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Abstract. We describe an approach to control-flow integrity protec-
tion for real-time systems. We present TrackOS , a security-aware real-
time operating system. TrackOS checks a task’s control stack against a
statically-generated call graph, generated by an abstract interpretation-
based tool that requires no source code. The monitoring is done from a
dedicated task, the schedule of which is controlled by the real-time oper-
ating system scheduler. Finally, we implement a version of software-based
attestation (SWATT) to ensure program-data integrity to strengthen our
control-flow integrity checks. We demonstrate the feasibility of our ap-
proach by monitoring an open source autopilot in flight.

1 Introduction

Cyber-physical systems are becoming more pervasive and autonomous without
an associated increase in security. For example, recent work demonstrates how
easy it is to gain access to and subvert the software of a modern automobile [5]. In
this paper, we focus on software integrity attacks aimed at modifying a program’s
control flow. Traditional methods for launching software integrity attacks include
code injection and return-to-libc attacks.

Control-flow attacks are well known, and protections like canaries [6,11] and
address-space layout randomization [22] have been developed to thwart them.
However, for each of these protections, researchers have shown ways to circum-
vent them, using techniques such as return-oriented programming [5].

More recently, control-flow integrity (CFI), originally developed by Abadi et al. [1],
is more difficult to exploit. CFI implements run-time checks to ensure that a
program respects its statically-built control-flow graph. If the control stack is
invalid, then some other program is being executed; modulo false positives, it is
a program resulting from a malicious attack.

Consequently, the CFI approach to security has been favored recently as
the way forward in protecting program integrity. For example, Checkoway et al.
demonstrate how to execute return-to-libc attacks without modifying return
addresses [4]. In reference to traditional kinds of defenses, the authors write:

What we show in this paper is that these defenses would not be worth-
while even if implemented in hardware. Resources would instead be bet-
ter spent deploying a comprehensive solution, such as CFI.
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The traditional technique for implementing CFI requires program instrumen-
tation (the instrumentation can be done at various levels of abstraction, from
the source to the binary). Instrumentation is not suitable for critical hard real-
time systems code for at least two reasons. First, instrumentation fundamentally
changes the timing characteristics of the program. Not only can instrumentation
introduce delay, but it can introduce jitter: CFI checks are control-flow depen-
dent. Second, safety-critical or security critical systems are often certified, and
instrumenting application code with CFI checks may require recertification. Our
approach allows real-time CFI without instrumenting application code.

The question we answer in this paper is how to provide CFI protections
for critical embedded software. Our answer is a CFI-aware real-time operating
system (RTOS) called TrackOS .

Fig. 1. TrackOS RTOS integration.

TrackOS has built in support for performing CFI checks over its tasks, as
processes on an RTOS are generally known. TrackOS tasks do not require any
special instrumentation or runtime modifications to be checked. TrackOS over-
comes the delay and jitter issues associated with CFI program instrumentation:
rather than instrumenting a program, CFI checks are performed by a separate
monitor task as shown in Figure 1. This task is responsible for performing CFI
checks on other untrusted tasks. The monitor task is scheduled by the RTOS,
just like any other task. However, the task is privileged by the RTOS and is
allowed access to other tasks’ memory (this is why we show the task overlapped
with the RTOS in Figure 1).

An insight of TrackOS is that RTOS design already addresses the problem of
real-time scheduling, and CFI monitoring in a real-time setting is just an instance
of the task scheduling problem. Furthermore, as an instance of the real-time
task scheduling problem, the user has the freedom to decide how to temporally
integrate CFI into the overall system design, given the timing constraints. For
example, a developer could decide to make CFI monitoring a high-priority task
if there is sufficient slack in the schedule or instead monitor intermittently as
the schedule allows.



Summary of Contributions

1. Static analysis: Before execution, we analyze a task’s executable to generate
a call graph that is stored in non-volatile memory (program memory). We
implement a lightweight static analysis that is able to analyze a 200KB
machine image (compiled from an approx. 10kloc autopilot) and generate a
call graph in just over 10 seconds on a modern laptop.

