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ABSTRACT
A verifying compiler is one that emits both object code
and a proof of correspondence between object and source
code.1 We report the use of ACL2 in building a verifying
compiler for µCryptol , a stream-based language for encryp-
tion algorithm specification that targets Rockwell Collins’
AAMP7 microprocessor (and is designed to compile effi-
ciently to hardware, too). This paper reports on our suc-
cess in verifying the “core” transformations of the compiler
– those transformations over the sub-language of µCryptol
that begin after “higher-order” aspects of the language are
compiled away, and finish just before hardware or software
specific transformations are exercised. The core transforma-
tions are responsible for aggressive optimizations. We have
written an ACL2 macro that automatically generates both
the correspondence theorems and their proofs. The compiler
also supplies measure functions that ACL2 uses to automati-
cally prove termination of µCryptol programs, including pro-
grams with mutually-recursive cliques of streams. Our ver-
ifying compiler has proved the correctness of its core trans-
formations for multiple algorithms, including TEA, RC6,
and AES. Finally, we describe an ACL2 book of primitive
operations for the general specification and verification of
encryption algorithms.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—correctness proofs, formal methods, reliability ; D.3.4

∗The ACL2 books associated with this paper can be
retrieved at 〈http://www.cs.indiana.edu/∼lepike/pub
pages/acl2.html〉.
†Present Address: Microsoft, Redmond, Washington, USA.
1Our use of the term “verifying compiler” differs from Tony
Hoare’s use of it in describing his “Grand Challenge” [10].
However, the fundamental goal of increased software assur-
ance via proof is shared by a verifying compiler (in our sense)
and the Grand Challenge. Henceforth in this paper, “veri-
fying compiler” should be understood in our sense only.
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1. INTRODUCTION
A high-assurance compiler is a compiler associated with

some strong body of evidence for its correctness. High-
assurance compilers are sought in the domain of cryptog-
raphy, in which they are security-critical to their users. An
incorrect design could prevent communication between two
parties or allow a malicious intruder to intercept encrypted
communication, leading to loss of property or even life. Fur-
thermore, some customers of cryptographic compilers con-
sider their cryptographic algorithms to be classified, in effect
placing a wall between the end-users and the developers of
the language and compiler. The customers may even con-
sider the developers to be untrusted (e.g., if the customers
and developers are citizens of different nations), and there-
fore require assurance that a compiler does not contain ma-
licious code (e.g., a back door).

The evidence provided to demonstrate a compiler is high-
assurance can vary in both kind and strength. Some exam-
ples of evidence for compiler correctness include widespread
and longterm use without incident (such as with the gcc
compiler for C ), substantial testing, certification by some
authority (e.g., Common Criteria certification [3] or FAA
software certification [6]), or as we consider, a mathematical
proof of correctness.

A proof provides a strong form of assurance that com-
plements and may even subsume traditional testing and
manual-inspection methods. Widespread and long-term use
as well as testing can miss bugs when compiling uncon-
ventional but well-formed language constructs or when ex-
otic optimizations are enabled. Certification oftentimes at-
tempts to ensure a high-quality process for software devel-
opment is followed, relying on the tacit assumption that a
good process more likely yields a good product. Mathemati-
cal proof, on the other hand, ensures that requirements and
assumptions for correct behavior are made explicit, and a
proof is about (a model of) the artifact itself rather than
the design process.
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There are two approaches for providing assurance of com-
piler correctness via mathematical proof. The first approach
is to build a verified compiler in which the transformations of
the compiler are proved to be correct for all (well-defined)
programs. A more modest approach is to build a verify-
ing compiler.1 A verifying compiler is not itself verified, but
each compilation it performs is. That is, given a program,
a verifying compiler produces two outputs: (1) a compiled
program, and (2) a proof of correspondence between the ob-
ject code and the source code. Some of the difficulties in
producing a verifying compiler are orthogonal to producing
a verified compiler. A verified compiler requires a monolithic
proof of correctness. The proof is deep and difficult. On the
other hand, the proofs associated with a verifying compiler
are much shallower. A proof generated by a verifying com-
piler need only demonstrate correspondence for a concrete
program.

The essential difficulty with building a verifying compiler
is that the verification must be automated. The compiler
must generate both the correspondence theorem statement
and its proof with little or no human guidance. The problem
of automation, for a production-quality compiler and real-
world programs, is the central one addressed in this paper.

For the proofs associated with either a verified or verifying
compiler, a formal verification tool, such as a mechanical
theorem-prover, is needed. For a verified compiler, a proof of
correctness will be large and tedious. A mechanical theorem-
prover can assist in proof management as well as ensuring
no corner-case is glossed over. For a verifying compiler, a
formal verification tool is essential; paper and pencil proofs
are not automated.

In this paper, we show how the ACL2 mechanical theorem-
prover [12] can be used to build the verification infrastruc-
ture for the core transformations of a compiler for µCryptol
(pronounced “micro cryptol”), a derivative of Cryptol [25].
Like Cryptol , µCryptol is designed for the specification of
symmetric-key cryptographic algorithms, but µCryptol and
its compiler, mcc, are particularly designed for the efficient
compilation to both hardware and embedded microproces-
sors without dynamic memory management (the ‘µ’ should
not be taken to imply that µCryptol is a “toy” language;
rather, the language should be considered to be a full-featured
derivative of Cryptol particularly designed for compilation
to embedded software platforms as well as hardware).

