
Accepted at the Haskell Symposium’09

Roll Your Own Test Bed for Embedded Real-Time Protocols:
A Haskell Experience

Lee Pike
Galois, Inc.

leepike@galois.com

Geoffrey Brown
Indiana University

geoffrey.brown@acm.org

Alwyn Goodloe
National Institute of Aerospace
Alwyn.Goodloe@nianet.org

Abstract
We present by example a new application domain for functional
languages: emulators for embedded real-time protocols. As a case-
study, we implement a simple emulator for the Biphase Mark Pro-
tocol, a physical-layer network protocol in Haskell. The surprising
result is that a pure functional language with no built-in notion of
time is extremely well-suited for constructing such emulators. Fur-
thermore, we use Haskell’s property-checker QuickCheck to au-
tomatically generate real-time parameters for simulation. We also
describe a novel use of QuickCheck as a “probability calculator”
for reliability analysis.

Categories and Subject Descriptors B.8.1 [Hardware]: Perfor-
mance and Reliability

General Terms Languages, Reliability, Verification

Keywords Physical-layer protocol Testing, Emulation, Functional
Programming

1. Introduction
We present by example a new application domain for functional
languages: building efficient emulators for real-time systems. Real-
time systems are difficult to design and validate due to the com-
plex interleavings possible between executing real-time compo-
nents. Emulators assist in exploring and validating a design before
committing to an implementation. Our goal in this report is to con-
vince the reader by example1 that

1. one can easily roll-one’s-own test bed for embedded real-time
systems using standard functional languages, with no built-in
notion of real-time;

2. testing infrastructure common to functional languages, such as
QuickCheck (Claessen and Hughes 2000), can be exploited to
generate real-time parameters for simulation—we generate ap-
proximately 100,000 real-time parameters and execution traces
per minute on a commodity laptop;

1 The source code associated with this paper is presented in the Appendix
and is also available for download at http://www.cs.indiana.edu/
∼lepike/pub pages/qc-biphase.html. The code is released under a
BSD3 license. The emulator is about 175 lines of code, and the QuickCheck
infrastructure is about 100 lines.

[Copyright notice will appear here once ’preprint’ option is removed.]

3. and QuickCheck can be used for a novel purpose—to do statis-
tical reliability analysis.

In our report, we assume that the reader is familiar with Haskell
syntax. That said, our approach uses basic concepts shared by
modern functional languages and does not intrinsically rely on
laziness (or strictness) or special monads, for example.

In the remainder of this introduction, we motivate the problem
domain and describe related work before going on to describe the
emulator framework.

Problem Space: Physical Layer Networking The physical layer
resides at the lowest level of the network stack and defines the
mechanism for transmitting raw bits over the network. At the phys-
ical layer, bits are encoded as voltage signals. A bit stream is trans-
mitted by modulating the electrical signal on an interconnect (e.g.,
coaxial cable). It is not as simple as translating the 1 to high volt-
age and 0 to low voltage because the receiver needs to be able to
detect when there are consecutive ones or zeros and know when
the sender has changed the signal. The inherent complexity at this
layer results from (1) the sender and receiver not sharing a hard-
ware clock (so they are asynchronous) and (2) the continuity of the
physical world. Thus, the digital abstraction cannot be assumed to
hold at this level. Furthermore, we must model the jitter and drift of
hardware clocks and the time an electrical signal takes to settle be-
fore it stabilizes to a high or low value. If the receiver samples the
interconnect at the wrong time, the signal may be misinterpreted by
the receiver. The goal is to design a protocol and define timing con-
straints to ensure the receiver samples the interconnect at the right
intervals to reliably decode the bit stream sent by the transmitter.

Many physical protocols exist, but we shall focus on the Biphase
Mark Protocol (BMP), which is used to transmit data in digital
audio systems and magnetic card readers (e.g., for credit cards).
The emulator is modularized: emulating another protocol requires
changing just a few small functions (about 30 lines of code).

Background and Related Work Physical layer protocols have
been a canonical challenge problem in the formal methods com-
munity. Recent work uses decision procedures (more precisely,
satisfiability modulo theories) and model-checking to verify their
correctness (Brown and Pike 2006); these results compare favor-
ably to previous efforts using mechanical theorem-proving, which
required thousands of manual proof steps (Moore 1994; Vaan-
drager and de Groot 2004). Indeed, the emulator described here
is essentially refined from its high-level specification in a model
checker (Brown and Pike 2006). Given the success of these formal
verification techniques—which prove correctness—what interest is
there in simulation?