2. Control-flow integrity : At runtime, a monitor task traverses the observed
task’s control stack from the top of the stack, containing the most recent
return addresses, to the bottom of the stack. The control stack is compared
against the static call graph stored in memory. In our approach, we do not
assume frame pointers, so the analysis must parse the stack. We make op-
timizations to ensure checks have very low-overhead. Most importantly, the
overhead is completely controllable by the user using the RTOS’s scheduler,
just like any other task.
This approach implements callstack monitoring rather than just checking
well-formedness of function pointers, like many rootkit dectection mecha-
nisms [12, 15, 16]. The approach supports concurrency (i.e., multiple tasks
can be monitored simultaneously).

3. Program-data integrity : Our CFI approach is only valid as long as it is exe-
cuting. An attacker that can reflash a microcontroller can simply overwrite
TrackOS and any of its tasks. Consequently, we need a check that the pro-
gram memory has not been modified. We implement a software-based attes-
tation framework to provide evidence to this effect. The framework is not
novel to us; we borrow the SoftWare-based ATTestation (SWATT) approach
tailored to attestation in embedded systems [20]. Our full implementation
therefore answers a challenge by the authors of SWATT, in which they note
that “software-based attestation was primarily designed to achieve code in-
tegrity, but not control-flow integrity” [14]. As far as we know, this is the
first integration of software-based program-data integrity attestation with
control-flow integrity; de Clercq et al. previously combine CFI and data in-
tegrity relying on hardware support [7].

Assumptions and Constraints Regarding system assumptions, while not funda-
mental to our approach, we assume execution on a Harvard or modified Harvard
architecture in which the program and data are stored in separate memories
(e.g., Flash and SRAM, respectively). Return-oriented programming is still fea-
sible on a Harvard architecture [9]. We do not assume the hardware supports
virtual memory or provides read-write memory protections. We do not assume
that programs have debugging symbols. We also do not assume the existence of
frame pointers.

We assume the attacker does not have physical access to the hardware. How-
ever, she may have perfect knowledge of the software including exploitable vul-
nerabilities in the software, including the bootloader. She may have unlimited
network access to the controller. We assume that the microcontroller’s fuses al-
low all memory, including program memory, to be written to. Furthermore, any
control-flow transfer technique is in-scope by the attacker.



2 Static Analysis

TrackOS compares the control stack against a statically-generated call graph of
each monitored task. The call graphs are generated via binary static analysis tool
called StackApprox ; no sources or debugging symbols are required. StackApprox
currently targets AVR binaries.

StackApprox is similar in spirit to a tool developed by Regehr et al. [17],
although the use cases are different. In Regehr’s case, the focus is on statically
determining control-stack bounds, whereas our primary use case is to generate
representations of call graphs as C code, although StackApprox approximates
stack sizes, too. StackApprox uses standard abstraction interpretation techniques
to efficiently generate a call graph; for the sake of space, we elide details about
the tool’s design and implementation.

Like in Regehr et al. [17], StackApprox analyzes direct jumps automatically
but requires the user to explicitly itemize indirect jumps. Doing so ensures that
all indirect jumps are specified and not the result of unintended or undefined
(with respect to C source semantics) behavior. Moreover, large number of indi-
rect jumps are not common in hard real-time systems (we itemized 30 targets
for a 10K LOC autopilot, including interrupts).

For the purposes of CFI checking, we generate four tables or maps from the
generated call graph. Only values for functions reachable from the start address
are generated. Typically, the start address is the entry point for an RTOS task.

– Loop map: A mapping from return addresses to callers’ return addresses
associated with their call-sites.

– Top map: A mapping from call-targets (usually the start of a function defini-
tion) to the set of return addresses associated with the functions’ call-sites.

– Local stack usage map: A mapping from call-targets to the maximum number
of data bytes pushed on the stack, not including callees’ stack usage.

– Contiguous region map: Pairs representing the start and stop address that
define a contiguous region.