We have developed a verification infrastructure for the
core transformations of the µCryptol compiler. The full in-
frastructure is depicted in Figure 1 and discussed in detail in
Section 2. Briefly, the portion of the infrastructure described
herein begins at the point at which the language constructs
of µCryptol can be shallowly embedded into ACL2 ; most no-
tably, we begin after pattern matching has completed and
true infinite streams have been transformed into indexed
form in which each (possibly nested) stream is represented
as a top-level function from indexes to values, as described
in Section 3. The core transformations are responsible for
aggressive target-independent optimizations, and they end
just before architecture-specific (i.e. software vs. hardware)
transformations are exercised. At this point the program is
in canonical form (also described in Section 3). Our ACL2
macro automatically generates a termination proof for both
the indexed form and the canonical form of the µCryptol pro-
gram, and then proves that the two forms are input-output
equivalent.

We have demonstrated our approach by verifying the out-
put generated for a variety of simple µCryptol programs
(e.g., the Fibonacci and factorial functions) as well as the
more substantial TEA [29], RC6 [23], and AES [5] encryp-
tion algorithms, all of which are included in the associated
ACL2 books.2

In summary, this paper and its associated files make the
following contributions:

• A methodology for building a verifying compiler for
µCryptol using ACL2 including a methodology for gen-
erating automated equivalence proofs between (styl-
ized) recursive programs and their iterative forms.

• A framework and translator for the shallow embedding
of µCryptol into ACL2 .

• A method for automatically generating ACL2 measure
functions and automated termination proofs in ACL2
of (potentially) mutually-recursive stream definitions
from the µCryptol well-definedness algorithm [25].

• An ACL2 book of executable primitive operations use-
ful for specifying symmetric key encryption algorithms
(including modular arithmetic, arithmetic in Galois
Fields, bitvector operations, and vector operations).

The remainder of the paper is organized as follows. Sec-
tion 2 overviews the infrastructure of the verifying portion
of the compiler and makes more precise what our correspon-
dence theorems mean. The µCryptol language and the mcc

compiler are described in Section 3; we give a feel for the
language by describing the specification of the factorial func-
tion. We particularly focus on establishing well-definedness
of cliques of mutually-recursive streams and the core trans-
formations of the compiler. In Section 4, we begin by de-
scribing the embedding of µCryptol into Common Lisp, fo-
cusing particularly on embedding types and on the ACL2
book of µCryptol primitive operations. We then describe au-
tomated termination proofs in ACL2 for mutually-recursive
cliques of streams and finally the automated generation of
both theorem statements and proofs in ACL2 . Section 5
describes related work, and concluding remarks are given in
Section 6.

Familiarity with ACL2 and Common Lisp will help the
reader but is not required to understand the majority of our
presentation.

2. VERIFYING COMPILER OVERVIEW

2.1 Proof Infrastructure
Figure 1 shows the overall proof architecture of the veri-

fying µCryptol compiler. The architecture is split into three
blocks, respectively labeled front-end, core, and back-end.
These blocks correspond to the architecture of both lan-
guage compilation and verification. To avoid confusion, we
call the portion of the verifying compiler that compiles the
language the compiler and the portion that carries out the
correspondence proofs the verifier. The second author, who
independently designed µCryptol and implemented mcc, de-
scribes the compiler in detail elsewhere [25], while we focus

2The associated books currently depend on the Rockwell
Collins’ super-ihs book, which is slated for public release.
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Figure 1: Verifying Compiler Proof Architecture

on the verifier in this paper. In the figure, dashed lines repre-
sent in-progress portions of the verifying compiler, whereas
solid lines represent finished work. For completeness, we
briefly describe the verifier in full below, and make a few
comments about in-progress work in Section 6.

To begin, a shallow embedding from language L1 to lan-
guage L2 is a specification of the semantics of some well-
formed formula (WFF) of L1 in the syntax of L2; a shallow
embedding is just a translation between languages. A shal-
low embedding contrasts with a deep embedding in which
the abstract syntax of L1 is represented in L2 (usually by an
algebraic datatype of L2), and a meaning function is con-
structed that maps instances of the datatype to WFF of
L2.

The following overviews the three portions of the verifier.

• Front-End: Source µCryptol is a higher-order lan-
guage, which precludes us from shallowly embedding it
into ACL2 ’s first- order logic. Thus the front-end com-
piles µCryptol programs to a first-order indexed form,
which can then be shallowly embedded into ACL2 . To
verify these front-end transformations, we are starting
on another translator that shallowly embeds both orig-
inal µCryptol source and indexed form programs into
higher order logic. We will then use the Isabelle [20]
higher order logic theorem-prover to automatically prove
that any original µCryptol program is observationally
equivalent to its indexed form.

• Core: We have implemented a translator that shal-
lowly embeds indexed and canonical µCryptol programs
into Common Lisp. Both indexed and canonical µCryptol
are sublanguages of µCryptol , so one translator is suf-
ficient for this task.

• Back-End: The verifying compiler for the back-
end of mcc yields a correspondence between canonical
µCryptol programs and their compiled AAMP7 ma-
chine code. The mcc compiler has a translator that
outputs a Common Lisp list of numbers representing
AAMP7 opcodes. The list is given its intended se-
mantics by Rockwell Collin’s state-machine model of
the AAMP7 , written in ACL2 [8]. Thus, the transla-
tion of the machine code is a deep embedding in which

fac : B^32 -> B^8;

fac i = facs @@ i

where {

rec

index : B^8^inf;

index = [0] ## [ x + 1 | x <- index];

and

facs : B^8^inf;

facs = [1] ## [ x * y | x <- facs

| y <- drops{1} index];

};

Figure 2: Factorial Function in µCryptol

the AAMP7 model acts as the meaning function. The
model can be used in two ways. First, the model has
been designed to be highly efficient for simulation [13,
pp. 89-106], so ACL2 can simulate the AAMP7 with
the µCryptol program loaded. Second, a correspon-
dence can be proved between the result of executing
the machine code on the AAMP7 and the canonical
µCryptol from which it is compiled.