There are at least a few responses. To begin with, it is not always
the case that the constraints can be expressed in a decidable theory.
In particular, timing constraints that contain non-linear inequalities

1 2009/6/14

cannot be decided (in this case, it so happens that our expression
of the BMP constraints are linear). Furthermore, decision proce-
dures and model-checkers are complex and may contain bugs, or
the model itself may contain bugs. Both cases may lead to vacuous
proofs, but because the “execution” of a model-checker’s model is
symbolic, it can be difficult to sanity-check the correctness of the
model or tool. An emulator, however, is executed on concrete data.
Another motivation is that even if there are no bugs in a formal
model, a proof of correctness is only as good as the connection be-
tween the model used in the proof and its fidelity to the implemen-
tation. The components of a Haskell emulator can be, in principle,
refined into digital hardware (Sheeran 2005), and the QuickCheck-
generated data can be used not only to drive the emulator, but as
test-vectors for the implemented hardware. Finally, as we discuss
in Section 5, QuickCheck can be used as a “probability calculator”
for reliability analysis of digital systems, something that cannot be
done easily with current formal verification tools.

The work described here is part of a larger framework being de-
veloped by the two authors Pike and Goodloe for the purpose of
building emulators for real-time safety-critical distributed systems
under a NASA contract. On top of the emulator described here, we
have built infrastructure to simulate a serial broadcast bus with mul-
tiple receivers and cyclic redundancy checks over the data by the
receivers. Functional languages make constructing the additional
emulator machinery easy; for example, a serial bus emulator is con-
structed by doing little more than mapping the emulator described
here over a list of receivers.

2. Biphase Mark Protocol (BMP)

1 1 0 1 0 0
Bits

BMP

Clock

Period Encoded Bit

Figure 1. BMP Encoding of a Bit Stream

We begin by describing the protocol. The simple portion of the
protocol is the encoding of a bit stream by the transmitter. Consider
Figure 1, where the top stream is the bit stream to be transmitted
and the middle stream is the transmitter’s clock. In BMP, every
encoded data bit is guaranteed to begin with a transition marking
a clock event; that is, the transmitter begins an encoded bit by
modulating the signal on the interconnect. The value of the encoded
bit is determined by the presence (to encode a 1) or absence (to
encode a 0) of a transition in the middle of the encoded bit. Thus,
a 0 is encoded as either two sequential low or high signals (e.g., 00
or 11), while a 1 is encoded as either a transition from high to low
or low to high (e.g., 01 or 10).

The central design issue for the receiver is to extract a clock signal
from the combined signal reliably. The receiver has two modes, a
scanning mode in which it attempts to detect a clock event marking
the first half of an encoded bit, and a sampling mode in which it
assumes that sufficient synchrony has been established to simply
sample the signal at some point while the second half of the bit is
being transmitted.

In each of these modes, real-time constraints must be met to ensure
correct operation. To see why, consider Figure 2 which represents
a hypothetical plot over time of the strength of a signal sent by
a transmitter. The period is the nominal interval between clock
signal transitions, as shown in Figure 1. For some portion of the

Period

SettleStable

1

0
? Sampled

Value

Time

Signal
Strength

Figure 2. Signal Strength Over Time

period, the signal is stable. During the stable interval, the signal is
guaranteed to be sufficiently high or low (in the figure, it is high)
so that if the receiver samples the signal then, it is guaranteed to
be sampled correctly. During the remainder of the period, however,
the signal is settling, so the receiver nondeterministically interprets
the signal as high, low, or indeterminate.

The real-time constraints on when the receiver scans and samples,
described in the following section, are the key to the protocol
correctness.

3. Real-Time Parameters and Constraints
We approximate dense real-time using double-precision floating
point numbers in Haskell:

type Time = Double

Real-time parameters associated with transmitter and receiver are
captured in a data type. Simulation runs are executed over instances
of this data type. (We affix a ‘t’ or ‘r’ to the parameter names to
remind ourselves whether they’re associated with the transmitter,
tx, or receiver, rx.)

data Params = Params
{ tPeriod :: Time -- ^ Tx’s nominal clock period.
, tSettle :: Time -- ^ Maximum settling time.
, rScanMin :: Time -- ^ Rx’s min scan duration.
, rScanMax :: Time -- ^ Rx’s max scan duration.
, rSampMin :: Time -- ^ Rx’s min sampling duration.
, rSampMax :: Time -- ^ Rx’s max sampling duration.
} deriving (Show, Eq)