Our build system calls StackApprox , which generates C sources containing
the four maps, and then integrates the generated C files into the build automat-
ically. The basis of TrackOS , FreeRTOS (see Section 3), like many embedded
RTOSes, statically links the operating system and its tasks. Consequently, there
is a circular-dependency problem: because the call-graph data is statically linked
into the program, it is needed to build the program, but the program binary must
be available to generate the call-graph data. Our solution is to split compilation
into two rounds. First, we generate dummy call-graph data that contains empty
structures but provide the necessary definitions for building an ELF file. This
ELF is then analyzed to extract the actual call-graph data, which is linked with
the target program to produce the final ELF file.

Note that this approach requires that the call-graph data be located after
the program it is linked with (i.e., the .text segment) to ensure the addresses
are not modified by populating the call-graph data.



3 TrackOS Architecture

Before describing the CFI monitoring algorithm in the following section, we high-
light here the aspects of integrating the CFI checker with the RTOS, including
the definition of task control blocks, context switching, and finally, a scheduler
addition we call restartable tasks. Our prototype of TrackOS is a derivative of
FreeRTOS, an open source commercially-available RTOS written in C and avail-
able for major embedded architectures.3

Fig. 2. Stack layout for a swapped out task. The saved context is on the top,
target stack points to the beginning of the saved control stack, and a fixed address,
0x456, marks the bottom.

TrackOS Task Control Blocks TrackOS extends FreeRTOS’s task control blocks
with the following additional state:

1. Stack location: a pointer to the portion of a stack that comes after its saved
context is added to the TCB. When a task has been swapped out by the
scheduler, its control stack will first contain its saved context (i.e., its saved
registers and a pointer to its task control block). The saved context is a fixed
size. On the top of the stack is the task’s saved context; on the bottom of the
stack is a return address to the task’s initialization function. A hypothetical
task control stack is shown in Figure 2.

2. Timing : timing variables are used to track the timing behavior of the ob-
served task to provide TrackOS with the duration the task has executed in
its most recent time slice. This can be used, for example, to control when
stack checking is run (e.g., it might be delayed until after initialization) or
even to have time-dependent stack-checking properties (e.g., “after 500ms of
execution, function f() should not appear on the stack”).

3. Restarting : “restarting” variables allow the CFI task to be restarted as nec-
essary; we explain the concept in Section 4.2. To do this, we save a code
pointer to the CFI intialization code and its initial parameters as well as a
pointer to a shared “restart mutex” with the observed task.

3 http://www.freertos.org/



Context Switching In Figure 3 (top right), we show FreeRTOS’s context switch-
ing routine (ported to the AVR architecture), together with the extensions neces-
sary for TrackOS . This routine is used to swap the context of all tasks (including
the monitoring task), whether they are checked or not by the monitor task, and
it may be called from the timer interrupt during preemption or explicitly by a
task during a cooperative yield (interrupts are disabled when vPortYield() is
called). After saving a task’s context, TrackOS updates its pointer to the top of
the stack, after the saved context. Additionally, it saves the execution time of
the saved task. After scheduling a new task in (Line 10), all that has to be done
is record the execution start time for the newly-scheduled task.

m

4 Control-Flow Integrity

In this section, we overview the control-flow integrity algorithm implemented in
TrackOS , which is the heart of the approach. We begin by describing the basic
algorithm in Section 4.1, then we describe two extensions to basic real-time stack
checking in Section 4.2.

4.1 Basic Algorithm

The CFI algorithm described below is the heart of TrackOS . There are two main
procedures: first, we find the top return address in the stack, resulting from an
interrupt or an explicit yield by the task. Second, once a valid return address is
found, it serves as an “entry point” to the rest of the control stack. The second
procedure walks the control stack, moving from stack frame to stack frame.

We describe each procedure in turn. Pseudo-code representations of the two
procedures are in Figure 3. For readability, we elide details from the implementa-
tion, including hooks for performing restartable checks (see Section 4.2), helper
functions (e.g., binary search), memory manipulations, type conversions, error
codes, special-cases to deal with hardware idiosyncrasies, and other integrated
stack checks for aberrant conditions. In addition, for the sake of readability, util-
ity functions in pseudo-code listings that are underlined are described in the text
without being defined.

