
SmartCheck: Automatic and Efficient
Counterexample Reduction and Generalization

Lee Pike
Galois, Inc.

leepike@galois.com

Abstract
QuickCheck is a powerful library for automatic test-case genera-
tion. Because QuickCheck performs random testing, some of the
counterexamples discovered are very large. QuickCheck provides
an interface for the user to write shrink functions to attempt to re-
duce the size of counterexamples. Hand-written implementations
of shrink can be complex, inefficient, and consist of significant
boilerplate code. Furthermore, shrinking is only one aspect in de-
bugging: counterexample generalization is the process of extrapo-
lating from individual counterexamples to a class of counterexam-
ples, often requiring a flash of insight from the programmer. To im-
prove counterexample reduction and generalization, we introduce
SmartCheck. SmartCheck is a debugging tool that reduces alge-
braic data using generic search heuristics to efficiently find smaller
counterexamples. In addition to shrinking, SmartCheck also au-
tomatically generalizes counterexamples to formulas representing
classes of counterexamples. SmartCheck has been implemented for
Haskell and is freely available.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

Keywords property-based testing; test-case generalization; delta-
debugging

1. Introduction
The QuickCheck testing framework was a revolutionary step-
forward in property-based testing [3, 4]. Originally designed for
Haskell, QuickCheck has been ported to other languages and is
a now a widely-used testing tool. Because QuickCheck generates
random values for testing, counterexamples it finds may be sub-
stantially larger than a minimal counterexample. In their original
QuickCheck paper [3], the authors report the following user expe-
rience by Andy Gill:

Sometimes the counterexamples found are very large and it
is difficult to go back to the property and understand why it
is a counterexample.
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That is, automated testing helps find a counterexample, but
it may be a very large counterexample. We are left facing the
shrinking problem: consider program P modeled as a function
mapping an input vector ~i to an output value. Consider property
φ modeled as a function mapping the inputs of P to a Boolean
value that has the form pre(~i) =⇒ post(P (~i)), where pre is a
precondition on inputs and post is a postcondition on the program
output. Let < be a partial order over the set of possible inputs.
Given inputs ~i such that φ(~i) is false, the shrinking problem is to
find inputs~j such that φ(~j) is false and there exist no inputs ~k such
that ~k < ~j and φ(~k) is false.

In general, the problem is too expensive to solve optimally, since
it requires showing that for a set of failing inputs, there exist no
strictly smaller inputs that also cause the property to fail. Such a
demonstration requires exhaustive testing or proof. Solutions to the
shrinking problem are therefore approximated to efficiently dis-
cover sufficiently small inputs causing the input to fail. Usually,
the shrunk inputs are derived algorithmically (but perhaps nonde-
terministically) from known larger inputs resulting in failure.

Originally, QuickCheck defines a type class Arbitrary that
presents a method arbitrary for generating random values of a
given type. Gill added another method to the type class:

smaller :: a -> [a]

The purpose of smaller is to generate strictly smaller values, ac-
cording to some measure, from a given counterexample. These new
values are then tested to attempt to find a smaller counterexample.
Today, smaller is called shrink.

In industrial uses, shrinking is essential. In describing commer-
cial applications of QuickCheck, Hughes has noted that “without
it [shrinking], randomly generated failing cases would often be so
large as to be almost useless.” [9]. Hughes et al. also give an ex-
tended example in which shrinking is essential in debugging tele-
com software [1].

Defining an efficient and effective shrink method requires a
good understanding of how shrinking in QuickCheck works and
the semantics of the property and program being evaluated. Bad
definitions can be so slow or so ineffective at shrinking that they
are unusable.

In addition, shrinking is one side of the coin when it comes
to making counterexamples more understandable: the other side is
extrapolation from individual counterexamples to a class of coun-
terexamples characterizing the bug. This leap of abstraction is often
implicitly made by the programmer in determining the reason why
counterexamples fail the property. For example, Figure 1 contains a
relatively small counterexample returned when using QuickCheck
to test a property in (a bug-injected version of) XMONAD, a popular
X11 window manager written in Haskell [19]. (This counterexam-
ple uses Haskell’s default Show instances, which uses record syn-



StackSet {current = Screen {workspace = Workspace
{tag = NonNegative {getNonNegative = 0}, layout = -1, stack =
Just (Stack {focus = ‘S’, up ="", down = ""})}, screen = 1,
screenDetail = 1}, visible = [Screen {workspace = Workspace
{tag = NonNegative {getNonNegative = 2}, layout = -1, stack =
Nothing}, screen = 2, screenDetail = -1},Screen {workspace =
Workspace {tag = NonNegative {getNonNegative = 3}, layout = -1,
stack = Nothing}, screen = 0, screenDetail = -1}], hidden =
[Workspace {tag = NonNegative {getNonNegative = 1}, layout = -1,
stack = Just (Stack {focus = ‘NUL’, up = "", down = ""})},
Workspace {tag = NonNegative {getNonNegative = 4}, layout = -1,
stack = Just (Stack {focus = ‘I’, up = "", down = ""})}],
floating = fromList []}

Figure 1: Counterexample returned by QuickCheck for a bug-
injected version of XMONAD.

tax.) Programmers may be familiar with having to debug a “wall of
text” as shown above. What if instead a formula like the following
were returned, stating that for any well-typed values x0, x1, x2, and
x3, tested, a counterexample is found?

forall values x0 x1 x2 x3:
StackSet

(Screen (Workspace x0 (-1) (Just x1)) 1 1)
x2 x3 (fromList [])

The formula quantifies away all the irrelevant portions of the data
structure with respect to the property, so that the user can focus
on the heart of the problem in a class of counterexamples. Given
a program and large counterexample, SmartCheck returns such a
formula.

SmartCheck Motivated by the problems of reducing and general-
izing large counterexamples, we developed SmartCheck. SmartCheck
takes a counterexample produced by some oracle and generically
minimizes and generalizes the counterexample. After presenting
some preliminary definitions in Section 3, in Section 4, we describe
SmartCheck’s generic counterexample reduction algorithm.

SmartCheck implements three novel approaches to automati-
cally generalize counterexamples, which are described in Section 5.
The first algorithm universally quantifies sub-values that always fail
in tests. The second algorithm existentially quantifies sub-values
for types in which every possible variant fails the property. For ex-
ample, finding counterexamples (Left 2) and (Right True) for
the type

Either Int Bool

means there exists a counterexample regardless of the variant cho-
sen. Existential generalization is useful for large sum types, as
found in abstract syntax tree (AST) definitions, for example.

The third algorithm automatically strengthens properties by
omitting “similar” counterexamples to the ones previously ob-
served. The algorithm is motivated by noting that there are often
multiple ways in which a property may fail; for example, a prop-
erty stating that pretty-printing an AST and then parsing it results
in the original AST may fail due to multiple bugs, such that each
bug in isolation is sufficient to cause failure. During testing, it is
useful to discover counterexamples arising from all the bugs in one
go. In practice, the problem is solved by discovering a counterex-
ample cex, abstracting it, and then adding a new precondition to
the property that informally says “omit counterexamples of form
cex.” Adding preconditions manually is laborious and may cause
the programmer to make premature fixes to the program, if she
believes she has isolated the error before she actually does.

We describe our implementation based on generic programming
in Section 6; the implementation is open-source. In Section 7, we
discuss some of our experiences with using SmartCheck, including

checking properties from XMONAD and a natural language process-
ing library.