2.2 Correctness Properties Proved
Here we make precise what the correctness theorems we

produce mean. Leroy lists a number of potential correct-
ness properties in compiler verification [14]. Of these, ours
is Leroy’s condition that for source program S and com-
piled code C , “if S has well-defined semantics (does not go
wrong), then S and C are observationally equivalent.” In
our case, we take the source program to mean the µCryptol
program in indexed form, and we take the compiled code to
be the µCryptol program in canonical form. As mentioned,
indexed and canonical forms are sublanguages of µCryptol ,
so they share the same semantics.

Furthermore, since we automatically prove termination of
both indexed and canonical forms, our proof of correspon-
dence is a total correctness proof.

3. THE LANGUAGE AND COMPILER

3.1 The Language
We introduce the language µCryptol by specifying the fac-

torial function, as shown in Figure 2. The µCryptol language
is similar to (but not a subset of) Cryptol [16], which in turn
is heavily influenced by Haskell [22]. Due to space consid-
erations, our example does not illustrate the following addi-
tional features of µCryptol : if-then-else conditionals, enu-
merations, type abbreviations, the application of its type-
completion algorithm, constant declarations, tuple construc-
tions, and irrefutable pattern-matching.

The statement fac : B^32 -> B^8; declares fac to be
a function accepting a 32-bit word and returning an 8-bit
word. Applying the function to an input that is not express-
ible in 32 bits results in an error. Nothing is special about
word sizes in µCryptol ; we could have just as easily used 3
or 3177-bit words. Furthermore, a single µCryptol program
may manipulate words or vectors (words are simply vectors
of bits in µCryptol) of mixed widths.

Next comes a function definition. µCryptol is a first-order
language and does not have λ-expressions; hence, all func-
tions must have named definitions, and all function argu-
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ments must appear in the definition header. The body of
fac is motivated by our desire to compile efficiently to both
hardware and software. A long tradition in hardware model-
ing is to represent latches by the infinite sequence of values
they latch [24, 11]. We call infinite sequences streams, to
distinguish them from vectors, whose width must always be
finite. By using streams, µCryptol avoids needing imperative
features, which (1) simplifies both its formal specification
and compilation, (2) allows the language to be easily com-
piled to both hardware and microprocessors, and (3) makes
the behavior of programs more predictable by their authors.

The body of fac is the value facs @@ i such that facs is
a stream and the @@ operator takes a 0-based index into a
stream. The stream facs is in the scope of two nested defi-
nitions introduced by a where clause (definitions in µCryptol
may be arbitrarily nested). Just as for the top-level, each
definition in a where clause is in scope of all following def-
initions in the same clause, as well as the term to the left
of the where. In this case, the where clause contains a sin-
gle clique of recursive stream definitions. The keywords rec
and and indicate the beginning and continuation of a clique,
respectively.

We begin by describing the stream index. Its type signa-
ture is index : B^8^inf, indicating index is a stream of 8-
bit words. We use ^inf as the type constructor for streams,
which is suggestive of streams being vectors but with infi-
nite width (inf is not, however, a type). The body of index
defines it to be the singleton vector containing an 8-bit zero
([0]) followed by the stream [x + 1 | x <- index] (##
primitive appends a vector to a stream). This term is a
stream comprehension, and mimics the set comprehensions
familiar from mathematics. In particular, the comprehen-
sion states “construct a stream which, for each successive
element of index (call it x), has the element x + 1.” Thus,
index is the stream 0, 1, 2, 3, 4, . . . , 255, 0, 1, . . . .

There is a recursive reference to index in the stream com-
prehension, so care must be taken to ensure the definition is
well-defined. In this case, the second element of index de-
pends on only the first element, which is known to be zero.
Similarly, the third element depends only on the second,
which we just calculated, and so on. A novelty of µCryptol
is its use of the type system to decide well-definedness of
streams. We shall return to well-definedness in Section 3.2.

Continuing with the example, we consider the stream facs.
Also like index, its successive elements are defined by a
stream comprehension, but this time with two arms. A
multi-arm stream comprehension steps through each arm
in parallel. The first arm draws successive elements from
the stream facs while the second arm draws elements from
the stream drops{1} index. This term is the stream index,
but with the first element removed. Thus, the stream facs

is 1, 1, 2, 6, 24, 120, 208, 176, . . . and facs @@ 3 = 6, for
example (recall that 0! = 1, by convention).

3.2 Well-defined streams
The mcc compiler is able to use the type system of the

language to ensure well-definedness of mutually-recursive
cliques of streams. Furthermore, the measure function gen-
erated by mcc to ensure well-definedness is used by ACL2 to
prove termination, as described in Section 4.2. The defini-
tion depends on the notion of an integer stream delay. We
say the “delay from stream x to occurrence of stream y is
d” to mean, for sufficiently large index k ∈ N, that the k ’th

rec (xs : B^8^inf) =

[3] ## [ x+y | x<-xs | y<-[0{8}]##ys ];

and (ys : B^8^inf) =

[5] ## [ x+y+z | x<-drops{2} xs

| y<-ys | z<-zs ];

and (zs : B^8^inf) =

[7] ## [ x+z | x<-drops{3} xs | z<-zs ];

Figure 3: An example clique of streams to illustrate well-
definedness.