The field tPeriod contains the nominal period of the transmitter.
The field tSettle contains the maximum settling duration for the
signal—we use the maximum possible settling interval so that the
model is as pessimistic as possible, since the value of the signal
is indeterminate while settling. (We do not need to keep track of
tStable since we can compute it by tPeriod - tSettle.) We
then have fields containing the minimum and maximum real-time
values that bound the intervals of time that pass between successive
scanning or sampling by the receiver. The difference between the
minimum and maximum values captures the error introduced by
clock drift and jitter. Indeed, these bounds are used to capture the
cumulative error in both the transmitter’s and receiver’s clock. By
ascribing the cumulative error to the receiver in the model, we
can assume the transmitter’s clock is error-free and always updates
at its nominal period—otherwise, we would have fields recording
minimum and maximum tPeriod intervals—so it is a modeling
convenience.

We can now define a relation containing a conjunction of con-
straints over the parameters that (we hope!) ensure correct op-
eration. These timing constraints are at the heart of what makes
demonstrating the correctness of physical layer protocols difficult.

2 2009/6/14

1 correctParams :: Params → Bool
2 correctParams p =
3 0 < tPeriod p
4 && 0 ≤ tSettle p
5 && tSettle p < tPeriod p
6 && 0 < rScanMin p
7 && rScanMin p ≤ rScanMax p
8 && rScanMax p < tStable
9 && tPeriod p + tSettle p < rSampMin p

10 && rSampMin p ≤ rSampMax p
11 && rSampMax p < tPeriod p + tStable - rScanMax p
12 where tStable = tPeriod p - tSettle p

Some of the constraints are simply “sanity constraints” to ensure
time is positive (e.g., the constraints on lines 3, 4, and 6) or that
a minimum bound is no greater than a corresponding maximum
bound (e.g., the constraints on lines 7 and 10). The other constraints
are more interesting and derive from a designer’s domain knowl-
edge regarding the protocol. For example, the constraint on line 9
ensures that even if rx detects the first half of an encoded bit too
early (i.e., just after it starts modulating at the beginning of the set-
tling interval), it waits until the end of the settling interval plus the
entire period (containing the stable interval of the first half of the
bit and the settling interval of the second half of the bit) before sam-
pling. This ensures rx does not sample before the stable interval of
the period containing the second half of the bit.

These constraints are complex and we want to simulate the proto-
col’s execution to ensure they are correct and if they are, that our
implementation satisfies them.

4. The Emulator
So far, we have described the protocol and the real-time constraints
we posit it must satisfy. To simulate it, we need an executable
model. We begin by describing a model of real-time for the em-
ulator then the emulator itself.

4.1 Model of Time

Our model of time borrows from the discrete-event simulation
model (Dutertre and Sorea 2004; Schriber and Brunner 1999).
In this model, each independent real-time component, C, in a
system possesses a timeout variable that ranges over Time. That
timeout variable denotes the point in time at which C will make
a state transition. The value of C’s timeout variable is always in
the future or the present; when it is at the present, C exercises
a state transition, and its timeout variable is updated (possibly
nondeterministically) to some point strictly in the future.

In our case, the transmitter and receiver each possess a timeout vari-
able, which we denote as tclk and rclk, respectively. Intuitively,
these values “leap frog” each other. The least-valued timeout is con-
sidered to be at the present, and so that component executes. Of
course, one timeout might be significantly less than the other and
will make successive transitions before the other component pos-
sesses the least-valued timeout.

The primary advantage of this model of time is that it is simple: we
do not need a special semantics to model real-time execution.

4.2 Emulator Architecture

In Figure 3, we show an abstract representation of the system as it
is modeled. We describe the components below.

The Transmitter The transmitter is comprised of three Haskell
functions (and some small helper functions): an environment tenv,
encoder tenc, and the transmitter’s clock, tclock. Of these, only
the encoder is protocol-specific; the remainder are generic infras-
tructure.

tclock

tenv tenc tsignal

tx

rclockrclk
tclk

rdec

rx

Figure 3. Emulator Architecture

The environment tenv simply returns a new random bit to send.
Regarding the timeout function tclock, recall from Section 3 that
in our model, we attribute errors to the receiver. Thus, transmitter’s
timeout is updated deterministically: each application of tclock
update’s tx’s timeout by exactly tPeriod p. This leaves only the
transmitter’s encoder tenc. This function is the protocol-specific
portion of the transmitter’s definition. The function has three possi-
ble branches. If the transmitter is not in the middle of sending an en-
coded bit, it may nondeterministically (using the System.Random
library) idle the signal (i.e., not modulate the signal), or it may send
the first half of an encoded bit. Otherwise, it encodes the second
half of a bit.

