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Abstract—With deference to Butler Lampson, I present five
hints specifically for building high-assurance cyber-physical sys-
tems: (1) use Turing-incomplete languages (2) simple interfaces
are secure interfaces, (3) program the glue code and architecture,
(4) system verification is a probabilistic game, and (5) high-
assurance systems require a high-assurance culture.

I. INTRODUCTION

Butler Lampson’s 1983 “Hints for Computer System De-
sign” describes sound engineering practices for building large
and complex computing systems [1]. More than 30 years later,
the advice is relevant yet sadly ignored.

With deference to Lampson, I provide hints for building
high-assurance cyber-physical systems (CPS). While Lampson
broadly considers computer systems, ranging from program-
ming languages to the (beginnings of) the internet, I focus on
security- and safety-critical systems; examples include aircraft,
automobiles, and embedded medical devices. The domain
obviates some of Lampson’s advice; for example, Lampson
notes that “one crash a week is usually a cheap price to pay
for 20% better performance” [1], but I cannot endorse such
advice for software that puts peoples’ lives at stake. Moreover,
high-assurance systems are often embedded systems, and the
advice focuses on that domain.

The hints are drawn from high-assurance systems I have
been involved in designing and building, both in government
and industry. For the sake of continuity, most of the examples
I draw on come from my team’s work in DARPA’s High-
Assurance Cyber Military Systems (HACMS) program. The
goal of the program is to demonstrate the feasibility of
using formal verification to improve the software security
for complex cyber-physical systems. The problem space is
motivated by the insecurity of modern CPS software, such
as automotive software [2], [3]. The approach of HACMS
is to leverage advances in formal verification to guarantee a
system’s correctness.

My team, in collaboration with others on the program,
focused on building secure autopilot software for an unpiloted
air vehicle (UAV), called SMACCMPilot [4]. Our deadline
was tight: with a team of three engineers and an eighteen
month deadline for the first operational release, we built new
programming languages from scratch [5], and then used them
to build an autopilot. An autopilot is a bit of an understatement
since we built a full system of which the core autopilot was
one part: we built a board support package for new hardware,

device drivers, encrypted wireless communications with a base
station, arming logic, control loops, etc.

To assess our progress, not only did we provide live flight
demonstrations, but an experienced “red team” was given
full access to the systems, including source code, and they
attempted to discover vulnerabilities. Mostly, they did not. As
one government official said, our team “had likely built the
most secure UAV in the world.”

I give five hints:
1) use Turing-incomplete languages (Section II)
2) simple interfaces are secure interfaces (Section III)
3) program the glue code and architecture (Section IV)
4) system verification is a probabilistic game (Section V)
5) high-assurance systems require a high-assurance culture

(Section VI)
In addition, I talk about our failures (Section VII), for which
others can hopefully provide hints in the future.

While I will give concrete examples from HACMS to
illustrate my hints, this paper does not describe how to build
an autopilot or the research we undertook. This paper is
about how the general lessons we learned can be applied
to future systems. Furthermore, this paper does not focus
on formal verification despite HACMS being primarily a
formal verification project. None of the hints endorse esoteric
verification expertise.

As Lampson said, these are just hints, not laws, rules,
principles, etc. There are exceptions and counterexamples.

Lampson decorated his hints with appropriate quotations
from Shakespeare’s Hamlet. Cyber-physical systems are vul-
nerable computers adrift in an inhospitable world, like the
British children in Lord of the Flies; I decorate my hints with
quotations from this work.

II. CONSTRAIN THE PROGRAMMING LANGUAGES
“The rules!” shouted Ralph, “You’re breaking the
rules!”

As I mentioned in the introduction, one motivation for the
HACMS program was research demonstrating that vulnera-
bilities in modern automotive software could be exploited,
giving an attacker full control over the software systems. In
modern vehicles, software control means vehicle control, and
the attackers were able to perform actions such as disabling
breaks, tightening seat belts, and engaging the throttle, all
without driver input.
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Fig. 1. Table reproduced from Checkoway et al. [3].