f (k , x ) = 3× (k + offset(x )) + order(x )
where offset = xs 7→ 0, ys 7→ 1, zs 7→ 2

order = xs 7→ 0, ys 7→ 2, zs 7→ 1

Figure 4: Minimum Delay Graph for the Streams in Fig-
ure 3 and the Corresponding Measure

element of stream x depends on the value of the (k − d)’th
element of stream y at that occurrence. The “minimum de-
lay from x to y” is the least delay over all occurrences of
y , and dually for “maximum delay”. The definition is as
follows:

Definition 1. Let S be the set of stream names defined
by a mutually-recursive clique of stream definitions. Then
we say the clique is well defined if there exists a measure
function

f ∈ (N× S) → N

such that for each occurrence of a stream y in the body of
the definition of stream x with delay d , we have

∀k ∈ N.k ≥ d ⇒ f (k − d , y) < f (k , x )

For example, consider the clique of definitions in Figure 3.
The minimum delays for these definitions is presented as a
directed weighted graph in Figure 4. These definitions are
indeed well-defined and a measure function for the streams
is presented in the same figure.

An algorithm has been developed to construct a mea-
sure function from any minimum delay graph (to ensure
the µCryptol type system can determine well-definedness,
certain constructs are not allowed in recursive cliques of
streams) [25]. Thus, for µCryptol , the problem of decid-
ing well-definedness is reduced to finding the delay graph
G.

3.3 Core Transformations
Here we describe the core transformations. The main

point of this and the following section is to demonstrate that
automatically generated correspondence proofs are feasible
even in the presence of aggressive compiler optimizations.
Indeed, the mcc core transformations are powerful enough
to reduce some exponential-time indexed form programs to
linear-time canonical form programs.
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Front-End Transformations
1. Introduce safety checks
2. Simplify vector comprehensions
3. Eliminate patterns
4. Eliminate streams

4.1. Convert to indexed form
Indexed Form Generated

Core Transformations
4.2. Push stream applications
4.3. Collapse arms
4.4. Align arms
4.5. Takes/segments to indexes
4.6. Convert to iterator form

5. Eliminate simple primitives
6. Eliminate zero-sized values
7. Inline and simplify
8. Introduce temporaries
9. Eliminate nested definitions

10. Share top-level value definitions
11. Box top-level definitions
12. Eliminate shadowing

Canonical Form Generated

Figure 5: Steps to convert type-complete µCryptol pro-
grams into canonical form.

Figure 5 lists the transformations that take source µCryptol
programs to canonical form. In the figure, the points at
which indexed and canonical forms are generated are respec-
tively noted. Transformations 1 through 4.1 correspond to
the front-end transformations of Figure 1, and transforma-
tions 4.6 through 12 correspond to the core transformations.

We begin by describing the end goal of the core transfor-
mations, canonical µCryptol . We then focus on the transfor-
mations that eliminate streams, transformations 4.1 through
4.6. The nature of the other transformations are largely
straightforward or standard from the compilation of func-
tional programming languages.

Canonical Form. Canonical µCryptol is a language subset
with a direct operational interpretation, and is intended to
be as close to a final implementation as possible while still
remaining neutral as to hardware vs. software implemen-
tation (compare it with the STG code of the GHC Haskell
compiler[21]).

In canonical µCryptol , every value arising during execu-
tion is either small enough to pass and construct on a value
stack (we call such values unboxed), or has an explicitly
named variable bound to its value in a where clause. All
function and primitive arguments are ready to be passed
without the need for additional storage to evaluate them.
All definitions are at the top-level, eliminating the need
for closures. Vector comprehensions are of a form imple-
mentable by a for-loop. All partial operations (those which
may yield an arbitrary result) are wrapped by an explicit
assume clause, which makes explicit the implied partiality.
No patterns remain, and all function arguments are either
wildcards (ignored) or simple variables, which name the ar-
gument location. A number of primitives, such as reverse,
are eliminated since they have simple definitions as compre-
hensions. No values of zero-sized type, such as (), ()^3 or

B^0 are ever constructed, passed as arguments, or returned
from functions (the absence of side-effects means such val-
ues are uniquely determined from their type alone, and so
need no run-time representation). No top-level definition
is shadowed, relieving the back-end from having to respect
scoping.

One final restriction of canonical µCryptol is essential for
efficiently compiling to hardware and software. We could in-
terpret recursive streams as lazy lists, and give them a direct
operational interpretation using updating closures [21] for
software, or latched dataflow networks for hardware. How-
ever, for software, this would require the implementation to
support dynamic memory allocation, while for hardware, it
would distribute latches throughout the circuit, rather than
grouping them into shift registers. To avoid this problem,
canonical µCryptol does not support streams, but instead
has a notion of iterators (iterators are a part of µCryptol ,
and can appear in source programs). Recall from Section 3.2
that every µCryptol stream is guaranteed to require only a
finite number of earlier elements to calculate the current el-
ement, and that we introduced the term “history width” to
refer to (an upper bound on) that number. We implement
the history buffer “lazily” using modular arithmetic on its
index rather than explicitly shuffling along older elements
as new ones are calculated. In hardware, the finite history
width property can be exploited to represent the history
buffer as a shift register with the same depth as the history
buffer width.

Step 4.1: Convert to Indexed Form. Stream constructs
are replaced with an equivalent term in indexed form. For
this step, µCryptol supports two additional term forms which
(1) define streams as functions from indexes to values, and
(2) apply such a function to a particular index. For example,
the term [0{8},1] ## ys (for stream ys) appears in indexed
form as \i.{<2->[0{8}, 1]@(drop i)|true->ys.i -2}. The
\ indicates abstraction, while the . after ys indicates appli-
cation.