In the following, we assume the maps generated by the StackApprox static
analysis tool are available to the CFI checker. We do not assume that frame
pointers are present, so the stack must be parsed by the CFI algorithm to dis-
tinguish data bytes from return addresses.

Yield Address Algorithm While a task is in the task queue waiting to be
executed, its context is saved on its control stack. The CFI checker’s entry point
is just after the saved context, pointed to by the target stack variable. (The
stack t type is the size of stack elements, which are one byte in our implemen-
tation.)



0 void check stack(stack t ∗target stack) {
current = target stack;

// Preemptive yield
if (preemptive yield ret(current)) {

5 current = preemptive stack(current);
stack loop(current);
}
// Cooperative yield
else if ( coop yield ret (current)) {

10 stack loop(current);
}
// Cooperative yield from an ISR
else if ( search ret isrs (current) {

current++;
15 current = preemptive stack(current);

stack loop(current);
}
else { error (); }
}

20
// Check a preemptive function
void preemptive stack(stack t ∗current) {

current++;
func = find current func(current);

25 if (interrupt in main(func, current))
done(SUCCESS);

else
return find caller ret (func, current);

}

0 void vPortYield( void ) {
portSAVE CONTEXT();

#ifdef TRACKOS
pxCurrentTCB−>pxStoredStack =

5 pxCurrentTCB−>pxTopOfStack
+ portSP TO RET ADDR;

saveTime();
#endif

10 vTaskSwitchContext();

#ifdef TRACKOS
newStartTime();

#endif
15

portRESTORE CONTEXT();
asm volatile ( ‘‘ ret ’ ’ );

}

——————————–

0 void stack loop(stack t ∗current) {
while(!(inside main(current)) {

stack t ∗ valid rets =
lookup valid rets (current);

if (NULL == valid rets) { error(); }
5 else {

current =
loop find next(current, valid rets );

if (NULL == current) { error(); }
}

10 }
if (at stack end(current)) {

done(SUCCESS);
}
else error ();

15 }

Fig. 3. Left: CFI procedure to discover the task’s yield location. Top right: Context
switch in TrackOS . Bottom right: TrackOS CFI procedure to walk the stack.

The entry point to the stack checker algorithm is check stack(), shown
in Figure 3, left. The invariant that holds after calling check stack() is that
either the check has been aborted due to an error, or the function returns a stack
pointer to the first proper stack frame on the stack (pointing to the frame’s return
address). check stack() is executed within a critical section, ensuring that the
CFI checker, whenever it executes, always checks that the current location of
the observed task’s execution is valid.

There are three cases to consider at the entry point of the stack: a preemptive
yield, a cooperative yield, and a cooperative yield from an interrupt service
routine. These cases correspond to the three cases in the body of check stack()

in Figure 3, left.

Preemptive Yield In this case, the RTOS scheduler preempts the task via a timer
interrupt. Inside the interrupt service routine (ISR), there is a call to a function



that performs a preemptive context switch; if this is a preemptive yield, the top
of the stack should contain the return address inside the ISR from that function.
(The return address is found by StackApprox at compile time.) The function
preemptive yield ret() performs this check.

In the case of a preemptive yield, we call preemptive stack() (Line 22
in Figure 3, left). In that function, we first increment the stack pointer: the
next value on the stack following the return address inside the timer ISR is
the interrupt address for the task. The function find current func() takes an
arbitrary address and searches through a map containing the address ranges of
reachable functions generated by StackApprox . If a function that contains the
interrupt address cannot be found, the procedure returns an error. Assuming a
reachable function is found, interrupt in main() checks that the function is
not the initialization function for the task. If it is the initialization function, then
there are no further stack frames to check, since no function calls have occurred.
(Additionally, the function checks that the distance to the bottom of the stack
is less than the maximum number of data bytes the task’s initialization function
pushes onto the stack.) The CFI checker completes successfully (done(SUCCESS).

