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Abstract. Runtime verification (RV) is a natural fit for ultra-critical
systems, where correctness is imperative. In ultra-critical systems, even
if the software is fault-free, because of the inherent unreliability of com-
modity hardware and the adversity of operational environments, process-
ing units (and their hosted software) are replicated, and fault-tolerant
algorithms are used to compare the outputs. We investigate both software
monitoring in distributed fault-tolerant systems, as well as implementing
fault-tolerance mechanisms using RV techniques. We describe the Copi-
lot language and compiler, specifically designed for generating monitors
for distributed, hard real-time systems, and we describe a case study in
a Byzantine fault-tolerant airspeed sensor system.

1 Introduction

One in a billion, or 10−9, is the prescribed safety margin of a catastrophic fault
occurring in the avionics of a civil aircraft [1]. The justification for the require-
ment is essentially that for reasonable estimates for the size of an aircraft fleet,
the number of hours of operation per aircraft in its lifetime, and the number of
critical aircraft subsystems, a 10−9 probability of failure per hour ensures that
the overall probability of failure for the aircraft fleet is “sufficiently small.” Let us
call systems with reliability requirements on this order ultra-critical and those
that meet the requirements ultra-reliable. Similar reliability metrics might be
claimed for other safety-critical systems, like nuclear reactor shutdown systems
or railway switching systems.

Neither formal verification nor testing can ensure system reliability. Contem-
porary ultra-critical systems may contain millions of lines of code; the functional
correctness of approximately ten thousand lines of code represents the state-of-
the-art [2]. Nearly 20 years ago, Butler and Finelli showed that testing alone
cannot verify the reliability of ultra-critical software [3].

Runtime verification (RV), where monitors detect and respond to property
violations at runtime, holds particular potential for ensuring that ultra-critical
systems are in fact ultra-reliable, but there are challenges. In ultra-critical sys-
tems, RV must account for both software and hardware faults. Whereas software
faults are design errors, hardware faults can be the result of random failure. Fur-
thermore, assume that characterizing a system as being ultra-critical implies it
is a distributed system with replicated hardware (so that the failure of an indi-
vidual component does not cause system-wide failure); also assume ultra-critical
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systems are embedded systems sensing and/or controlling some physical plant
and that they are hard real-time, meaning that deadlines are fixed and time-
critical.

Contributions. Despite the relevance of RV to ultra-critical systems, there has
been relatively little research on RV in that context. One of the primary con-
tributions of this paper is to place RV within that context, particularly describ-
ing the constraints any RV solution must satisfy. A second contribution is the
introduction of the notion of “easy fault-tolerance”, where the machinery for
implementing fault-tolerance resides in the monitor rather than the system un-
der observation. Our third contribution is Copilot: a Haskell-based open-source
language, compiler, and associated verification tools for generating RV monitors.
Copilot answers two questions: (1) “Is RV possible for ultra-critical systems?”
and (1) “Can functional programming be leveraged for embedded system RV?”
We attempt to answer these questions by presenting the use of Copilot in a
case-study replicating airspeed sensor failures in commercial aircraft.

Outline. We describe three recent software-related aircraft and Space Shuttle
incidents motivating the need for RV in Section 2. In Section 3, we describe the
constraints of RV implementations in the context of ultra-reliable systems.We
describe the language Copilot in section 4; specifically, we describe how Copi-
lot provides “easy” fault-tolerance, and we describe our approach to generating
highly-reliable monitors. We present our use of Copilot in a case study simulat-
ing an ultra-reliable air speed system in Section 5. The remaining two sections
present related work and conclusions, respectively.

2 When Ultra-Critical Is Not Ultra-Reliable

Well-known, albeit dated, examples of the failure of critical systems include
the Therac-25 medical radiation therapy machine [4] and the Ariane 5 Flight
501 disaster [5]. However, more recent events show that critical-system software
safety, despite certification and extensive testing, is still an unmet goal. Below,
we briefly overview three examples drawing from faults in the Space Shuttle, a
Boeing 777, and an Airbus A330, all occurring between 2005 and 2008.