The Receiver Architecturally, the receiver is simpler than the
transmitter since it only contains a clock and a decoder. However,
both of their definitions are more complex: rx’s clock is more
complex because we capture the effects of drift, jitter, and so forth
here, so the timeout updates nondeterministically (again using the
System.Random library); rx’s decoder is more complex because
here we model whether rx captures the signal depending on the
relationship between tx’s and rx’s timeouts.

The receiver’s timeout function updates the timeout nondeterminis-
tically depending on which of two modes rx is in. If rx is expecting
the first half of an encoded bit (so in its scanning mode), it up-
dates the timeout rclk to some random value within the inclusive
range [rclk + rScanMin p, rclk + rScanMax p], where p
is an instance of Params defined in Section 3. If rx is in the sam-
pling mode, it similarly updates its timeout to some random value
within [rclk + rSampMin p, rclk + rSampMax p].

As mentioned, the decoder rdec is where we model the effects
of incorrectly sampling the signal. The decoder follows the BMP
protocol to decode an incoming signal if stable is true, and fails
to detect the signal properly otherwise. The function stable takes
rx’s and tx’s state (implemented as data types) and returns a
boolean:

stable :: Params → Rx → Tx → Bool
stable p rx tx =

not (changing tx)
| | tclk tx - rclk rx < tPeriod p - tSettle p

Recall that tclk and rclk are the timeouts. The value of changing
tx is a boolean that is part of tx’s state—it is true if tx is modu-
lating the signal in the next period. Thus, the function stable is
true if either the signal is not going to modulate (so that even if it
is sampled during the settling interval, it is sampled correctly), or
the receiver’s timeout falls within the stable interval—recall Fig-
ure 2. If stable is false, we return the opposite value of the signal
being sent by the transmitter. This ensures our emulator is overly-
pessimistic and captures potentially metastable events even if they
may not result in a faulty signal capture in reality.

Wiring The Transmitter and Receiver Together The function
transition causes either tx or rx to execute a state-update. The
function takes a set of real-time parameters, the receiver’s and
transmitter’s states, and return new states (within the IO monad).

3 2009/6/14

transition :: Params → Rx → Tx → IO (Rx, Tx)
transition p rx tx
| tclk tx ≤ rclk rx

= do tx’ ← txUpdate p tx
return (rx {synch = False}, tx’)

| otherwise
= do rx’ ← rxUpdate p rx tx

return (rx’, tx)

The txUpdate function updates tx’s state by applying the func-
tions tenv, tenc, and tclock. Likewise for rxUpdate, except
rxUpdate takes tx’s state too, as based on the relationship between
tx’s timeout and its own, it may sample the signal correctly or not.
Whether tx or rx is updated depends on which timeout is least—if
they are equal, we arbitrarily choose to update tx’s state.

Executing this function takes one “step” of the discrete-event emu-
lator. We initialize the state of the transmitter and receiver, and then
iteratively call the transition function for some user-specified
number of rounds.

5. QuickCheck: Automatically Generating
Timing Parameters

QuickCheck is a popular tool for automatically testing programs.
Because our emulator itself generates random values (e.g., timeout
updates for rx), the emulator executes within the IO monad; there-
fore, we use a monadic extension of QuickCheck (Claessen and
Hughes 2002).

Test-Case Generation Our first task is to generate parameters
that satisfy the correctParams function defined in Section 2. The
naı̈ve approach is to generate random instances of the Params
data type and throw away those instances that do not satisfy
correctParams. Unfortunately, this approach generates almost
no satisfying instances because so few random parameters satisfy
the constraints.

Therefore, we define a custom generator. However, we have the
following problem: the set of inequalities in correctParams are
circular and not definitional. The conjuncts of Params cannot be
placed in a linear order such that each constraint introduces no more
than one new parameter. Thus, we cannot sequentially generate
parameters that satisfy them.

Our solution is to define a generator that over-approximates the in-
equalities in correctParams. For example, we can replace any oc-
currence of the parameter tSettle p on the right-hand side of ≤
with the parameter tPeriod p, since the latter is guaranteed to be
larger than the former. By over-approximating, we can rewrite the
inequalities so that each constraint introduces just one new parame-
ter. This over-approximation is “close enough” so that a large num-
ber of generated instances satisfy correctParams—we can then
prune out the few instances that do not satisfy correctParams.

Validation The following is the fundamental correctness property
we wish to validate: whenever the receiver has captured (what it
believes to be) the second half of an encoded bit, the bit it decodes
is the one that tx encoded. (Again, Rx and Tx are the data types
containing the receiver’s and transmitter’s respective state.)

bitsEq :: Rx → Tx → Bool
bitsEq rx tx = tbit tx == rbit rx

In the property, tbit tx is the bit that tx is encoding, and rbit
rx is the bit rx has decoded.