If there are additional stack frames to check, from the interrupted function,
the algorithm searches for the first return address on the stack. find caller ret()

finds on the stack a return address for some caller of func. Using StackApprox ’s
top map (see Section 2), find caller ret() finds the set of return addresses
associated with the call-sites for func; we determine the maximum stack us-
age for func that is also generated by StackApprox ; call this value max. Then,
find caller ret() searches for a return address appearing in the top map that
is no more than max bytes from the current location in the stack, which are
assumed to be data bytes. If a match is found, it is returned. At this point, we
have found a return address on the stack belonging to the monitored task, and
we are ready to enter the stack loop() function in Figure 3, bottom right.

find caller ret() is a heuristic for finding a valid return address. It is
possible for a data byte to have the same value as a valid return address. If by
malicious behavior, then the attacker may be able to cause the CFI algorithm
to trace data bytes as return addresses, but these data bytes would still have to
conform to StackApprox ’s static call-graph.

Cooperative Yield In a cooperative yield, the target task has yielded to the
RTOS scheduler by directly making a yield() system call, which the function
coop yield ret() expects to find on the top of the stack. We increment the
stack pointer and call stack loop().

Cooperative Yield From an ISR This is a case in which the target task is pre-
empted by an ISR, and then that ISR directly yields to the scheduler. We assume
ISRs mask interrupts, so while an ISR should not be preempted, it can yield di-
rectly. Also, we assume an ISR only calls yield() just before returning, after all
its local data has been popped from the stack. For each ISR that can preempt the
target task, StackApprox generates a lookup table mapping ISRs to the return
addresses for their calls to yield(). The function search ret isrs() searches



for a match between the top of the stack and a return address from the ISR
tables.

If a match is found, then after incrementing the stack pointer (Line 14), we
can treat the stack the same as in the preemptive case in which we handle an
interrupt to a task.

The Stack Loop Algorithm At the entry to stack loop() in Figure 3, bot-
tom right, current points to a known return address on the stack. stack loop()

“walks down” the stack in its main loop (Lines 1-10), from stack frame to stack
frame.

The motivation for checking the stack in the reverse order of calls is to deter-
mine if the current location of the program is in an unexpected program location.
Unexpected return addresses further down the stack represent latent vulnerabil-
ities in which the program may return to an unallowed program location as it
pops return addresses off of its stack.

The algorithm breaks out of the loop when it reaches a return address for the
entry point to the task, relying on the convention that the task entry has exactly
one caller, checked by inside main(). Once outside the main loop, there is a
final check by at stack end() that return address of the task’s main() function
is indeed the last return address on the stack and that there are exactly the
number of data bytes between the bottom of the stack and the first call by
main().

Inside the loop, for each return address ret pointed to by current, the
function lookup valid rets() looks up the set of return addresses of calls to the
function func containing ret based on the loop map generated by StackApprox .
If there are known callers of func found, then loop find next() searches the
stack for another valid return address for a call to func. For each return address
ret’, loop find next() depends on knowing the number of data bytes to be
expected on the stack between ret’ and ret, which is provided by StackApprox .

4.2 Extensions

Below we describe three extensions to the basic algorithm described above.

Restartable Monitoring The monitor task as it has been described is not reen-
trant. If it is swapped out by the RTOS scheduler while checking task A’s stack,
and task A then executes, its stack changes. When the monitor is swapped back
in, the control stack it was previously checking is stale. Thus, we have designed
the monitor task so that it is restarted when it is swapped in by the scheduler,
meaning that its state is automatically reinitialized to its initial state when it
is scheduled; in particular, the monitor restarts checking an observed task from
the top of the stack.

The portion of the algorithm to determine a task’s yield location and discover
the first return address (Figure 3, left) on the stack is executed inside of a critical
section in which interrupts are disabled. Thus, each time the CFI task is enabled



by the RTOS, it is guaranteed to at least perform the initial checks on the stack.
This initial check is small and the execution time is fairly constant, requiring
just a few thousand clock cycles in our experiments. The motivation is to ensure
that if the CFI monitor is scheduled, it is not prevented from checking that the
current control location is valid. While the algorithm could allow this portion
to also be interruptable, it provides the attacker with the opportunity to starve
the monitor.

