IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO.5, MAY 2006 1

Comments

A Note on Inconsistent Axioms in Rushby’s
“Systematic Formal Verification for Fault-
Tolerant Time-Triggered Algorithms”

Lee Pike

Abstract—We describe some inconsistencies in John Rushby’s axiomatization of
time-triggered algorithms that he presented in these transactions and that he
formally specifies and verifies in the mechanical theorem-prover PVS. We present
corrections for these inconsistencies that have been checked for consistency in
PVS.

Index Terms—Formal methods, formal verification, time-triggered algorithms,
synchronous systems, PVS.

<+
1 INTRODUCTION

THIS comment’s purpose is to make a few minor corrections to
John Rushby’s paper, “Systematic Formal Verification for Fault-
Tolerant Time-Triggered Algorithms,” which appeared in vo-
lume 25, number 5 of these transactions [1].! Rushby presents four
principle assumptions (or axioms) about the behavior of time-
triggered systems. He describes his use of these axioms in the
systematic formal specification and verification of time-triggered
systems in the mechanical theorem-prover PVS [2]. Two of these
four axioms are inconsistent; in fact, one is inconsistent in three
separate ways. Once the axioms are made consistent, one axiom is
redundant; it is a corollary of the other. Finally, a contradiction can
be derived from another of the four axioms and some other minor
axioms in the formal specification. These inconsistencies appear in
both the printed paper and the PVS specifications, but, when the
printed axioms are ambiguous due to being more informally
stated, we defer to the PVS specifications.

We discovered these errors while attempting to interpret these
axioms by formally providing a model using theory interpretations
in PVS [3]. When a “canonical model” did not satisfy the axioms,
we quickly realized these axioms not only fail to model the
domain, but are, in fact, inconsistent. Once the errors were
discovered, it was fairly straightforward to mend them.”

This comment does not suggest a failure of formal verification.
Rushby is widely considered to be an expert (if not the expert) in
the mechanized verification of fault-tolerant real-time systems,
particularly in PVS. These errors escaped his attention, despite
formally verifying the theory. They also apparently escaped the
attention of the reviewers of these transactions, the reviewers of an

1. The mended formal specifications, along with a formal theory
interpretation, can be found at http://www.cs.indiana.edu/~lepike/pub_-
pages/time_triggered.html.

2. Paul Miner of the NASA Langley Formal Methods Group suggested
that the revisions made in Axioms 2 and 3 are necessary to axiomatize a
canonical clock. He also pointed out that these changes imply Theorem 5
holds.

o The author is with Galois Connections, 12725 SW Millikan Way, Suite
290, Beaverton, OR 97005. E-mail: leepike@galois.com.

Manuscript received 25 Apr. 2005; accepted 22 Mar. 2006; published online
24 May 2006.

Recommended for acceptance by T. Bell.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0098-0405.

0098-5589/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

IEEE workshop,® and the numerous researchers who have cited
this work, including this author.* Because these relatively
elementary errors went unnoticed by both Rushby and his peers,
this is further evidence that formal verification is crucial to ensure
the correctness of a specification. However, a mechanically
checked specification and verification is only as sound as one’s
axioms. The lesson here is the axiomatization of real-time systems
is extremely difficult and, to ensure that an axiomatization is
consistent and correctly models the intended domain, a formal
verification should include a demonstration that some canonical
implementation satisfies one’s formal specifications.

2 INCONSISTENCIES AND CORRECTIONS

We begin by stating Rushby’s definition of inverse clocks and
Clock Drift Rate Axiom.

Definintion 1 (Inverse Clock). An inverse clock for process p is a total
Sfunction C), : IR — IN.

The domain of an inverse clock is called realtime and the range is
called clocktime. The drift of nonfaulty clocks is bounded by a
realtime constant 0 < p < 1.

Axiom 1 (Clock Drift Rate).

(1 =p)(t1 —t2) < Cyp(t1) — Cp(t2) < (1 +p)(t1 — t2).

Theorem 1. Axiom 1 is inconsistent.

Proof. Let t5 > t;. Then, (1 — p)(t1 — t2) > (1 + p)(t1 — t2).]

Axiom 1 can be revised as follows:

Axiom 2 (Clock Drift Rate (First Revision)). Let t; > to. Then,
(1 =p)(t1 —t2) S Cp(tr) — Cp(t2) < (L4 p)(t1 — t2).

However, even this is unsatisfiable:

Theorem 2. Axiom 2 is inconsistent.

Proof. Let t; >t such that (1+p)(ti—1t2)—(1—p)(t1—
;) <1 and there exists no mneIN such that
(I=p)(t1 —t2) <n < (1+p)(ts — t2). o

We weaken the inequality by taking the floor and ceiling of the
drifts:

Axiom 3 (Clock Drift Rate (Second Revision)). Let ¢, > ty. Then,
[T =p)(ts = t2)] < Cpta) — Cp(t2) < T(1+ p)(tr — t2)] .

Even with these revisions, no function satisfying Axiom 3 is an
inverse clock, as defined by Definition 1.5

Theorem 3. No inverse clock satisfies Axiom 3.