QuickChecking this property over millions of simulation runs sug-
gests (but of course does not prove) that our parameters are indeed

correct. And it is fast. On a commodity laptop (MacBook Pro, 2.5
GHz Intel Core 2 Duo with 4 GB of memory), our emulator auto-
matically generates approximately 100,000 simulations of the pro-
tocol in a minute.2

As with emulators in other programming languages, the efficacy of
our test-bed for discovering timing errors is contingent upon the
number of and duration of test runs, the coverage achieved by the
generated test data, and the significance of the timing violation.

QuickCheck as a Probability Calculator In standard practice,
QuickCheck is used to validate a property and to return a coun-
terexample otherwise. This usage model makes sense when verify-
ing that programs operate correctly over discrete data such as lists,
trees, and integers. In real-time systems, however, we identify a
novel usage of QuickCheck as a probability calculator.

For (a slightly contrived) example, suppose that for some legacy
hardware configuration, we know that the settling interval is no
more than 5% of the period, and the receiver’s bounds on scan-
ning and sampling ensure it consistently captures the data. Later,
suppose the receiver is to be used in a new configuration in which
the settling interval may be up to 15% of the period. The receiver’s
bounds on scanning and sampling cannot be changed, since they
are determined by its legacy clock. Now we ask what percentage of
bits will the receiver incorrectly decode?

To answer this question, we generate a fixed number of tests and
determine what percentage of them fail. To facilitate this use of
QuickCheck, we slightly extend its API.3 For the example de-
scribed, generating 100,000 tests results in a failure rate (i.e., the
property bitsEq above fails) of approximately 0.2%. Depending
on the performance of error-checking codes and other constraints,
this bit-error rate may be satisfactory.

Another use of QuickCheck as a “probability calculator” is to com-
pute the probability of cyclic redundancy checks capturing bit-
transmission errors under different fault scenarios (Driscoll et al.
2003; Paulitsch et al. 2005). In general, this appears to be a power-
ful application of QuickCheck for testing stochastic systems.

Using QuickCheck as a probability calculator depends on QuickCheck
generating a sufficiently large number of appropriately-distributed
tests. We have not verified the extent to which this hypothesis holds
in various domains.

6. Conclusion
In this report, we demonstrate via example that functional languages—
particularly Haskell—and their associated tools (i.e., QuickCheck)
are unexpectedly well-suited to build real-time emulators. We have
applied QuickCheck in two new ways—to generate real-time pa-
rameters and as a probability calculator for reliability analysis. We
hope this report motivates others to explore the use of functional
programming for building emulation test-beds for real-time sys-
tems.

Acknowledgments
This work is supported by NASA Contract NNL08AD13T from
the Aviation Safety Program Office. We thank for the following
individuals for their advice and guidance on this work: Ben Di

2 These performance results use a single core and suppress output to stan-
dard out. While there are no special performance optimizations made to
the code, we use the System.Random.Mersenne Haskell library for fast
random-number generation.
3 A corresponding patch is available at http://www.cs.indiana.edu/
∼lepike/pub pages/qc-biphase.html.

4 2009/6/14

Vito of the NASA Langley Research Center; Levent Erkok, Dylan
McNamee, Iavor Diatchki, and Don Stewart, and John Launchbury
of Galois, Inc.; Rebekah Leslie of Portland State University; and
Andy Gill of the University of Kansas; and Bastiaan Heeren of the
Open Universiteit Nederland.

References
Geoffrey M. Brown and Lee Pike. Easy parameterized verification

of biphase mark and 8N1 protocols. In TACAS, volume 3920
of Lecture Notes in Computer Science, pages 58–72. Springer,
2006. Available at http://www.cs.indiana.edu/∼lepike/
pub pages/bmp.html.

Koen Claessen and John Hughes. Quickcheck: A lightweight tool
for random testing of haskell programs. In ACM SIGPLAN
Notices, pages 268–279. ACM Press, 2000.

Koen Claessen and John Hughes. Testing monadic code with
QuickCheck. In In Proc. ACM SIGPLAN workshop on Haskell,
pages 65–77, 2002.

Kevin Driscoll, Brendan Hall, Håkan Sivencrona, and Phil Zum-
steg. Byzantine fault tolerance, from theory to reality. In Com-
puter Safety, Reliability, and Security, LNCS, pages 235–248.
SAFECOMP, Springer-Verlag, September 2003.