Space Shuttle. During the launch of shuttle flight Space Transportation Sys-
tem 124 (STS-124) on May 31, 2008, there was a pre-launch failure of the fault
diagnosis software due to a “non-universal I/O error” in the Flight Aft (FA)
multiplexer de-multiplexer (MDM) located in the orbiter’s aft avionics bay [6].
The Space Shuttle’s data processing system has four general purpose computers
(GPC) that operate in a redundant set. There are also twenty-three MDM units
aboard the orbiter, sixteen of which are directly connected to the GPCs via
shared buses. The GPCs execute redundancy management algorithms that in-
clude a fault detection, isolation, and recovery function. In short, a diode failed
on the serial multiplexer interface adapter of the FA MDM. This failure was



manifested as a Byzantine fault (i.e., a fault in which different nodes interpret a
single broadcast message differently [7]), which was not tolerated and forced an
emergency launch abortion.

Boeing 777. On August 1, 2005, a Boeing 777-120 operated as Malaysia Airlines
Flight 124 departed Perth, Australia for Kuala Lumpur, Malaysia. Shortly af-
ter takeoff, the aircraft experienced an in-flight upset, causing the autopilot to
dramatically manipulate the aircraft’s pitch and airspeed. A subsequent anal-
ysis reported that the problem stemmed from a bug in the Air Data Inertial
Reference Unit (ADIRU) software [8]. Previously, an accelerometer (call it A)
had failed, causing the fault-tolerance computer to take data from a backup
accelerometer (call it B). However, when the backup accelerometer failed, the
system reverted to taking data from A. The problem was that the fault-tolerance
software assumed there would not be a simultaneous failure of both accelerom-
eters. Due to bugs in the software, accelerometer A’s failure was never reported
so maintenance could be performed.

Airbus A330. On October 7, 2008, an Airbus A330 operated as Qantas Flight QF72
from Singapore to Perth, Australia was cruising when the autopilot caused a
pitch-down followed by a loss of altitude of about 200 meters in 20 seconds (a
subsequent less severe pitch was also made) [9]. The accident required the hos-
pitalization of fourteen people. Like in the Boeing 777 upset, the source of this
accident was an ADIRU. The ADIRU appears to have suffered a transient fault
that was not detected by the fault-management software of the autopilot system.

3 RV Constraints

Ideally, the RV approaches that have been developed in the literature could be
applied straightforwardly to ultra-critical systems. Unfortunately, these systems
have constraints violated by typical RV approaches. We summarize these con-
straints using the acronym “FaCTS”:

– Functionality: the RV system cannot change the target’s behavior (unless
the target has violated a specification).

– Certifiability: the RV system must not make re-certification (e.g., DO-178B [10])
of the target onerous.

– Timing: the RV system must not interfere with the target’s timing.
– SWaP: The RV system must not exhaust size, weight, and power (SWaP)

tolerances.

The functionality constraint is common to all RV systems, and we will not
discuss it further. The certifiability constraint is at odds with aspect-oriented
programming techniques, in which source code instrumentation occurs across the
code base—an approach classically taken in RV (e.g., the Monitor and Checking
(MaC) [11] and Monitor Oriented Programming (MOP) [12] frameworks). For



codes that are certified, instrumentation is not a feasible approach, since it re-
quires costly reevaluation of the code. Source code instrumentation can modify
both the control flow of the instrumented program as well as its timing proper-
ties. Rather, an RV approach must isolate monitors in the sense of minimizing
or eliminating the effects of monitoring on the observed program’s control flow.

Timing isolation is also necessary for real-time systems to ensure that timing
constraints are not violated by the introduction of RV. Assuming a fixed upper
bound on the execution time of RV, a worst-case execution-time analysis is used
to determine the exact timing effects of RV on the system—doing so is imperative
for hard real-time systems.

Code and timing isolation require the most significant deviations from tradi-
tional RV approaches. We have previously argued that these requirements dictate
a time-triggered RV approach, in which a program’s state is periodically sampled
based on the passage of time rather than occurrence of events [13]. Other work
at the University of Waterloo also investigates time-triggered RV [14, 15].