Indexed form constructs are highly stylized, and µCryptol
does not support general λ-abstractions and application.
Abstraction is only over values of a special abstract index
type ind{w, d,m, l}, where w is the width of a concrete
index into the stream, d is the delay depth of the context of
the abstraction, m is the minimum value for the index (in
the above example, this value would be 0 for i in the body to
the right of <2, and 2 to the right of true), and l is the level
for the stream definition (i.e., the number of where clauses
separating it from the top-level definition). An abstraction
is always paired with a case split on the index.

An application must be of the form t.tmvar τ where t is
a stream expression, tmvar is a stream index variable, and
τ is an integer, indicating the offset to apply to tmvar when
indexing into t (the parameter m in the lambda abstraction
prevents subtracting too large an offset from the index).

Step 4.2: Push Stream Applications. Stream applica-
tions are pushed into if-then-else and where terms, and
each stream definition within a clique is η-expanded [1] so
as to begin with an explicit index abstraction. (We use a
fresh index variable name which is shared by all streams in
a clique.)
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1. \i.{ <2->0

| <4->(\j.{ <1->1 | <2->2 | true->3 })

. i -1

| true -> (\j.{ <5->4 | true->5 })

. i -2 }

2. \i.{ <2->0

| <4->(\j.{ <2->1 | <3->2 | true->3 })

. i +0 }

| true -> (\j.{ <7->4 | true->5 })

. i +0 }

3. \i.{ <2->0 | <3->2 | <4->3

| <7->4 | true -> 5 }

Figure 6: Example of Arm Collapsing in Step 4.3

Step 4.3: Collapse Arms. Nested stream abstractions are
collapsed into a single level. For example, given the abstrac-
tion in (1) of Figure 6, we may correct for the application
offsets -1 and -2 to yield the abstraction in (2), which in
turn may be collapsed into the single abstraction in (3).
Notice how some abstraction cases (such as that yielding 1)
can be dropped since they will never fire. Thanks to the
η-expansion of step 2, each recursive stream definition will
at this point be a single abstraction and case split.

Step 4.4: Step Align Arms. The arms are aligned to elim-
inate strictly positive index offsets. Recall from Section 3.2
the termination measure for a clique of mutually-recursive
stream definitions consists of an offset for each stream and an
ordering amongst the streams. We now “slide” each stream
according to its offset. This will allow the new elements for
each stream to be constructed together.

Consider again the example of Figure 3, which at this
point of compilation resembles (1) of Figure 7. The offset
for zs is determined by the type completion algorithm to
be 2. We thus wish to slide the stream zs forward by 2
elements, inserting two dummy values (which we take to be
0) at its head. All references to zs, both inside and outside
the clique of streams, must be updated to take account of
this slide. That is, we must add 2 to the offsets for indexes
into zs from within the definition of xs and ys, and subtract
2 from the offsets for indexes into xs and ys from within the
definition of zs. After doing this and sliding ys by its offset
1, the result is as in (2) in Figure 7.

Step 4.5: Takes/Segments to Indexes. Some primitives,
such as takes and segments, are replaced with uses of @@
if the sub-vector being extracted is wider than the history
with of the stream. For example, takes{3} xs will be left as
is if xs has history width of four or greater, but converted
to [xs @@ 0, xs @@ 1, xs @@ 2] otherwise.

Step 4.6: Convert to Canonical Form. Each clique of
stream definitions is rewritten as a single iterator definition.
A history buffer for each stream is tupled according to the
stream ordering in the clique measure. The arms of each
stream in the clique are merged together, and the body term
for each arm is tupled, also according to the stream ordering.
Each reference to a stream within the clique is of the form
x.i −n for stream name x , index variable i (which is now

1. rec (xs : B^8^inf) = \i .

{ < 1 -> 3

| < 2 -> (xs . i -1) + 0

| true -> (xs . i -1) + (ys . i -2) };

and (ys : B^8^inf) = \i .

{ < 1 -> 5

| true -> (xs . i +1) + (ys . i -1) +

(zs . i -1) };

and (zs : B^8^inf) = \i .

{ < 1 -> 7

| true -> (xs . i +2) + (zs . i -1) };

2. rec (xs : B^8^inf) = \i .

{ < 1 -> 3

| < 2 -> (xs . i -1) + 0

| true -> (xs . i -1) + (ys . i -1) };

and (ys : B^8^inf) = \i .

{ < 1 -> 0

| < 2 -> 5

| true -> (xs . i +0) + (ys . i -1) +

(zs . i +0) };

and (zs : B^8^inf) = \i .

{ < 2 -> 0

| < 3 -> 7

| true -> (xs . i +0) + (zs . i -1) };

Figure 7: Streams of Figure 3 Before (1) and After (2) Step
4.4

shared by all streams in the clique) and natural number n.
Each such term is replaced by projectm j @ (drop(i - n)),
where m is the number of streams in the clique and j the
position of stream x in the stream ordering. References to a
stream from outside the clique are replaced with a call to the
iterator function, a project, and an index. A term such as
takes xs == [ 3, 3, 8, 28, 111 ] in the scope of these
definitions would be translated to

[ project 3 0 (iter_xs_ys_zs i)@drop i

| (i : B^32) <- [0, 1 .. 4] ] ==

[ 3, 3, 8, 28, 111 ]