Proof. By contradiction. The set IN is totally ordered with a least
element, so there exists some ¢ € IR such that C,(t) < C,(t) forall
t' € R. Let ¢ € IR, where ¢ < ¢, such that [(1 — p)(t —t")] > 0.

3. Rushby’s paper has not only appeared in these transactions since 1999,
but an earlier version appeared in the IEEE Proceedings of the Sixth Working
Conference on Dependable Computing for Critical Applications [4].

4. At the time of writing, Citeseer (http://citeseer.ist.psu.edu/) finds
16 citations and Google Scholar (http://scholar.google.com/) finds 50; the
number of peer-reviewed citations likely falls between these two data

oints.
P 5. It should already be intuitive that Definition 1 is incorrect since, e.g., a
canonical inverse clock function like the floor function does not satisfy
Axiom 3.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 5,

By Axiom 3, [(1—p)(t—t")] + C,(t") < Cy(t). However, be-
cause [(1—p)(t—1t")] is assumed to be strictly greater than
zero, C,,(t") < C,(t), contradicting our assumption that C,(t) is
least. O

We therefore extend the range of an inverse clock from IN to Z.

Defiinition 2 (Revised Inverse Clock). An inverse clock for process p
is a total function C, : IR — Z.

Note that the inconsistencies in Axioms 1 and 2 hold regardless of
whether an inverse clock is defined by Definition 1 or Definition 2.

A second inconsistent axiom is the Monotonicity Axiom.
Nonfaulty clocks are monotonic:

Axiom 4 (Monotonicity). t; < t, implies C,(t1) < Cp(t2).

Theorem 4. Axiom 4 is inconsistent (with respect to either Definition 1
or Definition 2).

Proof. Because < is a total order over IR, Axiom 4 implies that C,
is an injective function, but there exists no injection from the
reals into the integers (or natural numbers). O

A satisfiable revision of monotonicity weakens the consequent
slightly:

Axiom 5 (Revised Monotonicity). | < ty implies Cy(t1) < Cp(t2).

Axiom 5 now becomes a corollary of Axiom 3:
Theorem 5. Let Axiom 3 hold. Prove Axiom 5.
Proof. By Axiom 3, Cy(t2) > Cp(t1) + [(1 — p)(t2 — t1)]. O

The third inconsistency can be derived from the axiomatization
of when messages are sent and received by nonfaulty processes.
Let senty(q, m,t) be a relation that holds if process p sends
message m to process ¢ at realtime ¢. Similarly, let recv,(p, m, t) be
a relation that holds if process ¢ receives message m from process p
at realtime ¢. The following axiom relates the delay between when
a nonfaulty process sends a message and when a nonfaulty process
receives it. Let the maximum delay be a realtime constant such that
5> 0.

Axiom 6 (Maximum Delay). sent,(q, m, t) if and only if there exists
some realtime delay 0 < d < é such that recv,(p, m, t + d).

Theorem 6. If 6 > 0, then Axiom 6, together with other minor axioms
and constraints in the formal specification, is inconsistent.

Proof. (Sketch.) The essential problem is that the existential
quantifier is within the scope of the biconditional operator in
Axiom 6. As stated, Axiom 6 implies that, for all realtimes ¢, if
there exists a 0<d<§ such that recv,(p, m, t+d), then
sent,(gq, m, t). It can be shown that there exists some t such
that recv,(p, m, t + d). Because d ranges over the interval [0, ¢],
there exists a realtime ¢’ and realtime delay 0 < d’ < ¢ such that
d #d and t'+d =t+d, implying that sent,(q, m,t) and
sent, (g, m, t'), where the distance between ¢ and ¢’ is less than
6. However, by other constraints, no two separate realtimes
within 6 of each other satisfy sent. O

A possible consistent revision is as follows:

Axiom 7 (Revised Maximum Delay). There exists some 0 < d < 6
such that senty(q, m, t) implies recv,(p, m, t + d) and there exists
some 0 < d' < 6 such that recvg(p, m, t) implies sent,(q, m, t —d').

MAY 2006

ACKNOWLEDGMENTS

This work was completed while the author was with the NASA
Langley Research Center Formal Methods Group.

REFERENCES

[1] J. Rushby, “Systematic Formal Verification for Fault-Tolerant Time-
Triggered Algorithms,” IEEE Trans. Software Eng., vol. 25, no. 5, pp. 651-
660, Sept. 1999.

[2] S. Owre, J. Rusby, N. Shankar, and F. von Henke, “Formal Verification for
Fault-Tolerant Architectures: Prolegomena to the Design of PVS,” IEEE
Trans. Software Eng., vol. 21, no. 2, pp. 107-125, Feb. 1995.

[3] S.Owre and N. Shankar, “Theory Interpretations in PVS,” Technical Report
SRI-CSL-01-01, SRI Int’l, Apr. 2001, http://pvs.csl.sri.com/
documentation.shtml.

[4] J. Rushby, “Systematic Formal Verification for Fault-Tolerant Time-
Triggered Algorithms,” Dependable Computing for Critical Applications—6,
vol. 11, pp. 203-222, Mar. 1997.

> For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