Blacklisting Sometimes, a code block might be reachable in a statically-generated
call graph, but under nominal conditions, it should not appear on a tasks’s con-
trol stack. For example, after startup, initialization code should not be executed.
Similarly, error-handling code should not be executed under normal conditions.
While this code cannot be eliminated from the program, it represents a secu-
rity risk similar to libc insofar as it contains additional instructions for use in
return-oriented attacks [18].

Consequently, we extend the CFI algorithm with a blacklisting capability. The
user specifies at compile time a list of code blocks that can be called (usually
these are function entry addresses), and StackApprox generates an array of all
return addresses for callers of those blocks. The array is stored in non-volatile
memory as well. Then during the execution of the CFI algorithm, for each return
address found on the control stack, the algorithm makes an additional check to
see whether the return address appears in the blacklist array. If it is found, then
a blacklisting error is returned.

Timing Analysis Finally, a task’s control block contains hooks to keep track of
a task’s total execution time. This allows the programmer greater flexibility to
determine when checks should occur with respect to a task’s total execution time
or to state control-flow properties in terms of timing behavior.

4.3 Implementation

The implementation of the CFI algorithm requires around 150 lines of code
(LOC) of extensions to the RTOS, together with the implementation of a CFI
monitoring task. The CFI monitor task is a privileged task, with access to the
state of other tasks (and in particular, their control stack memory). Its imple-
mentation is approximately 500LOC. The monitoring task can be assigned any
schedule priority level; of course, this will affect the frequency of the CFI checks.

Compiled, our implementation of the CFI task requires approximately 2000
bytes of program memory. The call-graph is stored in a special section after
the .text segment so that instruction addresses do not change when by linking
call-graph data (i.e., by “pushing” program instruction addresses down), thereby
rendering the analysis on the original program useless. The size of the call graph
and TCB pointers are hard-coded into the task. CFI tasks are cheap; in our
implementation, adding an additional CFI task adds only 28 additional bytes
to the text segment of the resulting ELF file and requires only 200-250 bytes of
stack space, as noted above.



Most importantly, this approach does not require any modifications to the
CFI monitoring algorithm and we can simply use the RTOS scheduler to schedule
the individual CFI monitors.

5 Program-Data Integrity

As TrackOS currently targets the Harvard architecture AVR processor, it gains
some measure of program protection through the separation of program and data
memory spaces; typically, the program memory is flashed once at programming
time, and used as read-only memory during its execution. However, assuming
a bootloader is installed, the bootloader can write to program memory during
execution. Francillon et al. demonstrate how to install malware on a Harvard
architecture by exploiting the bootloader to write malicious code into program
memory during execution [9]. This sort of attack can be used to simply overwrite
the CFI monitor or even the entire RTOS! Even more problematic is that for
embedded RTOSes on small microcontrollers, there is no memory isolation be-
tween the tasks and the RTOS itself. So a malicious task can potentially modify
OS code. Consequently, for increased security, control-flow checking should be
augmented by a data attestation approach.

The problem of remote attestation of low-cost embedded devices is addressed
in both Secure Code Update By Attestation (SCUBA) [19], and SoftWare-based
ATTestation (SWATT) SWATT [20]. SCUBA strives to provide a safe execution
environment for a firmware update, while SWATT attempts to establish the state
of a remote system. For our implementation of the remote-verification checksum
function, we have drawn from both SWATT and SCUBA. From SWATT, we
have taken the idea of verifying the entire program, and from SCUBA we have
taken the implementation of a high-performance checksum function.

The checksum function itself is implemented as a simpler version of the ICE
primitive from SCUBA [19] that omits the program counter and status register
from the hash to simplify the implementation.

The advantage of software-based attestation (SBA) is that it requires no
new hardware, which is particularly important in embedded systems with size,
weight, and power constraints. SBA was thought to be impractical until the
publications of SWATT and its successors, such as SCUBA. While there are
shortcomings, e.g., [3], it is a comprehensive approach to ensuring data-integrity
without requiring additional or modified hardware.