Attacks were built to exploit vulnerabilities in every remote
interface present on the vehicle, including WiFi, Bluetooth,
and Cellular. A portion of the table from Checkoway et al. [3]
is reproduced in Figure 1. The “Channel” column shows what
component is exploited. The “Full Control” column shows
whether the attacker has full control of the vehicle (i.e., can
modify the software on any networked component in the car)
after the attack; in each case, the answer is yes.

What novel and esoteric exploits were developed to pene-
trate the software systems? Mostly, none. The “Implemented
Capability” column describes the vulnerability exploited to
gain access. You see “buffer overflow” over and over. A buffer
overflow occurs when an array is indexed beyond its end,
allowing one to read or write into unintended memory. A
buffer overflow is the vanilla ice cream of memory safety bugs;
this ubiquitous class of bugs have been known since at least
1972 [6]. They are also a solved problem.

Too often, general-purpose languages used in high-
assurance systems lead to unintended consequences. These
languages have two classes of problems: (1) they have sur-
prising semantics and (2) they put the burden of correctness
on developers.

Regarding (1), undefined behavior, such as the result of
buffer overflow, results in surprises, and in high-assurance
systems, surprises are bad. With undefined behavior, the
combination of program, compiler, optimization level, and
hardware, does something, but it is outside of the program-
ming language’s semantics and quite likely, the programmer’s
intention. To a first-order approximation, all cyber-physical
systems are written in C (or its cousin, C++). The claim
is particularly true when all of the software is considered
including the operating system, network stack, device drivers,
etc. Programs written in C are the primary source of buffer
overflows, and buffer overflows are just one of a litany of
undefined behaviors possible in C.

But its not just undefined behavior that is problematic. C

is rife with implementation-defined behavior. Implementation-
defined behavior can be particularly surprising in systems that
are implemented on microcontrollers that may not have 32 or
64 bit architectures.

I would argue that even defined C is problematic. For
example, consider the following code snippet, inspired by a
genuine bug my team discovered when porting an existing
open-source autopilot written in C from an 8-bit architecture
to a 32-bit architecture:
uint8_t a = 10;
uint8_t b = 250;
printf( ‘‘Answer: %i, %i’’, a-b > 0

, (uint8_t)(a-b) > 0
);

The result is “0, 1”. Why? Because arithmetic is defined in
C only for values at least as wide as an int. So any value with
a type that is smaller (e.g., a byte) is promoted, and because
an int is signed, 10− 250 = −240 is less than 0. But in the
second expression, we cast −240 back to an uint8_t, which
is greater than 0. Even defined C is not a simple language.

Regarding (2), general-purpose languages unduly burden the
developer to ensure correctness. General-purpose languages
are Turing-complete languages that allow arbitrary compu-
tation. Specifically, a Turing-complete language allows un-
bounded memory allocation and nonterminating computations.
Rice’s Theorem guarantees there is no decision procedure
for a (non-trivial) property of Turing-complete languages [7].
This means that the verification of Turing-complete languages
requires heuristics or human insight. Famously, there is no
decision procedure for termination.

But for less powerful languages, decision procedures for
interesting properties are possible. For example, synchronous
dataflow languages, like Lustre [8], guarantee bounded mem-
ory and bounded computation time. For real-time control sys-
tems, Turing completeness is not often necessary. Rather than
being disappointed by Rice’s Theorem, we should celebrate
its converse: that for sufficiently weak languages, automated



verification is feasible. Safety-critical software best practices
essentially mandate the use of a decidable fragment inside of
general-purpose languages; see Gerald Holzman’s “Power of
10”, used by the Jet Propulsion Laboratory to develop space
software, for example [9].