2. A Motivating Example

type I = [Int16]
data T = T I I I I I

toList :: T -> [[Int16]]
toList (T i0 i1 i2 i3 i4) = [i0, i1, i2, i3, i4]

pre :: T -> Bool
pre t = all ((< 256) . sum) (toList t)

post :: T -> Bool
post t = (sum . concat) (toList t) < 5 * 256

prop :: T -> Property
prop t = pre t ==> post t

Figure 2: Example program and property.

In this section, we motivate in more detail the challenges in
shrinking counterexamples by comparing manual approaches us-
ing QuickCheck to SmartCheck. (We focus on shrinking rather than
generalization here since counterexample generalization is unique
to SmartCheck.) We will show how a small data type and simple
property can result in large counterexamples without any shrink-
ing. Then we show the difficulty in designing an efficient shrink
implementation. We will show a poor design before arriving at a
“canonical” manual solution.

Consider the example in Figure 2.1 Data type T is a product type
containing five lists of signed 16-bit integers.

Now suppose we are modeling some program that serializes
values of type T. The input to the program satisfies the invariant
pre, that the sum of values in each list of Int16s is less than or
equal to 256. Assuming this, we want to show post holds, that
the sum of all the values from T is less than 5 ∗ 256, where five
is the number of fields in T. At first glance, the property seems
reasonable. But we have forgotten about underflow; for example,
since (−20000 + −20000) mod (215) = 25536, and 25536 ≥
5 ∗ 256, the value

T [-20000] [-20000] [] [] []

satisfies pre but fails post (the ==> operator in the figure is impli-
cation from the QuickCheck library).

Despite the simplicity of the example, a typical counterexample
returned by QuickCheck can be large. With standard settings and
no shrinking, the average counterexample discovered contains just
over 80 Int16 values, and over five percent contain over 100
values. Thus, it pays to define shrink!

We might first naively try to shrink counterexamples for a data
type like T by taking the cross-product of shrunk values over the ar-
guments to the constructor T. This can be expressed using Haskell’s
list-comprehension notation:

shrink (T i0 i1 i2 i3 i4) =
[ T a b c d e | a <- shrink i0, b <- shrink i1

, c <- shrink i2, d <- shrink i3
, e <- shrink i4 ]

While the above definition appears reasonable on first glance,
there are two problems with it. First, the result of (shrink t)
is null if any list contained in t is null, in which case t will not

1 All examples and algorithms in this paper are presented in Haskell
2010 [15] plus the language extensions of existential type quantification
and scoped type variables.



be shrunk. More troublesome is that with QuickCheck’s default
Arbitrary instances, the length of potential counterexamples re-
turned by shrink can exceed 1010, which is an intractable number
of tests for QuickCheck to analyze. The reason for the blowup is
that shrinking a list [a] produces a list [[a]], a list of lists; each
list is a new shrinking of the original list. Then, we take the cross-
product of the generated lists. For the example above, with some
counterexamples, the shrinking stage may appear to execute for
hours, consuming ever more memory, without returning a result.

The first way we will try to contain the search space is by pre-
venting the shrink method from operating on numeric types. The
standard approach for doing so is by defining a newtype wrapper:

newtype J = J { getInt :: Int16 }

Next, a programmer might try to control the complexity by truncat-
ing lists using

take n ls

returns the first n elements ls. The trade-off is quicker shrinking
with a lower probability of finding a smaller counterexample. For
example, we might redefine shrink as follows:

shrink (T i0 i1 i2 i3 i4) =
[ T a b c d e | a <- tk i0

, b <- tk i1, c <- tk i2
, d <- tk i3, e <- tk i4 ]

where tk x = take 10 (shrink x)

Call this version “truncated shrink”. Truncation controls the blowup
of the input-space, but the downside is that potentially smaller
counterexamples may be omitted.

Someone who understands the semantics of QuickCheck’s
shrink implementation defines a shrink instance as follows:2

shrink (T i0 i1 i2 i3 i4) = map go xs
where xs = shrink (i0, i1, i2, i3, i4)

go (i0’, i1’, i2’, i3’, i4’)
= T i0’ i1’ i2’ i3’ i4’

This “tuple shrink” definition does not suffer the same shortcom-
ings: it shrinks a value even if it contains an empty list, and the
combinatorial blowup of shrink candidates is avoided, since a pair
(a,b) is shrunk by attempting to shrink a while holding b con-
stant, then attempting to shrink b while holding a constant (and is
generalized from pairs to arbitrary tuples). Thus, each argument to
T is independently shrunk.

Finally, with this combination of shrinking tuples and disabling
shrinking for Int16 values, we have an efficient and effective
shrinking approach.

In early 2014, QuickCheck added the ability to derive shrink
instances for algebraic data types. (The first release of the SmartCheck
software was mid-2012.) With this new feature, the user declares

shrink = genericShrink

to obtain efficient shrink instances.
The results of our discussion above are summarized in Table 1

and the corresponding graph in Figure 3. First, we show the re-
sults of no shrinking (labeled ‘none’) as a baseline in terms of
worst-case value size. Then we show four approaches to shrinking,
as described above: truncated shrinking (‘QC trunc’) with Int16
shrinking disabled, in which each list is truncated to 10 elements,
tuple shrinking (‘QC tuple’), also with Int16 shrinking disabled,
and finally shrinking using QuickCheck’s genericShrink (‘QC
generic’).3 We graph the final counterexample size, measured in

2 The following approach was suggested to the author by John Hughes.
3 All results reported in the paper are with a GHC-7.6.3-compiled program,
using -O2, on a 2.8 GHz 4 core i7 with 16GB memory under OSX v. 10.9.2.
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Figure 3: Results for 1000 tests of the program in Figure 2.

Mean Std. dev. 95%
size time size time size time

none 83 0.013 22 0.014 119 0.023
QC trunc 40 0.064 20 0.334 84 0.153
QC tuple 10 0.031 4 0.039 16 0.052

QC generic 13 0.204 7 0.946 28 0.543
SmartCheck 6 0.021s 4 0.009 13 0.036

Table 1. Summarizing data for the graph in Figure 3. Entries con-
tain execution time (in seconds) and counterexample sizes (count-
ing Int16 values).

the total number of Int16 values, and execution time for coun-
terexample discovery and shrinking. Figure 3 shows how many of
the 1000 runs resulted in a final value of a particular size, fitting the
data with a Bezier curve.

In Table 1, we summarize the graphed values and provide execu-
tion time (including both counterexample discovery and shrinking)
in seconds as well. For both execution time and final value size, we
summarize the mean, standard deviation, and the results at the 95th
percentile. (While we provide the standard deviations, note that the
plots are not necessarily Gaussian.)

SmartCheck produces consistently small counterexamples and
does so quickly—even smaller and faster than the best hand-tuned
solution—all without writing any problem-specific code. Note that
the ‘none’ example provides a lower-bound on execution time (only
including counterexample discovery time) and an upper-bound
on counterexample size. In this example, the hand-written “tu-
ple shrink” algorithm is only slightly slower and produces slightly
larger results than SmartCheck. (QuickCheck’s generic shrinking
under performs the “tuple shrink” likely because the generic shrink
implementation shrinks the Int16 values.)

In Section 7.3, we provide additional benchmarks, but now we
turn to the design of SmartCheck.

3. Preliminaries
SmartCheck focuses on algebraic data types represented as “sums
of products” including recursive and mutually recursive types. We
sometimes refer to the elements of a sum type as a variant that is
tagged by a constructor. For example, the type

Maybe a = Just a | Nothing

contains two variants, tagged by the constructors Just and Nothing,
respectively.