Bruno Dutertre and Maria Sorea. Modeling and verification of a
fault-tolerant real-time startup protocol using calendar automata.
In Formal Techniques in Real-Time and Fault-Tolerant Systems,
volume 3253 of LNCS. Springer-Verlag, 2004.

J Strother Moore. A formal model of asynchronous communica-
tion and its use in mechanically verifying a biphase mark pro-
tocol. Formal Aspects of Computing, 6(1):60–91, 1994. URL
citeseer.ist.psu.edu/moore92formal.html.

Michael Paulitsch, Jennifer Morris, Brendan Hall, Kevin Driscoll,
Elizabeth Latronico, and Philip Koopman. Coverage and the
use of cyclic redundancy codes in ultra-dependable systems. In
International Conference on Dependable Systems and Networks
(DSN 2005), pages 346–355, 2005.

Thomas J. Schriber and Daniel T. Brunner. Inside discrete-event
simulation software: how it works and why it matters. In Winter
Simulation Conference, pages 72–80, 1999.

M. Sheeran. Hardware design and functional programming: a
perfect match. Journal of Universal Computer Science, 11(7):
1135–1158, 2005.

F. W. Vaandrager and A. L. de Groot. Analysis of a Biphase
Mark Protocol with Uppaal and PVS. Technical Report NIII-
R0455, Nijmegen Institute for Computing and Information Sci-
ence, 2004.

A. Biphase.hs
module Biphase where

-- A faster random-number generator
import System.Random.Mersenne

---------- DATATYPES ---------------------------------------
type Time = Double

-- | Realtime input parameters.
data Params = Params

{ tPeriod :: Time -- ^ Tx’s clock period.
, tSettle :: Time -- ^ Nominal signal settling time.
, rScanMin :: Time -- ^ Rx’s min scan duration.
, rScanMax :: Time -- ^ Rx’s max scan duration.
, rSampMin :: Time -- ^ Rx’s min sampling duration.

, rSampMax :: Time -- ^ Rx’s max sampling duration.
} deriving (Show, Eq)

data TState = SendFirst -- ^ Sending the 1st datum;
| SendSecond -- ^ Sending the 2nd.
deriving (Show, Eq)

data Tx = Tx
{ tstate :: TState -- ^ Tx’s state.
, tsignal :: Bool -- ^ Signal being sent.
, tbit :: Bool -- ^ Encoded bit to be sent.
, changing :: Bool -- ^ T: modulating the signal; F o/w.
, tclk :: Time -- ^ Tx’s timeout.
} deriving (Show, Eq)

data RState = RcvFirst -- ^ Expecting the 1st datum;
| RcvSecond -- ^ Expecting the 2nd.
deriving (Show, Eq)

data Rx = Rx
{ rstate :: RState -- ^ Rx’s state.
, rsignal :: Bool -- ^ Current datum being received.
, rbit :: Bool -- ^ Decoded bit.
, rclk :: Time -- ^ Rx’s timeout.
, synch :: Bool -- ^ Rx just transitioned from

-- RcvSecond to RcvFirst
-- (capturing a bit).

} deriving (Show, Eq)

--

-- Helper for Mersenne randoms
randomRng :: (Time, Time) → IO Time
randomRng (low, high) = do r ← randomIO

return $ low + (r ∗ (high - low))

---------- INITIAL STATE/CLOCKS ----------------------------
initTx :: Params → IO Tx
initTx p = do t ← randomRng (0, tPeriod p - tSettle p)

bit ← randomIO
return Tx { tstate = SendFirst

, tsignal = True
, tbit = bit
, changing = False
, tclk = t}

initRclock :: Params → IO Time
initRclock p = do r ← randomRng (0, rScanMax p)

-- we want a random in [a, a)
if r == rScanMax p

then initRclock p
else return r

initRx :: Params → IO Rx
initRx p = do r ← initRclock p

bit ← randomIO
return Rx { rstate = RcvFirst

, rsignal = True
, rbit = bit
, rclk = r
, synch = False}

--

---------- Tx UPDATE ---------------------------------------
-- |
tenv :: Tx → IO Tx
tenv tx = case tstate tx of