The final constraint, SWaP, applies both to memory (embedded processors
may have just a few kilobytes of available memory) as well as additional hardware
(e.g., processors or interconnects).

4 Copilot: a Language for Ultra-Critical RV

To answer the challenge of RV in the context of fault-tolerant systems, we have
developed a stream language called Copilot.4 Copilot is designed to achieve the
“FaCTS” constraints described in Section 3.

If the majority of the three engine temperature probes has exceeded 250 degrees,
then the cooler is engaged and remains engaged until the temperature of the
majority of the probes drop to 250 degrees or less. Otherwise, trigger an immediate
shutdown of the engine.

engineMonitor = do

trigger "shutoff" (not overHeat) [arg maj]

where

vals = map externW8 ["tmp_probe_0", "tmp_probe_1", "tmp_probe_2"]

exceed = map (< 250) vals

maj = majority exceed

checkMaj = aMajority exceed maj

overHeat = (extern "cooler" || (maj && checkMaj)) ‘since’ not maj

Fig. 1. A safety property and its corresponding Copilot monitor specification.

4 Copilot is released under the BSD3 license and pointers to the compiler and libraries
can be found at http://leepike.github.com/Copilot/.



While a preliminary description of the language has been presented [13],
significant improvements to the language have been made and the compiler has
been fully reimplemented. In any event, the focus of this paper is the unique
properties of Copilot for implementing hardware fault-tolerance and software
monitoring in the context of an ultra-critical system. Copilot is a language with
stream semantics, similar to languages like Lustre [16]; we mention advantages
of Copilot over Lustre in Section 6.

To briefly introduce Copilot, we provide an example Copilot specification
in Figure 1. A Copilot monitor program is a sequence of triggers. A trigger is
comprised of a name (shutoff), a Boolean guard (not overHeat), and a list
of arguments (in this case, one argument, maj, is provided). If and only if the
condition holds is the function shutoff called with the arguments. What a
trigger does is implementation-dependent; if Copilot’s C code generator is used,
then a raw C function with the prototype

void shutoff(uint8_t maj);

should be defined. Within a single Copilot program, triggers are scheduled to fire
synchronously, if they fire at all. Outside of triggers, a Copilot monitor is side-
effect free with respect to non-Copilot state. Thus, triggers are used for other
events, such as communication between monitors, as described in Section 4.2.

A trigger’s guard and arguments are stream expressions. Streams are infinite
lists of values. The syntax for defining streams is nearly identical to that of
Haskell list expressions; for example, the following is a Copilot program defining
the Fibonacci sequence.

fib = [0, 1] ++ fib + drop 1 fib

In Copilot streams, operators are automatically applied point-wise; for example,
negation in the expression not overHeat is applied point-wise over the elements
of the stream overHeat. In Figure 1, the streams are defined using library func-
tions. The functions majority, aMajority, and ‘since’ are all Copilot library
functions. The functions majority (which determines the majority element from
a list, if one exists—e.g., majority [1, 2, 1, 2, 1] == 1) and aMajority

(which determines if any majority element exists) come from a majority-vote
library, described in more detail in Section 4.1. The function ‘since’ comes
from a a past-time linear temporal logic library. Libraries also exist for defining
clocks, linear temporal logic expressions, regular expressions, and simple statis-
tical characterizations of streams.

Copilot is a typed language, where types are enforced by the Haskell type
system to ensure generated C programs are well-typed. Copilot is strongly typed
(i.e., type-incorrect function application is not possible) and statically typed (i.e.,
type-checking is done at compile-time). We rely on the type system to ensure
the Copilot compiler is type-correct. The base types are Booleans, unsigned and
signed words of width 8, 16, 32, and 64, floats, and doubles. All elements of a
stream must belong to the same base type.

To sample values from the “external world”, Copilot has a notion of exter-
nal variables. External variables include any value that can be referenced by



a C variable (as well as C functions with a non-void return type and arrays
of values). In the example, three external variables are sampled: tmp probe 0,
tmp probe 1, tmp probe 2. External variables are lifted into Copilot streams
by applying a typed “extern” function. For example, An expression externW8

"var" is a stream of values sampled from the variable var, which is assumed to
be an unsigned 8-bit word.