To present the algorithms in the following sections, we provide
some definitions in the form of methods of a SubTypes type class.
(SmartCheck requires instances to be defined for data being ana-



lyzed; in Section 6, we describe how instances for the type class
are derived automatically.)

type Idx = Int
type Size = Int
data SubVal = forall a. SubTypes a => SubVal a

class Arbitrary a => SubTypes a where
size :: a -> Size
index :: a -> Idx -> Maybe SubVal
replace :: a -> Idx -> SubVal -> a
constr :: a -> String
constrs :: a -> [String]
opaque :: a -> Bool
subVals :: a -> Tree SubVal

The SubTypes type class requires QuickCheck’s Arbitrary as a
super-class. SubTypes has the following methods:

• size returns the size of a value—the number of constructors
contained within it.
• index returns a sub-value at a breadth-first index in a value.
• replace replaces a sub-value at a particular focus, returning

the original value if the index is out-of-bounds.
• constr returns a string representation of the constructor tag-

ging the value.
• constrs returns the list of all possible constructor names from

the value’s type.
• opaque is false when the type of the value is an “interesting

type”; informally, this is a type other than a primitive type like
Int, Char, or Bool, and may be user-defined. See Section 4.2.2
for a full discussion.
• subVals returns a tree of all non opaque-type sub-values. A

tree has the type

data Tree a = Node { rootLabel :: a
, subForest :: [Tree a] }

To illustrate typical evaluations of the methods, consider a binary
tree type:

data T = L | B T T

and the value tree, labeled with indexes in a breadth-first order:

tree = B0 (B1 L3
(B4 L6 L8))

(B2 L5 L7)

Here are example applications of SubTypes methods; in the fol-
lowing, we show the indexes with respect to the value tree:

size tree = 9

index tree 0 = tree
index tree 3 = (Just . SubVal) (B4 L6 L8)
index tree 12 = Nothing

replace tree 2 (SubVal L) =
B0 (B1 L3

(B4 L6 L8))
L

constr tree = ["B"]
constrs tree = ["B", "L"]
constrs L = ["B", "L"]

opaque (3 :: Int) = True
opaque tree = False
opaque L = False

subVals (B0 (B1 L0 L1) L2) = SubVal
(Node (B0 (B1 L0 L1) L2)

[ Node (B1 L0 L1) [Node L0 [], Node L1 []]
, Node L2 []
])

The SubVal type is an existential data type, used as a generic con-
tainer for sub-values from a counterexample. We will sometimes
refer to the unwrapped value returned by index a i as the ith
sub-value of a, so for example, (B4 L6 L8) is the 3rd sub-value of
tree. An invariant of index is that for any value a, and for the
smallest i ≥ 0 such that

index a i == Nothing

then for all 0 ≤ j < i,

index a j /= Nothing

We use this invariant as a termination case in recursive algorithms
over the sub-values of a value. (Rather than indexes into a data-
structure, an alternative representation is to use a zipper data struc-
ture [8] to traverse data. We have chosen explicit indexes to write
simple tail-recursive algorithms that can easily be transcribed to
imperative languages.)

In our implementation, the SubTypes class and its methods de-
pend on GHC Generics [14], which we describe in Section 6. For
simplicity, we omit here Generics-specific super-class constraints
on the SubTypes class here. Moreover, our presentation simplifies
the implementation (Section 6) somewhat to improve the presenta-
tion.

4. Shrinking Data
In this section, we describe how to efficiently and generically shrink
algebraic data values. Recall the basic idea behind the shrink
method of the Arbitrary class: generate a list of values, each
of which is smaller than the current counterexample. Each of the
new values generated may not bear any relationship to the orig-
inal counterexample other than being smaller. SmartCheck pur-
sues an approach that searches for smaller but structurally similar
counterexamples, as we make precise below. Perhaps the most sig-
nificant difference between SmartCheck’s reduction algorithm and
QuickCheck shrink implementations is that the latter is determinis-
tic. SmartCheck combines counterexample search with shrinking.

We describe the algorithm in Section 4.1 and then describe algo-
rithmic details in Section 4.2. Some optimizations to the reduction
algorithm are described in Section 4.3.

4.1 Reduction Algorithm Overview
The algorithm we present for efficiently searching for new coun-
terexamples is an instance of greedy breadth-first search over a tree
structure that represents a value. At each node, during the traver-
sal, we generate arbitrary structurally smaller sub-values and build
a new value from that, leaving the remainder of the tree unchanged.
By a structurally smaller value, we mean one with fewer construc-
tors. We continue until we reach a fixed-point.

Figure 4 shows the reduction algorithm. In this algorithm and
subsequent algorithms in the paper, functions in bold font are left
undefined but their implementation is described in the text. The
function reduce takes flags to customize the algorithm’s behav-
ior, a counterexample cex, and the property prop. The reduction
begins at the first proper sub-value of cex; call it v (this is an opti-
mization described in Section 4.2.1). When the index idx becomes
out-of-bounds and returns Nothing, the algorithm terminates. Oth-
erwise, a list of new random values are generated.

sizedArbitrary :: SubTypes a => Size -> a -> IO a



getSize :: SubVal -> Size
getSize (SubVal a) = size a

newVals :: Size -> Int -> SubVal -> IO [SubVal]
newVals sz tries (SubVal a) =

replicateM tries s where
s = liftM SubVal (sizedArbitrary sz a)

reduce :: SubTypes a
=> ScArgs -> (a -> Property) -> a -> IO a

reduce args prop cex = reduce’ 1
where
reduce’ idx

| Just v <- index cex idx
= do vs <- newVals (getSize v)

(scMaxReduce args) v
case test cex idx vs prop of

Nothing -> reduce’ (idx+1)
Just a -> reduce args prop a

| otherwise = return cex

test :: SubTypes a => a -> Idx -> [SubVal]
-> (a -> Property) -> Maybe a

test cex idx vs prop = go vs
where
go [] = Nothing
go (v:vs’) =

let cex’ = replace cex idx v in
if pass prop cex’ then go vs’

else Just cex’

Figure 4: Counterexample reduction algorithm.

generates a new value v’ having the same type as v and that is
strictly smaller (with respect to the size method) than v. Just like
QuickCheck’s arbitrary method, sizedArbitrary generates
successively larger counterexamples when generating new values
with which to replace a sub-value.

The flag scMaxReduce is the maximum number of tries to
discover a new counterexample by replacing v in cex and testing
it. The result of pass prop cex’ for

pass :: (a -> Property) -> a -> Bool

holds if cex’ satisfies the property prop. The property may be a
conditional, in which case the value must pass the precondition
as well as the consequent for pass to return True. If no failure
is found, we move to the next sub-value of cex and continue.
However, if a new smaller counterexample cex’ is found, we start
a new breadth-first traversal of cex’, attempting to shrink it further.

The algorithm is guaranteed to terminate: informally, the mea-
sure for the function is that either the index increases or the size
of the counterexample being evaluated decreases. The algorithm’s
complexity is O(n2), where n is the number of constructors in the
counterexample, assuming that generating new sub-values and test-
ing them is done in constant time.

4.2 Reduction Algorithm Details
Having described the reduction algorithm, there are two important
details about its design we describe below.