SendFirst → do ran ← randomIO
return tx {tbit = ran}

SendSecond → return tx

5 2009/6/14

-- | The transmitter’s encoder. Protocol-specific.
tenc :: Tx → IO Tx
tenc tx =

case tstate tx of
SendFirst →

do idle ← randomIO
if idle -- Idling

then return tx {changing = False}
-- 1st half of a new bit.
else return

tx { tsignal = ttoggle
, tstate = SendSecond
, changing = True}

SendSecond → return tx { tsignal = toggle
, tstate = SendFirst
, changing = changed toggle}

where toggle = if tbit tx
then ttoggle else tsignal tx

ttoggle = not $ tsignal tx
changed cur = cur /= tsignal tx

tclock :: Params → Tx → Tx
tclock p tx = tx {tclk = tPeriod p + tclk tx}

txUpdate :: Params → Tx → IO Tx
txUpdate p tx = do

tx’ ← tenv tx
tx’’ ← tenc tx’
return $ tclock p tx’’

--

---------- Rx UPDATE ---------------------------------------
-- | Correct update of rclk---helper
rclock :: Params → Rx → IO Time
rclock p rx =

let r = rclk rx
in case rstate rx of

RcvFirst →
randomRng (r + rScanMin p, r + rScanMax p)

RcvSecond →
randomRng (r + rSampMin p, r + rSampMax p)

stable :: Params → Rx → Tx → Bool
stable p rx tx =

not (changing tx)
| | tclk tx - rclk rx < tPeriod p - tSettle p

-- | The receiver’s decoder. Protocol-specific.
rdec :: Params → Rx → Tx → Rx
rdec p rx tx =

-- Are we in a "stable" part of the signal?
let badSignal = not $ tsignal tx

v = if stable p rx tx
then tsignal tx else badSignal

in case rstate rx of
RcvSecond → rx { rsignal = v

, rbit = rsignal rx /= v
, rstate = RcvFirst}

RcvFirst → rx { rsignal = v
, rstate = signal}

where signal = if v == rsignal rx
then RcvFirst
else RcvSecond

rxUpdate :: Params → Rx → Tx → IO Rx
rxUpdate p rx tx = do

let rx’ = rdec p rx tx
rchange = case (rstate rx, rstate rx’) of

(RcvSecond, RcvFirst) → True
_ → False

r ← rclock p rx’

return rx’ { rclk = r
, synch = rchange}

--

-- | Full state transition.
transition :: Params → (Rx, Tx) → IO (Rx, Tx)
transition p (rx, tx)
| tclk tx ≤ rclk rx = do

tx’ ← txUpdate p tx
return (rx {synch = False}, tx’)

| otherwise = do
rx’ ← rxUpdate p rx tx
return (rx’, tx)

putLnState :: Integer → (Rx, Tx) → IO ()
putLnState i (rx, tx) = do

putStrLn $ "States: " ++ (show $ tstate tx) ++ " "
++ (show $ rstate rx)

putStrLn $ "Clocks: "
++ (show $ tclk tx) ++ " "
++ (show $ rclk rx)

putStrLn $ "Bits: "
++ (show $ tbit tx) ++ " "
++ (show $ rbit rx)
++ " Signal: " ++ (show $ tsignal tx)
++ " " ++ (show $ rsignal rx)

putStrLn $ "i: " ++ (show i) ++ " Synch: "
++ (show $ synch rx) ++ "λn"

-- | Defines a "good" stop state: tx has sent the 2nd
-- signal bit and rx has sampled it.
stopState :: Rx → Bool
stopState rx = synch rx

execToStopState :: Bool → Params → Integer → (Rx, Tx) →
IO (Rx, Tx)
execToStopState output p i s = do

if output then putLnState i s else return ()
if stopState (fst s)

then return s
else execToStopState output p i =<< transition p s

-- | Exectuion of the protocol.
exec :: Bool → Params → Integer → (Rx, Tx) → IO (Rx, Tx)
exec output p i s = do

s’ ← execToStopState output p i s
if i < 1 then return s’

else exec output p (i-1) s’

-- | Begin a finite trace of length i from the initial
-- state. Either send one determined signal bit or a
-- series of nondeterministic signals.
startExec :: Bool → Params → Integer → IO (Rx, Tx)
startExec output p i = exec output p i =<< initState p

-- | The initial state.
initState :: Params → IO (Rx, Tx)
initState p = do

rx ← initRx p
tx ← initTx p
return (rx, tx)

B. BiphaseQC.hs
module Main

where

import Biphase
import Test.QuickCheck
import Test.QuickCheck.Monadic
import Test.QuickCheck.Gen

6 2009/6/14

-- | Number of rounds to execute
iter :: Integer
iter = 1

-- | Property should always hold for good parameters.
prop_correct :: Bool → Property
prop_correct output =

assertFinal output forallValidParams bitsEq

-- | Testing should fail on this property for some
-- percentage of tests.
prop_incorrect :: Bool → Property
prop_incorrect output =

assertFinal output forallInvalidParams bitsEq

-- | Did the receiver get the bits sent by the sender upon
-- synchronizing?
bitsEq :: (Rx, Tx) → Bool
bitsEq (rx, tx) = (tbit tx) == (rbit rx)