4. THE VERIFIER

4.1 Shallow Embedding
The mcc compiler contains a translator that translates the

indexed and canonical forms into Common Lisp. In the shal-
low embedding, for all type-correct inputs (according to the
µCryptol type system), the outputs are equivalent to those
of the µCryptol program. The translator is a small (exclud-
ing libraries, the translator is approximately 1200 lines of
code) stand-alone portion of the compiler that is easy to in-
spect for correctness (we do not prove its correctness). The
translator is written in OCaml , like the rest of the compiler.
The “camlp4” metaprogramming facility of OCaml [15] is
also employed to embed Common Lisp as a quotable sub-
language of OCaml . We emphasize that the translator per-
forms no semantic transformations. Thus, the translation
is rote – as one would desire in a high-assurance compiler –
but we do highlight a few of its aspects, including our han-
dling of types, µCryptol primitives, and measure functions
for mutually-recursive cliques of streams.
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Embedding Types. Recall from Section 3 the discussion of
the µCryptol type system. The ACL2 logic is untyped, so
we embedded the µCryptol types into the ACL2 logic as
predicates that constrain the values of the arguments to the
embedded functions. For example, the following embeds the
type B^32^2, the type of vectors of length two containing 32-
bit words, and is automatically generated by the translator:

(defund |$ind_0_typep| (x)

(and (true-listp x)

(natp (nth 0 x))

(< (nth 0 x) 4294967296)

(natp (nth 1 x))

(< (nth 1 x) 4294967296)))

Notice that the definition is disabled. In general, we dis-
able type predicates, as their definitions can easily be hun-
dreds of lines of Common Lisp. For example, in the shal-
low embedding of AES, there are type declarations such as
B^8^4^4^11. The general strategy is to prove rewrite rules
for the type predicates of the indexed and canonical outputs,
but then leave them disabled in the proofs of correspondence
for the other functions.

Primitives. The heart of a domain specific language is a set
of primitive operators essential to programming in that do-
main. The primitives of µCryptol are ones that are used to
specificy symmetric key cryptographic protocols. We have
developed an ACL2 book implementing these primitives
that should prove useful for the specification in ACL2 of
cryptographic protocols, in general. The primitives are doc-
umented in the µCryptol Reference Manual [26]. The primi-
tives have all been extensively tested against their µCryptol
implementations. We briefly list the implemented opera-
tions below (some of which are simply calls to operations
previously defined in other ACL2 books).

• Arithmetic in Z2n (arithmetic modulo 2n): addition,
negation, subtraction, multiplication, division, remain-
der after division, greatest common divisor, exponen-
tiation, base-two logarithm, minimum, maximum, and
negation.

• Bitvector operations: shift left, shift right, rotate left,
rotate right, append of arbitrary width bitvectors, ex-
traction of n bitvectors from a bitvector, append of
fixed-width bitvectors, split into fixed-width bitvec-
tors, bitvector segment extraction, bitvector transpo-
sition, reversal, and parity.

• Arithmetic in GF2n (the Galois Field over 2n): poly-
nomial addition, multiplication, division, remainder
after division, greatest common divisor, irreducibility,
and inverse with respect to an irreducible polynomial.

• Pointwise extension of logical operations to bitvectors:
bitwise conjunction, bitwise disjunction, bitwise exclusive-
or, and negation bitwise complementation.

• Vector operations: shift left, shift right, rotate left,
rotate right, vector append for an arbitrary number of
vectors, extraction of n subvectors extraction from a
vector, flattening a vector vectors, building a vector
of vectors from a vector, taking an arbitrary segment
from a vector, vector transposition, and vector reverse.

4.2 Automated Termination Proofs
For a given µCryptol program, mcc automatically gen-

erates a measure function in ACL2 , and from the mea-
sure function, ACL2 proves termination for arbitrary well-
defined cliques of mutually-recursive streams. To admit the
shallow embeddings into ACL2 , we must prove termination
for both indexed and canonical forms of the clique. The mea-
sure for the canonical form is trivial. Recall from Section 3
that in canonical form, cliques are compiled to a function
that takes as arguments a tuple of history buffers, an in-
dex, and an index limit, and iterates over the index up to
the limit value. The measures generated in canonical form
simply demonstrate that in recursive calls, the difference be-
tween the limit, lim, which is the total number of iterations
to be taken, and i , the current iteration, should decrease.
Thus, for any clique of streams in canonical form, the mea-
sure function f is

f (i) = lim + 1− i

The more significant challenge is proving termination for
cliques in indexed form. The hard part of determining well-
definedness is completed by the type inferencing of mcc dis-
cussed in Section 3. The generated measures are directly
translated into a corresponding Common Lisp function. For
example, for the clique in Figure 3, the measure output by
the mcc translator is a straightforward Common Lisp imple-
mentation of the measure from Figure 4.

The ACL2 termination proofs guarantee that for a con-
crete program, its clique of streams are well-defined, and it
provides evidence that the mcc well-definedness algorithm is
correct, in general.

4.3 Theorem Generation
For a verifying compiler, both the statements and the

proofs of the correspondence theorems must be generated
automatically. We describe our approach for the automated
generation of the theorem statements in this section, and
defer a description of proof generation to the succeeding
section. Because the language of ACL2 is a programming
language, one can generate the theorem statements them-
selves within ACL2 . This ability greatly simplified our task.
The macro make-thm generates the theorem statements (as
well as additional required function definitions, hints to the
prover, logical theory creation, symbols to be bound, etc.).
The make-thm macro generates six kinds of correspondence
theorems:

• Function correspondence theorems of non-recursive def-
initions.

• Type correspondence theorems of type declarations.

• Vector comprehension correspondence theorems.

• Stream-clique correspondence theorems of recursive
cliques of stream comprehensions.