4.2.1 Variant Counterexample Hypothesis
A motivation for the design of the reduction algorithm is some-
thing we call the variant counterexample hypothesis: in the search
space of possible values from a given type T, if a known counterex-
ample cex is a variant v of T, then it is most probable that other
counterexamples are also from variant v. As an example support-
ing the hypothesis, consider a property about unintended variable

capture over a language’s parse tree represented by a sum type with
constructors for module imports, function definitions, and global-
variable assignments, respectively. A function definition counterex-
ample can only be reduced to smaller function definition counterex-
amples, the only construct in which variable capture is possible.

Recall that the algorithm begins at the first sub-value of the
counterexample rather than the zeroth sub-value so that the variant
of the counterexample remains the same. No invariant of the algo-
rithm would be violated by beginning with the zeroth sub-value,
and in particular, the algorithm would still terminate.

Incidentally, QuickCheck’s generic shrink implementation is
fundamentally build around the variant counterexample hypothesis.
For a given counterexample cex, smaller candidates produced by
shrink contain only the constructors found in cex as opposed
to just the outermost constructor, as in SmartCheck. Sometimes
shrinking gets “stuck” at a local minimum due to a lack of entropy
in generating smaller candidates.

The hypothesis may be unsuitable for some properties, in which
case SmartCheck (and especially QuickCheck) may potentially fail
to discover a smaller counterexample. However, in Sections 5.2
and 5.3, we describe approaches to generalize counterexamples
based on discovering new counterexample variants. These gener-
alization techniques are executed in an (optional) generalization
phase, run after the reduction phase, in which this hypothesis is
implemented.

4.2.2 Opaque Types
SmartCheck focuses on efficiently shrinking and generalizing large
data structures. It is not intended as a general replacement for
QuickCheck’s shrink method. Consequently, SmartCheck ignores
“primitive” types without value constructors, such as Char, Int,
and Word16. Our experience is that for the kinds of properties with
counterexamples that contain massive data structures, shrinking
primitive types does not significantly help in understanding them.
Furthermore, by ignoring these types by fiat, shrinking time is
dependent only on the size of a data structure as measured by the
number of constructors.

We generalize the idea of ignoring primitive types by introduc-
ing the concept of opaque types. If the reduction algorithm encoun-
ters an opaque type, it is ignored. Opaque types include the primi-
tive types mentioned above, but the user can declare any substruc-
ture in a data type to be an opaque type by providing custom in-
stances. Doing so effectively treats values from that type as “black
boxes”, making SmartCheck more efficient if the user knows that
some portion of the structure cannot be shrunk or is irrelevant to
the property.

Opaque types can be conditional. For example, the user may
want lists to be shrunk in general, unless the elements of the list
are opaque themselves. Such a definition is possible. Sometimes
shrinking primitive types is imperative; for example, to determine
if there is a relationship between two integers in a counterexample.

Opaque types are defined by providing the method for opaque
in the SubTypes type class.

4.3 Reduction Algorithm Optimizations
The reduction algorithm description above omits some details and
optimizations we describe here.

4.3.1 Sub-value Counterexample Hypothesis
Sometimes, a counterexample fails a property due to a sub-value
nested deep inside the counterexample. The rest of the value is irrel-
evant. We call this the sub-value counterexample hypothesis. Thus,
one way to efficiently search the space of potential counterexam-
ples is to test a counterexample’s (well-typed) sub-values.



reduceOpt :: forall a . SubTypes a
=> ScArgs -> (a -> Property) -> a -> IO a

reduceOpt args prop cex = reduce’ 1
where
reduce’ idx

| Just v <- index cex idx
= case testHole v of

Nothing -> test’ v idx
Just a -> reduceOpt args prop a

| otherwise = return cex

test’ v idx = do
vs <- newVals (getSize v) (scMaxReduce args) v
case test cex idx vs prop of

Nothing -> reduce’ (idx+1)
Just a -> reduceOpt args prop a

testHole (SubVal a) = do
a’ <- cast a :: Maybe a
if pass prop a’ then Nothing else Just a’

Figure 5: Reduction algorithm with the sub-value counterexample
optimization.

For example, consider a simple calculator language containing
constants, addition, and division, together with an evaluator that
checks if the divisor is 0 and returning Nothing in that case:

data Exp = C Int
| Add Exp Exp
| Div Exp Exp

eval :: Exp -> Maybe Int
eval (C i) = Just i
eval (Add e0 e1) =

liftM2 (+) (eval e0) (eval e1)
eval (Div e0 e1) =

let e = eval e1 in
if e == Just 0 then Nothing

else liftM2 div (eval e0) e

Now consider the property prop div, claiming that if divSubTerms
holds on an expression, then the evaluator returns Just a value:

divSubTerms :: Exp -> Bool
divSubTerms (C _) = True
divSubTerms (Div _ (C 0)) = False
divSubTerms (Add e0 e1) = divSubTerms e0

&& divSubTerms e1
divSubTerms (Div e0 e1) = divSubTerms e0

&& divSubTerms e1

prop_div e = divSubTerms e ==> eval e /= Nothing

Testing prop div, we might have a counterexample like the fol-
lowing:

Add (Div (C 5) (C (-12))) (Add (Add (C 2) (C 4)) (Add (C
7) (Div (Add (C 7) (C 3)) (Add (C (-5)) (C 5)))))

The cause is that divSubTerms fails to check whether the divisor
evaluates to zero. In the counterexample, the culprit is a buried sub-
value:

Div (Add (C 7) (C 3)) (Add (C (-5)) (C 5))

Thus, when attempting to shrink an Exp value, it pays to test
whether a sub-value itself fails the property.

Generalizing the scenario, during the reduction algorithm’s
breadth-first search through a counterexample cex’s sub-values,
we may happen upon a sub-value cex’ that has the same type as
cex and fails the property (while passing any preconditions). In

this case, we can return cex’ directly, and rerun the reduction al-
gorithm on cex’. In Figure 5, we show an updated reduction algo-
rithm, reduceOpt, that implements this optimization. The function
testHole tests the current sub-value and if it fails the property,
then we run the execution algorithm on the sub-value directly.

4.3.2 Bounding Counterexample Exploration
SmartCheck’s implementation contains flags to allow the user to
customize its behavior. Three flags that are relevant to the reduction
algorithm are the following:

scMaxReduce :: Int
scMaxSize :: Int
scMaxDepth :: Maybe Int

The scMaxReduce flag controls the number of values generated by
the reduction algorithm for each sub-value analyzed. scMaxSize
controls the maximum size of values generated to replace sub-
values by the reduction algorithm. Thus, new sub-values must be
strictly smaller than the minimum of scMaxSize and the size of
the sub-value being replaced. Finally, scMaxDepth determines the
maximum depth in the counterexample the reduction algorithm
should analyze. A value of Nothing means that the counterexam-
ple should be exhaustively reduced, as the algorithm is presented
in Figure 4. For example, the depth of a list is determined by its
length, and the depth of the binary tree defined in Section 4.1 is
determined by the function depth:

depth L = 0
depth (B t0 t1) = 1 + max (depth t0) (depth t1)

Of the flags, scMaxDepth is the most important for controlling
efficiency, particularly for large product types with significant “fan
out”. The number of sub-values of a product type value can grow
exponentially with respect to the depth. Furthermore, note that as
the reduction algorithm descends further, there is less chance to
reduce the size of the value overall, since smaller and smaller sub-
values are replaced.

5. Counterexample Generalization
Small counterexamples make debugging easier, but they are just
half the battle. To go from a specific counterexample to the required
fix in a program, the programmer must have a flash of insight in
which she generalizes the counterexample to a set of counterexam-
ples for which the program and property fails. The generalization
step is an important yet under-appreciated step in the debugging
process. A characterizing formula reduces the noise in favor of the
signal by abstracting away portions of a large counterexample that
are irrelevant to why it violates the property.