The lack of power that comes with Turing-incompleteness
can be mitigated by a Turing-complete macro language that
allows arbitrary computation at compile-time, while still guar-
anteeing that the generated program satisfies any required
properties. For example, the Ivory language developed and
used on HACMS uses a type-safe macro system to simulate
general-purpose programming at compile-time while guaran-
teeing the safety of the generated code [5].

Hint: use Turing-incomplete languages with simple,
unsurprising semantics.

III. SECURE THE INTERFACES
The world, that understandable and lawful world, was
slipping away.

If someone wants to rob your house, they must first break
into it. To break in, one searches for the easiest entry point to
circumvent; a lock on the door is useless if there is an open
window. Cyber-physical systems are no different. As seen in
Figure 1, there are a lot of external interfaces on a modern
automobile. Autonomous and connected cars have even more.
Each interface contains 10s or 100s of thousands of lines of
code, operating all the way from the physical layer to the
application layer.

Many security vulnerabilities result from poor interface
design, or rather, lack of design. Lampson’s original advice
on building simple and predictable interfaces [1] is even more
critical in the CPS domain. Still, Lampson’s advice is often
ignored.

A few anti-patterns in embedded interfaces are particularly
troublesome. One is the “catch-all” message, designed for a
payload not explicitly supported by the protocol. For example,
it might be used for one-off debugging. Another anti-pattern is
allowing user-defined message types or user-defined payload
sizes. For example, one unpiloted air vehicle vulnerability
resulted from the ability to upload multiple waypoints used
by the vehicle to develop a flight plan. The waypoints are
stored in a buffer on the vehicle, and it was assumed that
no flight plan would contain more than a small fixed number
of waypoints. While a reasonable assumption, there was no
check on the constraint, allowing the buffer storing waypoints
to overflow.

Moreover, do not conflate maintenance with operation. The
remote exploits described in Section II essentially depend on
what is a maintenance mode in which the embedded processors
can be reflashed over the CAN bus. Similarly, the open-
source ArduPilot autopilot1 provided the ability to reflash the
autopilot via the telemetry as a convenience to users.

Expressive protocol languages are more likely to have
implementation flaws. Sassaman et al. forcefully makes the

1ardupilot.org

point from a language-theoretic perspective [10]. I described
the security implications of Rice’s Theorem in Section II, and
these implications hold for interface and protocol design, too.
In particular, for interfaces that can be described using context-
free grammars, serializers (or encoders) and deserializers (or
decoders) can be easily generated from a specification.

Hint: simple interfaces are secure interfaces.

IV. AUTOMATE THE TEDIUM
“Ralph . . . would treat the day’s decisions as though he
were playing chess. The only trouble was that he would
never be a very good chess player.”

For years I calculated my own U.S. federal taxes by manu-
ally filling out government forms. And for years, the revenue
service would amend mistakes I had made, often in my favor!
The mistakes were almost always simple calculation errors. If
a few dozen lines of addition and subtraction were too much to
get right, I have no hope of managing the tedium of building
secure CPS.

Examples of computational tedium include memory
management, parsing/serialization, concurrency, inter-process
communication, and system configuration. More generally,
critical computational tedious codes have the following char-
acteristics:

• they are pervasive throughout the system,
• they have regular usage patterns, perhaps with a small

number of exceptions,
• and getting them wrong causes systematic failure.
The pitfalls of manual approaches to automate memory

management and parsing/serialization are described in Sec-
tions II and III, respectively.

Concurrency bugs—such as deadlocks, livelocks, and pri-
ority inversion—are notorious as well; consider the Mars
Pathfinder concurrency bug [11]. The first solution to con-
currency is not to use it whenever possible; for example,
by using cooperative scheduling. But sometime preemptive
scheduling is necessary, although it is not an excuse for ad-hoc
concurrency.

On SMACCMPilot, we built a domain-specific concur-
rency language called Tower. Tower follows a Hoare monitor
model [12], in which methods that share state are encapsulated
within a monitor. In a monitor, only a single thread may be
active (by calling a single method) at a time. A method may
invoke one more more additional methods, perhaps in different
monitors, via channels.

