) is a mature field. We are researching how to adapt runtime closed-source so are not extensible.
monitoring to safety-critical GN&C software with the named
characteristics. Customized Code Generation
A fundamental challenge our research addresses is compositionality: how Atom is an extensible, open-source, domain-specific library for the Haskell
do monitors and the observed software interact? o functional programming language. The library rewrites an Atom/Haskell
= Functionality: monitors must not change the functionality of the program to embedded C source files. Eaton, Ltd. has used Atom to
observed system, unless it violates its specification.) synthesize control systems for commercial vehicles. Atom-synthesized C is
= Schedulability/Time: monitors must execute in constant time and not guaranteed to have deterministic memory usage and timing. Atom is not a
interfere with the timing properties of the observed program. new compiler so can reuse all of the language infrastructure provided by
- Rellablllty: the rellablllty of the monitor + observed system Is greater Haskell---thus, we get Cheap’ customized, embedded code generation!
or equal to the reliability of the observed system alone.
= Certification: Monitors should require very few---if any--- Inputs [Haskell]
modifications to the source code of the observed programs. C 0 | |Ot
p . . Safety
Copilot synthesizes monitors for Schedule properties
o]) safety-critical GN&C software. | =
SyntheSIng monitors Copilot is built on top of Atom Distribution State variables
Our approach is to automatically synthesize monitors from high-level and is an extensible, open- configuration to observe
specifications. The inputs are source set of libraries for |
= Asetof state_ varlablnes to obse_rve. _ _ specifying and synthesizing —
= Aset of monitor variables acting as “history variables” for monitors, without requiring the
L] (fzi::gusl?tfz:/ ?Il)a\tl)vlf?:ﬁ to observe state variables and (2) when to development of a new languages COleOt
-) ileri Atom/Haskell
check in variants. or compiler infrastructure. [Atom/Haskell]

= Adistribution configuration describing how monitors should be

distributed or centralized. -
. . . . Monitor Property
The output is an embedded C source files meeting the constraints. Ina update[c] | """ check [C]
distributed mode, a set of C source files are generated. The monitors o
themselves are also hard real-time and execute in constant memory. outputs [C]

Further Reading

1. Alwyn Goodloe and Lee Pike. Monitoring distributed real-time systems: a survey and future directions. To be published as a NASA Contractor Report.

2. Lee Pike, Geoffrey M. Brown, and Alwyn Goodloe. Roll your own test bed for embedded real-time protocols: a Haskell experience.
In the Haskell Symposium, 20009.

3. Alwyn Goodloe and Lee Pike. Toward monitoring fault-tolerant embedded systems (extended abstract). In the International Workshop on Software Health
Management (SHM'09), 2009.