The characterization of counterexamples that most helps the
programmer should strike a middle ground. A single counterex-
ample is too specific. On the other hand, the property itself is a for-
mula that over-approximates the failing inputs. In this section, we
describe two kinds of formula that fall between these two extremes
that we call universal and existential sub-value generalization, re-
spectively. We then describe a third approach to generalization to
automatically strengthen a property’s precondition to obtain new
counterexamples.

In SmartCheck, the universal and existential generalization
phases run after a counterexample has been minimized. Precon-
dition strengthening is used when iteratively generating multiple
counterexamples, so it is interspersed with counterexample reduc-
tion.



subTrees :: SubTypes a => a -> Idx -> [Idx] -> Bool
subTrees cex idx = any (subTree cex idx)

extrapolate :: SubTypes a
=> ScArgs -> a -> (a -> Property) -> IO [Idx]

extrapolate args cex prop = extrapolate’ 1 []
where
extrapolate’ idx idxs

| subTrees cex idx idxs
= extrapolate’ (idx+1) idxs
| Just v <- index cex idx = mkNewVals v
| otherwise = return idxs
where
mkNewVals v = do

vs <- newVals (scMaxSize args)
(scMaxForall args) v

extrapolate’ (idx+1)
(if allFail args cex idx vs prop

then idx:idxs else idxs)

allFail :: SubTypes a => ScArgs -> a -> Idx
-> [SubVal] -> (a -> Property) -> Bool

allFail args cex idx vs prop =
length res >= scMinForall args && and res
where
res = mapMaybe go vs
go = fail prop . replace cex idx

Figure 6: Universal sub-value generation algorithm.

5.1 Universal Sub-Value Generalization
Consider again the calculator language from Section 4.3.1. The
property prop div is violated for any numerator, so we might
generalize a counterexample like

Div (Add (C 7) (C 3)) (Add (C (-5)) (C 5))

by the formula

forall x . Div x (Add (C (-5)) (C 5))

since any dividend results in divide-by-zero for the given divisor.
Not only do the generalizations assist the programmer’s insight,
but they reduce the sheer size of the counterexample. We call the
kind of formula just shown universal sub-value generalization and
it is implemented in SmartCheck.

An extrapolation algorithm performs universal sub-value gener-
alization. The basic idea is as follows: for a counterexample cex
and a property prop, a breadth-first search over the sub-values of
the cex is performed. For each sub-value, the algorithm generates
new sub-values and replaces them in cex to create a list of new
potential counterexamples. If no new value satisfies the property,
then we extrapolate, claiming that for any new value replacing that
sub-value in cex, the property will fail.

The extrapolation algorithm is shown in Figure 6; let us sketch
its specification. The algorithm is similar to the reduction algorithm
in Figure 4 (and in the implementation, the algorithms are gener-
alized and combined). The function extrapolate returns a list of
indexes to be generalized in the original counterexample. In the re-
cursive function extrapolate’, there is a function guard with a
call

subTree cex idx0 idx1

where subTree has the type

subTree :: SubTypes a => a -> Idx -> Idx -> Bool

The value

subTree cex idx0 idx1

is true if in cex, the value at index idx0 is a child of index idx1
in a tree representation of cex (i.e., subVals cex). The subTrees
guard prevents the algorithm from trying to generalize sub-values
that are abstracted away already since their parents have been
generalized. New sub-values are generated by newVals, shown in
Figure 4.

The function allFail takes a counterexample cex, an index
into cex, a list of new sub-values, and a property. It returns true if
no new values satisfy the property. The function
fail :: (a -> Property) -> a -> Maybe Bool

is roughly the dual of pass in the reduction algorithm: (fail prop
cex) returns (Just True) if cex passes prop’s precondition but
fails the property, (Just False) if cex non-trivially satisfies prop,
and Nothing if cex fails prop’s precondition.

Like in the reduction algorithm, user-specified flags bound the
behavior of the algorithm. We bound the size of values to gener-
ate by the flag scMaxSize, which is independent of the size of
the particular sub-value. The flag scMaxForall is the analogue of
the scMaxReduce flag, determining the number of values gener-
ated in trying to generalize a value. The flag scMinForall is the
minimum number of Just False results required from fail to
extrapolate from failed tests to a universal claim. So, for example,
if scMaxForall is set to 30 and scMinForall is set to 20, we gen-
erate 30 new values, 20 of which must pass the precondition but fail
the property to claim the counterexample can be generalized.

The algorithm’s complexity is O(n), where n is the number
of constructors in the counterexample. Again, we assume that the
cost for generating random values and testing them at each index is
constant.

Soundness The extrapolation algorithm is unsound in two ways.
First, it extrapolates from a set of counterexamples to a universal
claim, similar to QuickSpec or Daikon [5, 7]. By tuning the param-
eters, the risk of an unsound generalization is reduced by requiring
more or larger values to fail the property.

Second, in some cases, a formula may be returned that is overly
general. For example, consider the counterexample in which both
arguments of the outermost Add constructor contain values causing
the failure:
Add (Div (C 1) (Add (C (-2)) (C 2)))

(Div (C 0) (Add (C (-1)) (C 1)))

Since no matter what random value the first field of the outermost
Add constructor is replaced with, the property fails by Add’s second
field, and vice versa for replacing the second field. Consequently,
the universal generalization algorithm might return the formula
forall values x0 x1 . Add x0 x1

The reader should read a universally quantified formula as short-
hand for quantifying each variable independently and taking the
conjunction of formulas. For example, instead of
forall values x0 x1 . Add x0 x1

one should read
forall values x0 .

Add x0 (Div (C 0) (C (-1)) (C 1))
and forall values x1 .

Add (Div (C 1) (C (-2)) (C 2)) x1

5.2 Existential Sub-Value Generalization
Sum types denote choice in a data type. Sometimes, a property over
a sum type fails because there is a bug for some of the variants
but not others. For example, recall again the calculator language
from Section 4.3.1. The no-division-by-zero property fails only for
values that contain a variant tagged with the Div constructor. Recall
again the generalized counterexample from Section 5:



forall x . Div x (Add (C (-5)) (C 5))

Because the divisor does not generalize, we know there is some-
thing special about it that causes failure. But we might wonder if
there is something special about variants tagged by the Add con-
structor, or might we finding failing sub-values with the other vari-
ants.

We therefore introduce another kind of generalization we call
existential sub-value generalization. In this generalization, if there
is a counterexample containing every possible variant as a sub-
value, then we abstract it. For example, suppose that divSubTerms
had no equation

divSubTerms (Div _ (C 0)) = False

Then the following would all be counterexamples:

Div (Add (C 3) (C 2)) (C 0)
Div (C 7) (Add (C (-5)) (C 5))
Div (C (-2)) (Div (C 0) (C 1))

Because there are only three variants in the type, we have found
counterexamples built from each of them in the divisor. We there-
fore can claim the following formula holds:

forall values x .
forall constructors c .

there exist arguments
→
y .

such that Div x (c
→
y )

We therefore present an existential sub-value generalization algo-
rithm that performs constructor generalization. Like with the other
algorithms, this algorithm also performs a breadth-first search over
a counterexample.