The semantics guarantee that deadlocks are not possible,
albeit it disallows some communication patterns. Monitors
cannot be nested, so with a simple priority inheritance or
priority ceiling protocol, priority inversion is not possible,
either.

From a single Tower specification, “glue code” for FreeR-
TOS,2 POSIX, and seL4 [13] is generated. The software mar-
shaling between interfaces is a kind of “glue code” that does
not implement behavior itself but just connects components.

2http://www.freertos.org/
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While glue code is rote, it is security critical. As noted in
the car hacking work by Checkoway et al., “virtually all
vulnerabilities emerged at the interface boundaries between
code written by distinct organizations” [3].

Tower is also a Turing-incomplete language with a Turing-
complete macro language. Arbitrary computation can be done
at compile-time, but once the architecture is generated, it is
fixed. Tower shares a type system with Ivory, mentioned in
Section II.

An integrated configuration language allows powerful re-
configurations. For example, the current SMACCMPilot im-
plementation is a two-board system. One board is the mission
board that performs ground communication, crypto, and hosts
high-level mission software; the other board is the flight
management unit (FMU) that performs inertial navigation and
motor control. In testing, we sometimes wish to execute the
system as a simpler single-board system on the FMU. Building
a single-board architecture that moves communication compo-
nents to the FMU and elides the databus between the FMU
and mission computer is as easy as running the Tower program
with new arguments.

The ability to refactor an architecture like a program
changes one’s perspective of a system architecture as being
a fixed monolithic application to a set of libraries that can be
composed in various ways.

The guiding theme is that as computer scientists, we know
how to build abstractions and computations with programming
languages. High-level, safe languages specialized for manag-
ing concurrency, communication, and configuration are just
as important as languages for building individual behavioral
components.

Hint: program the glue code and architecture.

V. THE VERIFIER’S DILEMMA
“We’ve got to have rules and obey them. After all, we’re
not savages.”

A Google employee remarked once that new tools to auto-
matically discover new bugs are not of interest because they—
just like other large software corporations—already have more
open bugs than they have time to fix. These bugs exist in
both open-source software that the companies depend on (e.g.,
Linux, OpenSSL, etc.) and proprietary software alike. Rather
than discovering new bugs, their need is to triage existing bugs
quickly, to discover which vulnerabilities are exploitable from
external interfaces; those are the critical bugs.

So if the goal is to reduce the probability of exploitable
bugs, the first task is to understand which components are
security critical by carrying out an architectural analysis.
Assuming one has a handle on which components are critical,
a dilemma presents itself: should resources be dedicated to
absolutely assuring the correctness of the critical components,
or should they be spread across the system? The choice is the
verifier’s dilemma. Uncritical components can become critical
if the critical ones are not correct. Like in poker, the “pot odds”
have to be calculated: the analogy here is that the expected
value of verifying a component is proportional to a measure

of the criticality of the component multiplied by the probability
of it having an exploitable vulnerability.

The calculation is complicated by an attacker’s ability to
turn what appear to be uncritical components into critical ones.
An exploit in a critical component that allows the attacker to
reach another component that was assumed to be unreachable
may allow additional attacks to be launched. No formula exists
to calculate what level of verification should be applied to
which components. But we can provide some hints.

First, like in a house, the foundation is critical. The foun-
dation for a software system is the operating system. So it
pays to use a high-assurance operating system; for example,
seL4 is a formally verified microkernel that is guaranteed
to be correct, with respect to its specification and free from
undefined behavior [13].

Beyond the foundation and the interfaces, the Pareto Prin-
ciple applies: in one internal study, Microsoft found that 80%
of exploits come from 20% of the bugs [14]. I conjecture the
results hold more broadly—i.e., that software vulnerabilities
follow a Pareto power law distribution—and furthermore, that
the distribution holds for classes of vulnerabilities. Recall
in Figure 1 that nearly all vulnerabilities exploited in the
automotive hacking work were boring buffer overflows.