6 Experimental Results

In our work, the runtime overhead that is typically introduced by CFI is col-
lected into a single RTOS task that can be scheduled at a user-defined priority,
and system scheduability analysis is no different than if a new user task were
introduced into the system. Because the system is general and highly-dependent
on user configuration, general benchmarking is not particularly informative.



Still, to show the feasibility of our approach, we describe a case-study in
which we use TrackOS to detect instrumented latent software vulnerabilities in
ArduPilot, a popular open source autopilot [2]. ArduPilot is a full-featured au-
topilot that executes (at the time of the experiments) on an 8-bit ATMega2560
AVR microcontroller running at 16MHz with 256KB of flash, and 8KB of SRAM.
A custom board has been designed for the autopilot that contains sensors includ-
ing GPS, an accelerometer, gyroscope, and a barometer and sonar to determine
altitude. The ArduPilot can be used with fixed-wing and multi-rotor aircraft. It
provides stabilization, GPS-guided waypoint navigation, autoland, position loi-
tering, and communication with a ground station over a Zigbee protocol-enabled
radio transmitter.

Fig. 4. Top: Attack launch configuration. Bottom: Ported ArduPilot architecture on
TrackOS .

Architecture The ArduPilot code base is just under 10K LOC of C/C++, not
including standard libraries. The ArduPilot runs “bare” on the AVR hardware.
Consequently, we ported it to run as a set of tasks on TrackOS . Its architecture
is shown in Figure 4. The infrastructure is decomposed into the following tasks:

– The CFI checker, integrated with TrackOS .
– A “slow loop” that reads GPS data, updates navigation information, updates

altitude and throttle data.
– A “fast loop” that reads the pilot’s radio controller, updates attitude, and

writes to the servos.



– Another “fast loop” reading SPI-bus devices, the gyroscope and barometer.
– A program-data integrity task that responds SWATT challenges sent to it

over a SPI bus interface.
– Finally, a recovery task. The recovery task only implements throttle control

from the radio controller and is enabled if TrackOS detects malicious be-
havior. This task is not enabled until an attack is detected, at which point
the slow loop task is disabled (the micro-controller does not have enough
memory to support both tasks simultaneously). Thus, the recovery task is
shown in the figure as a dashed component.

The CFI checker runs at priority 2, the slow loop runs at priority 1, the fast loops
and recovery tasks run at priority 3, the highest priority, and the program-data
integrity task runs at priority 1.

The SWATT server is implemented on an ARM Cortex M3, clocked at
60MHz. The server has 4MB of external flash memory, with a 50MB/second
interface to the memory over a SPI bus.

We manually annotate just under 30 indirect jumps, including the interrupt
vector table.

In our experiments, we implemented two kinds of attacks. First, we imple-
ment a buffer overflow vulnerability in which an array is allocated on the stack
allowing an attacker to overwrite bytes out-of-bounds. Overwriting a return ad-
dress, the attack jumps to a function that is unreachable without modifying the
control flow. Second, we implement a blacklist attack in which we instrument the
code with a function that is supposed to be unreachable during stack checking
(e.g., the function could be part of a start-up or an error-handling routine).

The experiment setup is shown in Figure 4. The attacks are launched from
a ground station (i.e., a laptop) communicating with the autopilot over the
MAVLink protocol4. When an attack is detected on board, the recovery task
begins, which ignores all radio signals except to reduce thrust to land the craft.

Even though we have scheduled the CFI checker to run at a lower prior-
ity than the fast loop, it detects the buffer overflow and blacklisting attacks
we instrument. (Indeed, on the Atmega2560, the fast loop must be the highest
priority to be schedulable.) Our work shows that CFI checking can happen inter-
mittently and still discover control flow vulnerabilities. To evade detection, an
attacker must either (1) exploit a vulnerability, perform an attack, and cleanup
before the scheduler swaps the task out; or (2) starve the CFI monitor task
indefinitely.

7 Related Work

Research in run-time control-flow protections for embedded software is nascent.
In particular, there are few approaches that take into consideration the real-time
and memory constraints present in embedded control systems. In the following,

4 http://qgroundcontrol.org/mavlink/start



we focus specifically on the dynamic monitoring approaches. We omit related re-
search in static analysis and software-based attestation; while TrackOS depends
on them, we did not make novel research contributions there.