We show the algorithm in Figure 7. The function sumTest takes
a set of flags, a counterexample, a property, and a list of indexes that
have already been generalized—perhaps by the extrapolation algo-
rithm in Figure 6. The list of course may be empty if no sub-values
have been previously extrapolated. In a call to subTrees, discussed
in Section 5.1, the guard prevents constructor generalization if the
current index is a sub-value of a previously generalized value. Oth-
erwise, a list of well-typed new values are generated by a call to
newVals, as shown in Figure 4. In the arguments to newVals, we
bound the size of values generated with scMaxSize as before, and
bound the number of values generated with the flag scMaxExists.
Because values are randomly generated, for “wide” sum-types (i.e.,
with a large number of constructors), scMaxExists should be large
enough to ensure with high probability that each variant is gener-
ated.

The function constrFail returns true if we replace the sub-
value at index idx in counterexample cex with every possible vari-
ant given the type and construct a counterexample to the property.
There are four guards to the recursive function constrFail’: the
first guard holds if the list of constructors tagging variants in which
a counterexample is found is equal in size to the list of all possi-
ble constructors for the type. The second guard tests whether the
set of test values is null; if so (and if the first guard fails), then we
have exhausted test values before finding all possible failing vari-
ants. Third, for a specific sub-value v, we test whether it fails the
property. If so, we add its constructor to the list of constructors.
Otherwise, we simply recurse. Note in the definition of prop’, we
add an additional precondition that the current constructor is not an
element of constructors already seen. Thus, (go v) returns

Just True

if

replace cex idx v

passes this precondition (and any other preconditions of prop), but
fails the property.

subConstr :: SubVal -> String
subConstr (SubVal a) = constr a

subConstrs :: SubVal -> [String]
subConstrs (SubVal a) = constrs a

sumTest :: SubTypes a => ScArgs -> a
-> (a -> Property) -> [Idx] -> IO [Idx]

sumTest args cex prop exIdxs = sumTest’ 1 []
where
sumTest’ idx idxs

| subTrees cex idx (exIdxs ++ idxs)
= sumTest’ (idx+1) idxs
| Just v <- index cex idx = fromSumTest v
| otherwise = return idxs
where
fromSumTest v = do

vs <- newVals (scMaxSize args)
(scMaxExists args) v

sumTest’ (idx+1)
(if constrFail cex idx vs prop

(subConstr v) (subConstrs v)
then idx:idxs else idxs)

constrFail :: SubTypes a => a -> Idx -> [SubVal]
-> (a -> Property) -> String -> [String] -> Bool

constrFail cex idx vs prop con allCons =
constrFail’ [con] vs
where
constrFail’ cons vs’

| length cons == length allCons = True
| null vs’ = False
| go v == Just True
= constrFail’ (c:cons) (tail vs’)
| otherwise
= constrFail’ cons (tail vs’)
where
v = head vs’
c = subConstr v
go = fail prop’ . replace cex idx
prop’ a = c ‘notElem‘ cons ==> prop a

Figure 7: Existential sub-value generation algorithm.

Unlike universal sub-value generalization, existential sub-value
generalization is sound. The existential claim is only that for each
variant, there exists at least one counterexample.

This algorithm’s complexity is also O(n), where n is the num-
ber of constructors in the counterexample.

5.3 Automated Precondition Strengthening
The universal and existential generalization algorithms generalize
a counterexample, but in the “neighborhood” of the original coun-
terexample. In particular, all generalizations are from the same vari-
ant as the original counterexample. To help the programmer in the
generalization step, we would also like a way to test the property
again, ensuring we get counterexamples (if they exist) outside of
the neighborhood of the original one.

Figure 8 illustrates a property of the form (pre ==> post).
Points are specific counterexamples that satisfy the precondition
but fail the post-condition, and the enclosing oval represents the
generalization of counterexamples resulting from either universal
or existential generalization. Our goal is to find additional coun-
terexamples in the shaded region. As new counterexamples are dis-
covered in the shaded region (and generalized), the counterexample
space becomes covered until no more classes of counterexamples
exist or it becomes too difficult for the testing framework to dis-
cover them.



Figure 8: Counterexample generalization.

matchesShapes :: SubTypes a
=> a -> [(a,[Idx])] -> Bool

matchesShapes d = any (matchesShape d)

matchesShape :: SubTypes a
=> a -> (a, [Idx]) -> Bool

matchesShape a (b, idxs)
| constr a /= constr b = False
| Just a’ <- aRepl
= let x = subForest (subVals a’) in

let y = subForest (subVals b) in
all foldEqConstrs (zip x y)

| otherwise = False
where
updateA idx d =

fmap (replace d idx) (index b idx)
aRepl = foldl go (Just a) idxs where

go ma idx | Just x <- ma = updateA idx x
| otherwise = Nothing

foldEqConstrs ( Node (SubVal l0) sts0
, Node (SubVal l1) sts1 )

| constr l0 == constr l1 =
all foldEqConstrs (zip sts0 sts1)

| otherwise = False

Figure 9: Shape matching algorithm.

Figure 9 shows the shape-matching algorithm used for precon-
dition strengthening. The function takes a candidate counterexam-
ple and a list of previous counterexamples, together with the in-
dexes at which they have been generalized. The basic idea of the al-
gorithm is to determine whether two values have the same “shape”.
We consider two values to have the same shape if in their respec-
tive tree representations, their constructors at each node in the tree
match, ignoring all opaque types (Section 4.2.2). That is, for values
a and b,

subVals a == subVals b

Furthermore, indexes that have been universally generalized (and
all their children) match any value, since a universally generalized
index indicates that counterexamples have been found for any pos-
sible constructor. In our implementation, we also consider existen-
tially generalized indexes to match any value. Doing so is a design
choice that is more aggressive about covering the space of coun-
terexamples at the risk of omitting some.

To understand the shape matching algorithm, consider a few
values of type Exp, defined in Section 4.3.1:

e0 = Div (C 1) (C 2)
e1 = Div (C 1) (C 3)
e2 = Div (Add (C 1) (C 2)) (C 7)
e3 = Div (Div (C 8) (C 2)) (C 7)

Then the following hold:

matchesShape e0 (e1, []) == True
matchesShape e1 (e2, []) == False
matchesShape e1 (e2, [1]) == True
matchesShape e3 (e2, [1]) == True

The first equation holds because we ignore opaque types, so the
arguments to C are considered equal. The second equation fails
because at index 1, e1 contains the constructor C and e2 contains
the constructor Add. If, however, index 1 has been generalized,
then we ignore the sub-value at index 1, and they match (the third
equation). The same reasoning holds for the fourth equation.

SmartCheck can run in a real-eval-print loop (REPL), discover-
ing new counterexamples, shrinking them, generalizing them, and
then repeating. In each iteration of the REPL, the property precon-
dition is strengthened, requiring that matchesShape does not hold
on the current counterexample candidate and any previous coun-
terexample generalization already discovered.

6. Implementation and Usage
The implementation of SmartCheck is written in Haskell and is
designed to test Haskell programs. The source code is licensed
BSD3 and is freely available.4

SmartCheck generically operates over arbitrary algebraic data
and so uses a generics library to encode generic traversals. Specif-
ically, SmartCheck uses “GHC Generics”, a generics library for
Haskell [14]. The library allows algebraic data types to automati-
cally derive the type class SubTypes presented in Section 3. One
limitation with GHC Generics is that it does not (currently) support
generalized algebraic data types [11].