If the conjecture holds, then the extent to which high-
probability-of-exploit classes of vulnerabilities can be elimi-
nated dramatically improves security. I discussed in Section II
that buffer overflows (and memory safety errors, in general)
can be eliminated.

Finally, do the easy stuff first. Following coding standards,
performing unit, regression, and fuzz testing, requiring all
compiler warnings be enabled and eliminated, and using
multiple commercial static analysis tools must be part of
the standard engineering practices for building high-assurance
cyber-physical systems. While these practices require no spe-
cialized expertise in verification or security, they are often
ignored, even for life-critical systems [15].

Hint: system verification is a probabilistic game; tilt the
odds in your favor.

VI. THE MYTHICAL VERIFICATION MONTH

“People don’t help much.”

Functionality or correctness—it seems a team must choose
one. How do you motivate a team to build a functional and
correct system in a limited time? The HACMS program had
flight demonstration and red-team security review every 18
months. The demonstration and red team assessment were
equally important, and because they happened simultaneously,
both had to be addressed in the same delivered system.

In the previous sections I have addressed technical aspects
of building high-assurance cyber-physical systems. Just as
important, however, are the social and cultural aspects. The
designers and implementors fight a multi-front battle: building
the required functionality and performance while satisfying
security, safety, or reliability constraints, all while meeting cost



and scheduling objectives. Balancing these concerns requires
the right incentives and culture to meet those incentives.

A prototypical example is the Space Shuttle software group
that builds software with an historical error rate of around two
errors per million lines of code [16]. They were successful
largely through culture alone, without the use of formal
verification techniques that were not available in the 90s.

Brooks’ The Mythical Man-Month famously addresses so-
cial and management aspects of building computing systems,
and the advice is particularly relevant to building high assur-
ance systems. Brook’s law states that “adding manpower to a
late software project makes it later” [17]. I propose a corollary,
that adding people to a project with low-quality software low-
ers its quality, even if those additional people are working on
quality assurance. Additional people working on verification
and validation cause the same problems as additional engineers
added to a late project: additional communication overhead,
additional ramp up time, and working on indivisible tasks,
making it very difficult to improve code quality by simply
increasing the number of engineers or quality assurance tools.

In summary, Nancy Leveson gives prescient advice from 20
years ago in her book, Safeware:

One obvious lesson is that most accidents are not
the result of unknown scientific principles but rather
of a failure to apply well-known, standard engineer-
ing practices. A second lesson is that accidents will
not be prevented by technological fixes alone, but
will require control of all aspects of the development
and operation of the system [18].

Hint: high-assurance systems require a high-assurance
culture.

VII. REMAINING PAINS

In the following, I mention issues for which I have no hints
to give; but are nonetheless critical.

The system configuration and build trust problem is usually
ignored, even in high-assurance systems. GNU Make is 25k
lines of C, with complex built-in and user-defined rules. It is
also the defacto build system for embedded systems. Build
system maintenance is notoriously difficult [19]. While GNU
Make is pervasive, well-maintained, and useful, having a large
complex build system wrapped around verified software is a
bit like putting a skyscraper on quicksand.

In the fault-tolerance community we say that “time turns the
improbable into the inevitable”.3 Your system will eventually
fail. SMACCMPilot is not a fault-tolerant system, and how to
combine security and fault-tolerance is currently a nascent art.

Just as there is no silver bullet in software engineering
specifically, there is no silver bullet in high-assurance CPS
engineering specifically. Each hint presented is a piece of
the puzzle, and taken together, they have a multiplicative
effect. High-assurance software is feasible—I have described
the Space Shuttle software development process in Section VI.
The limiting factor is cost. My hypothesis is that these hints

3Attribution unknown.

can result in high-assurance CPS at a lower cost than in
traditional high-assurance domains. I hope one day we can
empirically test the hypothesis.
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