• Vector-splitting correspondence theorems of type cor-
respondence for vectors that have been split into a
vector of subvectors.

• Inlined segments/takes correspondence theorems for
inlined segments and takes operators over streams.
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(make-thm :name |inv-facs-thm|

:thm-type invariant

:ind-name |idx_2_facs_2|

:itr-name |iter_idx_facs_3|

:init-hist ((0) (0))

:hist-widths (0 0)

:branches (|idx_2| |facs_2|))

(make-thm :name |fac-thm|

:thm-type fn

:itr-term (|itr_fac| i)

:ind-term (|ind_fac| i))

Figure 8: Macro Calls to Generate the Correspondence
Proofs for Factorial (Figure 2)

Some of these correspondence theorems – such as stream-
clique equivalence – require supporting lemmas, which are
also automatically built by the macro. The macro takes
no arguments but it does take a variety of keys depending
on the particular correspondence theorem to be generated.
In general, the keys are names or terms from the shallow
embeddings. For example, to prove the correspondence be-
tween the indexed and canonical forms of the factorial func-
tion implementation in Figure 2, the calls to make-thm in
Figure 8 are sufficient. The first call to the macro gener-
ates a stream-clique correspondence theorem. In this case,
the macro also generates nine lemmas and two corollaries
to the main theorem (the number of each is linear in the
number of recursively-defined streams in the clique). The
second call generates a function correspondence theorem to
demonstrate the correspondence theorem for the top-level
function definition, fac.

The mcc compiler does not yet generate the calls to the
make-thm macro, but doing so would require relatively mod-
est modifications to the µCryptol to Common Lisp transla-
tor.

4.4 Proof Generation
The automatic generation of proofs in a verifying com-

piler faces two obstacles. First, we must develop a frame-
work that is general enough to be completely automatic for
any potential µCryptol program. Second, these are real pro-
grams generated from a real compiler, so a substantial por-
tion of our effort involves addressing the “scaling problem”
for mechanical theorem-proving. We describe these in turn.

The nature of a verifying compiler coupled with the func-
tionality of ACL2 make the problem of generality tractable.
As mentioned in Section 1, it is much easier to prove propo-
sitions about concrete programs than parameterized ones.
Thus, rather than proving general rewrite rules, the make-thm
macro generates an instance of the lemma appropriately
instantiated by concrete values (e.g., the width of history
buffers) from the program being compiled. Thus, we sub-
stantially avoid proving deep parameterized theorems in the
course of this work (although we do depend on user-supplied
books, such as Rockwell Collins’ super-ihs book, which
contains sophisticated theorems about bitvector arithmetic) [9].

With respect to the second obstacle, although the theo-
rems to be proved are not deep, the size of the terms in the
theorem statements (or that the terms rewrite to) quickly
overwhelmed ACL2 . The challenge in this case is not math-

(defthm factorial-invariant

(implies

(and (natp i) (natp lim)

(true-listp hist) (<= i (+ lim 1))

(equal (nth (loghead 0 i) (nth 0 hist))

(ind-facs i ’idx))

(equal (nth (loghead 1 i) (nth 1 hist))

(ind-facs i ’facs)))

(and (equal (nth (loghead 0 lim)

(itr-facs i lim hist)

(ind-facs lim ’idx))

(equal (nth (loghead 1 lim)

(itr-facs i lim hist)

(ind-facs lim ’facs)))))

Figure 9: Factorial Correspondence Theorem (from Fig-
ure 2)

ematical – such as discovering a sufficiently strong invariant
– but in discovering the appropriate theorem statement and
set of hints to the prover that allow ACL2 to prove corre-
spondence for non-trivial programs. Our solutions to the
scaling problem are well-known in the ACL2 community;
this should be taken as an industrial case-study demonstrat-
ing their efficacy for automating the proofs in a verifying
compiler.

For instance, consider the statement of the equivalence
theorem between the indexed and canonical forms for a
mutually-recursive clique of streams. It is essentially a con-
junction stating that the values in the iterator’s history
buffer correspond to the values computed by the indexed
streams. To illustrate, consider the factorial correspondence
theorem (Figure 9) originating from the program shown in
Figure 2. In the theorem, hist is the tuple of history buffers
associated with the iterator form. For the factorial function,
hist is a pair of history buffers, each of which has length
1. The shallow embedding into Common Lisp of the history
buffer is the list ((#) (#)) containing the values produced
by the iterator function itr-facs for the streams idx and
facs, respectively. The hypothesis of the theorem contains
two equalities between the values produced by the indexed
form of the clique of streams and the values in the history
buffers at index i, modulo the width of the buffers (the
function application (loghead i j) returns j modulo 2i ;
see books/ihs/ of an ACL2 installation).

Such a theorem is adequate for history buffers containing
a small number of mutually-recursive streams with small de-
lays. However, for large history buffers, it is not feasible to
prove a similar theorem in which the hypothesis contains
equalities for each location in the history buffer. The prob-
lem is not the number of conjuncts; rather, it is the size of
the terms and the number and complexity of the rewrites to
be applied to them. For example, the theorem analogous to
the one presented above that is necessary to define key ex-
pansion in AES requires reasoning about a history buffer of
length 64, requiring 64 conjunctions in the hypothesis. Fur-
thermore, the indexed and canonical definitions are much
more complex than are ind-facs and itr-facs. Our solu-
tion is to encode the conjunction of equalities as a recursive
function and then develop the necessary set of rewrites to
prove the recursive function is a sufficiently strong hypoth-
esis to imply the conclusion. The make-thm macro defines
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such a recursive function and rewrite rules.
Another approach we take to automate large-scale proofs

is to iteratively enable function definitions. In carrying
out the proofs, we face a tension: powerful books, such
as Rockwell Collins’ super-ihs book, dramatically simplify
reasoning about bitvector operators, over which most of
the µCryptol primitives are defined. However, many of the
rewrites are expensive (i.e., they are tried very often or
they trigger a large number of other (potentially expensive)
rewrite rules to fire; see the ACL2 documentation on accu-
mulated persistence [12]). For example, early attempts to
prove the correspondence theorem for TEA in which func-
tion definitions are enabled caused the ACL2 prover to take
an inordinate amount of time or simply run out of memory.
On the other hand, disabling all functions (or omitting the
book altogether) causes proofs to fail.