The data type to be tested must derive the Typeable, and
Generic type classes. Deriving Typeable and Generic require
using the GHC language extensions DeriveDataTypeable and
DeriveGeneric, respectively. Typeable is used for dynamic typ-
ing in defining the replace method of SubTypes since it is un-
known at compile-time whether the value to be replaced and re-
placing value have the same types. However, through SmartCheck’s
interface, run-time failures due to type-mismatches will not occur.
Additionally, like with QuickCheck, deriving Show is required to
print counterexamples discovered.

Then, the user simply declares, for a data type D,

instance Subtypes D

Predefined instances are provided for common Prelude types and
some additional ones, including all types for which QuickCheck
provides instances.

SmartCheck does not implement a counterexample discovery
algorithm itself. An initial counterexample can be passed in explic-
itly, or SmartCheck will use QuickCheck as a library to generate an
initial counterexample to analyze.

The kinds of programs SmartCheck is specialized for are ones
that operate over a large data structure together with smaller inputs.
Therefore, properties provided to SmartCheck are expected to be of
the form

Testable prop => a -> prop

where a is the type of the value for SmartCheck to analyze, and
prop is a testable property, as defined by QuickCheck; morally,
these are functions (or degenerately, values) that evaluate to a
Boolean value.

If QuickCheck is used to discover a counterexample, all argu-
ments except the first are shrunk, if their types have shrink meth-
ods defined for them. The first argument is returned to SmartCheck
to be shrunk or generalized according to the algorithms described
earlier.

4 https://github.com/leepike/SmartCheck.git



A read-eval-print loop is presented to the user, allowing her to
iterate shrink and generalize counterexamples, and then generate
new counterexamples after strengthening the property’s precondi-
tion as described in Figure 5.3.

SmartCheck is executed using

> smartCheck args prop

where args (the arguments) are passed in, and prop is the property
being tested.

The interface types and functions for SmartCheck with analo-
gous behavior to QuickCheck’s are prefixed with an sc to avoid
name space collisions with QuickCheck. Others are specialized for
SmartCheck; e.g., enabling or disabling universal or existential ex-
trapolated, number of extrapolation rounds, and limits on the depth
and size of the values to generate.

Counterexamples can be optionally shown in a tree format
by setting the format field of the arguments to be equal to
PrintTree. for example, the tree format shows a counterexam-
ple like

Div (C 1) (Add (C 0) (C 2))

as

Div
|
+- C 1
|
‘- Add

|
+- C 0
|
‘- C 2

We find that for very large data structures, a tree representation aids
in visually parsing the value.

7. Experiments
We describe two experiments using SmartCheck, including an
XMONAD property and a property about a natural language process-
ing library. Then we present a small set of benchmarks comparing
SmartCheck and QuickCheck.

7.1 XMONAD

Recall from the introduction the XMONAD example. The XMONAD
window manager is a large software project with many con-
tributors, so naturally, a QuickCheck test harness is included to
help ensure new commits do not introduce bugs. At the heart of
XMONAD is a StackSet data type that encodes the relationship
between windows, work spaces, and which window has the focus.
XMONAD contains properties to ensure the correct manipulation
of StackSets. Due to having one large data-structure that is es-
sential to the entire program, XMONAD is a perfect candidate for
SmartCheck.

XMONAD passes all of its QuickCheck tests, but let us see what
might happen to a new contributor if things go awry. Suppose a
developer defines a deletion function to delete a window, if it exists.
An existing deletion function in XMONAD exists, which is quite
complex, given the amount of state that is managed by StackSet.
However, one function used in deletion is to filter the stack of
windows associated with each workspace defined:

removeFromWorkspace ws =
ws { stack = stack ws >>= filter (/= w) }

Now, suppose the programmer makes a simple typo and instead
writes

removeFromWorkspace ws =
ws { stack = stack ws >>= filter (== w) }

When testing the property prop delete, which says that delet-
ing the focused window of the current stack removes it from the
StackSet x.

prop_delete x =
case peek x of

Nothing -> True
Just i -> not (member i (delete i x))

QuickCheck returns the large value shown in Figure 1. That value is
a relatively small counterexample, but even the smallest StackSet
values are somewhat visually overwhelming due to the number
of fields within it. Recall the value returned by SmartCheck after
generalization:

forall values x0 x1 x2 x3:
StackSet

(Screen (Workspace x0 (-1) (Just x1)) 1 1)
x2 x3 (fromList [])

Let us examine what was generalized. In our test run, we chose to
treat data maps as opaque, so the fourth element of StackSet is
not generalized, but is simply the empty map, which looks uninter-
esting. The second and third fields of StackSet are generalized,
but the first one is not. There is something particular about it. So
the culprit is one of the small constants (1 and -1) or having a Just
value rather than a Nothing: it turns out that what matters is having
a Just value, which is the stack field that deletion works on!

7.2 Natural Language Processing
In 2012, a question was posted on the programming message board
Stack Overflow asking about how to shrink large data types.5 The
poster writes:

. . . I tend to get an incomprehensible page full of output.

. . . Implementing the shrink function for each of my types
seems to help a little, but not as much as I’d like. . . . If I
try to tune my shrink implementations, I also find that QC
starts taking a very long time.

The question relates to the Geni natural language processing (NLP)
package implemented in Haskell [12]. Specifically, counterexam-
ples to a property attempting to show that a macro expansion
function is its own inverse are enormous, requiring 200-300 80-
character lines to print.

Using SmartCheck, we are able to reduce counterexamples to
around 25 80-character lines of output. Most of the savings in the
counterexample size were due to universal generalization, like in
the XMONAD case: entire record fields are abstracted away. From
that, we (syntactically) shrunk the counterexample by hand further
by naming common sub-expressions.

We were able to send a substantially reduced and generalized
counterexample to the message poster, making the cause of the bug
more obvious. The author responded (in private communication):

. . .While your improved shrinking may not have gone ‘all’
the way to the bottom, it got me a huge chunk of the way
there!

Through the entire process, we never had to learn how GenI works,
what the property meant, or how to write a custom shrink method!

7.3 Benchmarks
Unfortunately, no set of testing benchmarks exists over which
to compare different test-case generation and minimization ap-
proaches. Therefore, we have collected a small number of bench-
marks, in addition to the more involved case-studies described ear-

5 http://stackoverflow.com/questions/8788542/
how-do-i-get-good-small-shrinks-out-of-quickcheck



lier in this section. However, these are contrived insofar as initial
counterexamples for them are discovered quickly.

The benchmarks presented, in addition to the motivating exam-
ple presented in Section 2, compare standard SmartCheck against
QuickCheck’s generic shrink implementation, which is, in general,
as good or better than hand-written shrink implementations. The
benchmarks are as follows:

• Reverse, with the false property

prop_rev :: [a] -> Bool
prop_rev ls = ls == reverse ls

(the example appears in the original QuickCheck documenta-
tion);
• Div0, a division-by-zero property for a simple calculator lan-

guage (introduced in Section 4.3.1);
• Heap, an example from the QuickCheck test suite, in which an

incorrect “to sorted list” function is checked.
• Parser, a parser/pretty-printer for a toy imperative language

containing a parser bug that switches the arguments of disjunc-
tion expressions.

All benchmarks can be found online.6 We compare the size of
the final counterexample returned (by counting constructors) and
the time required for counterexample generation and shrinking in
seconds. The results are presented in Table 2. Again, we summarize
the mean, standard deviation, and the results at the 95th percentile.
(While we provide the standard deviations, note that the plots are
not necessarily Gaussian.)