As noted in the introduction, work by Abadi et al. [1] addresses many of the
shortcomings with earlier protection approaches. An approach that is similar in
spirit to our is work by Petroni and Hicks for monitoring control-flow attacks to
detect Linux kernel rootkits [15]. Their work is inspired by CFI checks as describe
by Abadi et al. but addresses environments in which some of the assumptions
made by Abadi et al. do not hold. Petroni and Hicks also periodically monitor
the OS to reduce the timing overhead; in their case monitoring is done from
a separate virtual machine hosted by a hypervisor. They focus specifically on
rootkit attacks; empirically, many Linux rootkits work by modifying function
pointers found in the heap. Therefore, they do not check stack-based software
attacks like we do. Furthermore, their work is not focused on real-time systems.
Hofmann et al. take a similar approach to Petroni and Hicks, also looking to
detect kernel rootkits [12] in Linux. Hofmann et al. do consider stack-based
attacks by checking return addresses on the stack for property violations (i.e.,
that they point to valid kernel code regions). Their approach is not suitable for
checking general return-to-libc attacks, like ours is. Note though that generating
a call graph for something as complex as the Linux kernel is much more difficult
than traditional embedded code given the prevalent use of heap-based function
pointers, dynamic linking, and sheer complexity.

Two works combine CFI and data integrity checks, like ours. These include
de Clercq et al. [7] and Zeng et al. [23], using hardware support and sandboxing,
respectively.

With respect to CFI in embedded systems, Francillon et al. propose hard-
ware extensions that support a distinguished control stack and data stack [10],
and corresponding instruction-based memory access control. They implement a
prototype hardware simulator. While hardware support like they envision sim-
plifies the control-flow security problem, our approach works with conventional,
unmodified hardware. Reeves et al. present Autoscopy, an in-kernel tool for de-
tecting CFI violations targeted at SCADA systems [16]. Autoscopy has a five
percent overhead. Their approach differs from ours insofar as we do not assume
reliance on an advanced operating system mechanism, which is not available in
small embedded RTOSes. Furthermore, Autoscopy learns a call graph by exe-
cuting the system during a learning phase, an approach that can lead to false
positives if any control paths are missed. Like the rootkit-specific approaches
already described, Autoscopy focuses specifically on function-pointer hijacking
rather than arbitrary CFI violations.

8 Conclusions and Future Work

We have described TrackOS , a unique implementation of CFI monitoring tar-
geted at real-time embedded systems. Our research demonstrates the feasibility
of CFI monitoring for low-level systems, relying on the operating system to han-



dle scheduling, making the approach suitable even in hard real-time systems.
Many research opportunities remain in the area of CFI checking for embedded
systems; below, we describe research questions specifically left open in our work.

We have not addressed the resteering problem. One framework for resteer-
ing is the Simplex architecture, originally designed to increase the reliability of
complex control systems by providing a safe and simple fallback controller [21].
Mohan et al. show how to adapt the Simplex architecture for control-flow at-
tacks. The idea is to monitor with high fidelity the execution time of a control
system, with the idea that deviations from the expected execution time are the
result of malicious behavior [13]. The approach relies on having accurate timing
bounds on normal execution. Our approach does not require timing analysis of
the monitored task.

Our use of data attestation is partly because we there is no memory isolation
between the RTOS and the tasks executing on it. On a microcontroller and
kernel supporing virtual memory, this is less problematic.

With a control-flow graph and timing information available to a dynamic
monitor, high-level properties can be checked at run-time. For example, temporal
logic analyses might be written about control flow, which can be useful for both
testing as well as run-time protections of the system. For example, we might
query that an authentication routine always follows updated waypoints being
read from a ground station over the radio. One of the authors discusses other
potential temporal logic properties in related work [8].
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1. Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow in-
tegrity principles, implementations, and applications. ACM Transactions on In-
formation System Security, 13(1):1–40, 2009.

2. Source code available at http://code.google.com/p/ardupilot-mega/. Retrieved
December, 2012.
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