-- | Note: monadicIO (from QuickCheck) uses unsafeperformIO.
assertFinal :: Bool → ParamGen → ((Rx, Tx) → Bool) →
Property
assertFinal output genParams pred =

monadicIO $ genParams $ λp →
assert ◦ pred =<< run (startExec output p iter)

----------- SIMPLE MAIN FUNCTION (modify as needed) -------
main = do

putStrLn ""
putStrLn $ "Enter the number of bits to encode"

++ " (an integer between 1 and 100 million): "
s ← getLine
putStrLn $ "Show output for each test? (True or False)"
output ← getLine
let i = read s

in if i < 1 | | i > 10^8
then main
else quickCheckQuotientWith stdArgs {maxSuccess =

i} (prop_correct $ read output)

type ParamGen =
(Params → PropertyM IO ()) → PropertyM IO ()

-- | Generating correct params is "too hard" to do
-- procedurally, so we get close and then use a
-- predicate to make sure we’re only testing correct ones.
forallValidParams :: ParamGen
forallValidParams =

forAllM (genParams ‘suchThat‘ correctParams)

-- | Generate ∗almost∗ correct realtime parameters --- it’s an
-- overapproximation. We need to test them to ensure
-- correctness.
genParams :: Gen Params
genParams = do

-- arbitrary-sized clock period
tperiod ← choose (0, 100)
-- The remaining generated values are over-approximations.
tsettle ← choose (0, tperiod)
rscanmin ← choose (0, tperiod - tsettle)
rscanmax ← choose (rscanmin, tperiod)
rsampmin ← choose (tperiod + tsettle

, 2 ∗ tperiod - tsettle - rscanmax)
rsampmax ← choose (rsampmin

, 2 ∗ tperiod - tsettle - rscanmax)
return $ Params tperiod tsettle rscanmin

rscanmax rsampmin rsampmax

-- | Constraints are satisfied. Reproduced for genParams.
correctParams :: Params → Bool
correctParams p =

0 < tPeriod p -- tPeriod
&& 0 ≤ tSettle p -- tSettle
&& tSettle p < tPeriod p -- tSettle
&& 0 < rScanMin p -- rScanMin
&& rScanMin p ≤ rScanMax p -- rScanMax
&& rScanMax p < tStable -- rScanMax
&& tPeriod p + tSettle p < rSampMin p -- rSampMin
&& rSampMin p ≤ rSampMax p -- rSampMax
-- rSampMax
&& rSampMax p < tPeriod p + tStable - rScanMax p
where tStable = tPeriod p - tSettle p

--- GENERATING FAILING TESTS ---

forallInvalidParams :: ParamGen
forallInvalidParams =

forAllM (badGenParams ‘suchThat‘ incorrectParams)

-- Example in hte paper.
badGenParams :: Gen Params
badGenParams =

let tperiod = 100
tsettleNewMax = 15
tsettle = 5

in do
-- arbitrary-sized clock period
-- tperiod ← choose (0, 100)
-- The remaining generated values are over-approximations.
tsettle’ ← choose (0, tsettleNewMax)
rscanmin ← choose (0, tperiod - tsettle)
rscanmax ← choose (rscanmin, tperiod)
rsampmin ← choose (tperiod + tsettle

, 2 ∗ tperiod - rscanmax - tsettle
)

rsampmax ← choose (rsampmin
, 2 ∗ tperiod - rscanmax - tsettle
)

return $ Params tperiod tsettle’ rscanmin
rscanmax rsampmin rsampmax

-- Constraints are satisfied. Reproduced for genParams.
incorrectParams :: Params → Bool
incorrectParams p =

let tSettle’ = 5
in 0 < tPeriod p -- tPeriod

&& 0 ≤ tSettle’ --p -- tSettle
&& tSettle p < tPeriod p -- tSettle p
&& 0 < rScanMin p -- rScanMin
&& rScanMin p ≤ rScanMax p -- rScanMax
&& rScanMax p < tPeriod p - tSettle’ -- p -- rScanMax
&& tPeriod p + tSettle’ -- p

< rSampMin p -- rSampMin
&& rSampMin p ≤ rSampMax p -- rSampMax
&& rSampMax p < -- p -- rSampMax

2 ∗ tPeriod p - rScanMax p - tSettle’

7 2009/6/14