Mean Std. dev. 95%
size time size time size time

Reverse QC 2 0.002 0 0.002 2 0.003
SC 2 4e−4 0 5e−4 2 7e−4

Div0 QC 5 0.004 1 0.006 7 0.015
SC 5 0.001 0 0.001 5 0.001

Heap QC 19 9e−4 9 0.001 36 0.001
SC 7 0.006 2 0.002 10 0.010

Parser QC 4 0.010 0 0.006 4 0.023
SC 7 0.182 3 0.124 12 0.418

Table 2. Summarizing data for the graphs in Figure 3. Entries con-
tain execution time (in seconds) and counterexample sizes (count-
ing constructors).

The Reverse benchmark essentially provides a lower-bound
on the benefit of shrinking in general, since the original coun-
terexamples are generally close to being minimal. Surprisingly,
SmartCheck slightly outperforms QuickCheck in efficiency. The
other three benchmarks have larger counterexamples, so the benefit
of shrinking is more pronounced.

SmartCheck finds smaller counterexamples in the Div0 and
Heap benchmarks, while QuickCheck shrinking finds smaller
counterexamples faster in the Parser example. The example is
one in which SmartCheck’s counterexample reduction strategy is
less optimal than QuickCheck’s. Recall from Section 4.2.1 that
QuickCheck’s generic shrink implementation generates candidates
that contain a subset of the constructors from original counterexam-
ple. In the parser example, the bug is localized in the counterexam-
ple, arising from a single expression in the program. SmartCheck
wastes effort generating new programs using new constructors.
SmartCheck is better suited, however, at avoiding local minima for
other properties and programs.

6 https://github.com/leepike/SmartCheck/tree/master/
regression

8. Related Work
Zeller and Hildebrandt describe an application of greedy search
to shrink counterexamples they call “delta-debugging” (DD) [20].
The authors apply their work to shrinking HTML inputs to crash
Mozilla and shrinking C programs to trigger a bug in GCC. Sub-
sequent generalizations are reported by Misherghi and Su in which
they perform greedy search on tree-structured data; they call their
approach hierarchical delta-debugging (HDD) [16].

HDD is most similar to SmartCheck’s reduction algorithm, with
an important difference: HDD (and DD) is deterministic, so the
algorithm only succeeds in reducing the counterexample only if
a new counterexample can be constructed from the original one.
Our approach combines the speed of delta debugging with the
power of QuickCheck to randomly discover structurally smaller
counterexamples. The idea of randomization in test-case reduction
was independently developed at approximately the same time as
SmartCheck and first published in the domain of reducing C pro-
grams that demonstrate compiler bugs [17]. We believe our work is
the first to explore the idea of counterexample generalization.

Within the functional programming community, one of the few
treatments of generic shrinking is as a motivation for generic pro-
gramming in Haskell’s “Scrap your boilerplate” generic program-
ming library [13]. There, the motivation was not to design new
approaches to counterexample reduction, but simply to derive in-
stances for the shrink method.

SmallCheck is another testing framework for Haskell for which
shrinking is irrelevant: SmallCheck is guaranteed to return a small-
est counterexample, if one exists [18]. SmallCheck does this by
enumerating all possible inputs, ordered from smallest to largest,
up to some user-defined bound.

While SmallCheck is effective for testing many programs and
properties (in accordance with the small scope hypothesis [10]),
counterexamples to even relatively simple properties may be prac-
tically infeasible to discover due to the size of the input space. For
example, SmallCheck does not find a counterexample to the exam-
ple presented in Section 2 after running it for several minutes.

Besides QuickCheck and SmallCheck, another testing frame-
work related to SmartCheck is the recent Haskell library Feat [6].
Feat provides automated enumerations of algebraic data types in
Haskell, allowing for fast access to very large indexes. For exam-
ple, from the enumeration of ([Bool])

[[],[False],[True],[False,False],[False,True] ...

Accessing the 101000th element takes under 0.1 seconds in inter-
preted Haskell. Feat combines some advantages of SmallCheck and
QuickCheck, since the user can choose to exhaustively test an enu-
meration up to some depth, like with SmallCheck, or she can create
a uniform distribution of test cases up to some depth.

Feat is used to discover counterexamples, not shrink them.
However, shrinking is less necessary with Feat, since discovered
counterexamples are often small, if one is found. For example,
on the overflow example in Section 2, with a limit of 100 test
cases, Feat finds a counterexample just two percent of the time,
whereas QuickCheck finds one nearly 100%. Even at a limit of
10000, a counterexample is found about 50% of the time (with
a correspondingly longer search time). Sampling from a uniform
distribution does not work so well here. Feat does a better job of
discovering counterexamples in the parser benchmark, but the size
of the average counterexample contains 500 constructors, with a
standard deviation of 500 (compared with 16 and 75, respectively,
for SmartCheck). Still, Feat is powerful at what it does well and
can be seamlessly used with SmartCheck, since it just defines the
arbitrary method.

Finally, SmartCheck bears some similarity to QuickSpec, a
testing-based library that infers equational properties about pro-



grams [5] insofar as they both attempt to generalize counterexam-
ples based on specific inputs. QuickSpec attempts to infer equa-
tional properties of programs through random testing. Similarly,
Daikon infers assertions for C, C++, Java, and Perl by observing
relationships between variables in executions of a program [7].
SmartCheck does not attempt to infer properties like these tools
dox.

9. Conclusions and Future Work
We have presented new approaches for generically shrinking and
generalizing counterexamples over algebraic data. SmartCheck au-
tomates the laborious task of shrinking, and extrapolating from
counterexamples, and in our experience, performs better and faster
than hand-written shrink functions.

We envision a number of potential extensions and improve-
ments to SmartCheck. First, we have considered only the sim-
plest kind of data, algebraic data types. As noted in Section 6,
SmartCheck does not work with GADTs currently, due to limi-
tations with GHC Generics. It would be interesting to see if the
approaches described here could be extended to function types as
well—we are particularly motivated by Claessen’s recent work in
shrinking and showing functions [2].

Lazy SmallCheck can test partially-defined inputs by detecting
the evaluation of undefined values [18]. This capability is useful in
shrinking, too. For example, the universal sub-value generalization
algorithm (Section 5.1) could be extended to shortcut testing and
generalize a sub-value if it is not evaluated in testing the property.
Not only does this shortcut the generalization phase, but it gives a
proof that the sub-value can be generalized.

SmartCheck displays (generalized) counterexamples in a form
similar to default Show instances or in a tree form, which can be
helpful to parse the components of the value. Better approaches for
showing large data types are needed. In particular, an interactive
web-based viewer with hyperlinks to close or expand sub-values
would be particularly useful.

Another aspect of displaying large counterexamples that we
have not explored is to exploit sharing. Constructs might be re-
peated that can be abstracted out. For example, instead of a coun-
terexample like

Add (Div (C 1) (Add (C (-2)) (C 2)))
(Div (C 1) (Add (C (-1)) (C 1)))

we might instead return

Add (div (-2) 2) (div (-1) 1)
where div x y = Div (C 1) (Add (C x) (C y))

Discovering and exploiting sharing automatically is future work.
Debugging is a difficult task. Functional programming has been

at the forefront of testing research, with tools like QuickCheck and
SmallCheck. We were motivated to build a tool like SmartCheck
just because of how effective QuickCheck is at discovering coun-
terexamples automatically—there would be no such problem of
having very large counterexamples if inputs were written by hand.
We hope SmartCheck and the ideas in this paper continue the tra-
dition of highly-automated testing and debugging in the functional
programming community, and beyond!
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[14] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic deriving
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