Our solution is to disable µCryptol primitives and other
ACL2 operators (e.g., update-nth), initially, and then con-
servatively open definitions using a cascade of computed
hints. The firing of the computed hints is controlled by pri-
oritizing them (see books/misc/priorities/ in the ACL2
installation). Furthermore, the hints are allowed to fire only
after the proof has become stable under simplification by
the rewriter. This technique not only make proofs feasible
that otherwise are not, but it obviates the need to deter-
mine whether a particular proof will require some definition
to expand; if proof has not terminated after simplification
at some point, the disabled functions are automatically ex-
panded until it does.

4.5 Applications
The implementation of the approach is approximately 1500

lines of Common Lisp, excluding external books. We have
demonstrated the feasibility of the approach by verifying
the compiler output for simple programs like factorial and
Fibonacci and for the symmetric key encryption and de-
cryption protocols TEA, RC6, and AES. The specifications
of these protocols use most of the µCryptol language con-
structs, and AES in particular is non-trivial: the shallow
embeddings, termination proofs, and correspondence proofs
generate approximately 350 definitions, 200 proofs, and ap-
proximately 47,000 lines of ACL2 prover output. The proofs
for AES require approximately 15 minutes to build on typi-
cal hardware (a G4 Mac with 1 Gigabyte of RAM).

5. RELATED WORK
Dave provides a recent overview of compiler verification [4].

Our work complements recent work by Leroy et. al. de-
scribing a verified compiler for a subset of C to PowerPC
assembly code [14, 2]. The formal proofs are carried out us-
ing the Coq mechanical theorem-prover; indeed, Coq is used
also for programming the compiler by automatic translation
to Caml code.

With respect to work using ACL2 specifically in compiler
verification, Goerigk demonstrates in ACL2 how a formally
verified compiler can nevertheless contain a Trojan Horse in
its executable [13, pp. 201–215]. Moore reports research in
building a fully-verified stack [19, 18].

Closely related to our work is a project implementing
a verifying compiler to compile cryptographic algorithms
to both the ARM microprocessor [7] and FPGAs [28, 27].
The compiler is built inside the HOL4 mechanical theorem-
prover, and compilation is by application of derived infer-

ence rules. Thus, the verifier is at the granularity of individ-
ual transformations, whereas in our approach, the verifier is
applied to a set of transformations (e.g., the core transfor-
mations) all at once. Also in contrast with our work, the
compiler and verifier are inextricable in their framework.
The source language is higher-order logic, and for a subset
of this language (e.g., tail-recursive functions over simple
datatypes), compilation is automatic. Interactive compila-
tion, or derivation, is possible from a larger source language
that includes a subclass of linear-recursive programs. Like
our effort, this is work in progress; TEA has been compiled,
but more significant algorithms, like AES, are current chal-
lenges.

6. CONCLUSION
The primary objective of this research is to demonstrate

the feasibility of building a real verifying compiler for a
domain-specific cryptographic language using ACL2 .

Although our macro automatically proves correspondence
and termination for a range of µCryptol programs, we do
not guarantee completeness of methodology. This is a prag-
matic effort, and language constructs may exist for which
the macro does not succeed in proving correspondence, but
it is relatively easy to extend the make-thm macro with ad-
ditional parameters, lemmas, etc.

In our work, we did not uncover any bugs in the compiler
(as expected). The compiler had been thoroughly tested
during development, and bugs in symmetric-key encryption
algorithm implementations usually are immediately appar-
ent. Nevertheless, recall from Section 1 that a verifying com-
piler can also be used to ensure that malicious code (e.g., a
“back door”) has not be introduced into the compiler. Fur-
thermore, a formal proof of correctness may be required for
certification under the Common Criteria [3] for a security-
critical compiler.

The µCryptol verifier is in-progress, but there are ways to
reduce the effort required in the remaining portions of the
project. The first two portions of the verifying compiler –
the front-end end and middle-end – are target-independent.
Thus, for any target of mcc, the compiler and verifier for
these portions can be left unchanged. For the current mcc

back-end, verification requires demonstrating a correspon-
dence between AAMP7 machine code and canonical µCryptol .
For the target of the AAMP7 , an ACL2 model exists [8],
and recent advances in machine code reasoning in ACL2
further reduce the required effort [17]. Rockwell Collins
and Galois Connections have used these recently-developed
techniques to prove the correctness of a hand-coded ma-
chine code factorial program on the AAMP7 , and Rockwell
Collins is currently extending and improving these meth-
ods [9] and is beginning the verification of mcc-generated
machine code. Much of this effort in the machine code ver-
ification comes from proving the correspondence between
the µCryptol primitives and their machine code implemen-
tations. One way to reduce this effort is to inspect and
test the machine code generated by the compiler for the
primitives. Then, under the assumption the primitives are
correct, have the verifier prove that the generated machine
code implements canonical µCryptol .
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