Copilot is implemented as an embedded domain-specific language (eDSL). An
eDSL is a domain-specific language in which the language is defined as a sub-
language of a more expressive host language. Because the eDSL is embedded,
there is no need to build custom compiler infrastructure for Copilot—the host
language’s parser, lexer, type system, etc. can all be reused. Indeed, Copilot
is deeply embedded, i.e., implemented as data in the host language that can
be manipulated by “observer programs” (in the host language) over the data,
implementing interpreters, analyzers, pretty-printers, compilers, etc. Copilot’s
host language is the pure functional language Haskell [17]. In one sense, Copilot is
an experiment to answer the question, “To what extent can functional languages
be used for ultra-critical system monitoring?”

One advantage of the eDSL approach is that Haskell acts as a powerful macro
language for Copilot. For example, in Figure 1, the expression

map externW8 ["tmp_probe_0", "tmp_probe_1", "tmp_probe_2"]

is a Haskell expression that maps the external stream operator externW8 over a
list of strings (variable names). We discuss macros in more detail in Section 4.1.

Additionally, by reusing Haskell’s compiler infrastructure and type system,
not only do we have stronger guarantees of correctness than we would by writing
a new compiler from scratch, but we can keep the size of the compiler infras-
tructure that is unique to Copilot small and easily analyzable; the combined
front-end and core of the Copilot compiler is just over two thousand lines of
code. Our primary back-end generating C code is around three thousand lines
of code.

Copilot is designed to integrate easily with multiple back-ends. Currently,
two back-ends generate C code. The primary back-end uses the Atom eDSL [18]
for code generation and scheduling. Using this back-end, Copilot compiles into
constant-time and constant-space programs that are a small subset of C99. By
constant-time, we mean C programs such that the number of statements executed
is not dependent on control-flow5 and by constant-space, we mean C programs
with no dynamic memory allocation.

The generated C is suitable for compiling to embedded microprocessors: we
have tested Copilot-generated specifications on the AVR (ATmega328 processor)
and STM32 (ARM Cortex M3 processor) micro-controllers. Additionally, the
compiler generates its own static periodic schedule, allowing it to run on bare

5 We do not presume that a constant-time C program implies constant execution time
(e.g., due to hardware-level effects like cache misses), but it simplifies execution-time
analysis.



hardware (e.g., no operating system is needed). The language follows a sampling-
based monitoring strategy in which variables or the return values of functions
of an observed program are periodically sampled according to its schedule, and
properties about the observations are computed.

4.1 Easy Fault-Tolerance

Fault-tolerance is hard to get right. The examples given in Section 2 can be
viewed as fault-tolerance algorithms that failed; indeed, as noted by Rushby,
fault-tolerance algorithms, ostensibly designed to prevent faults, are often the
source of systematic faults themselves [19]! One goal of Copilot is to make fault-
tolerance easy—easy for experts to specify algorithms without having to worry
about low-level programming errors and easy for users of the functions to in-
tegrate the algorithms into their overall system. While Copilot cannot protect
against a designer using a fault-tolerant algorithm with a weak fault-model, it
increases the chances of getting fault-tolerance right as well as decoupling the
design of fault-tolerance from the primary control system. Finally, it separates
the concerns of implementing a fault-tolerance algorithm from implementing the
algorithm as a functionally correct, memory-safe, real-time C program.

As noted, because Copilot is deeply embedded in Haskell, Haskell acts as
a meta-language for manipulating Copilot programs. For example, the streams
maj, check, and overHeat in Figure 1 are implemented by Haskell functions
that generate Copilot programs.

To see this in more detail, consider the Boyer-Moore Majority-Vote Algo-
rithm, the most efficient algorithm for computing a majority element from a
set6 [20]. The majority library function implements this algorithm as a Copilot
macro as follows:

majority (x:xs) = majority’ xs x (1 :: Stream Word32)

where

majority’ [] candidate _ = candidate

majority’ (x:xs) candidate cnt =

majority’ xs (if cnt == 0 then x else candidate)

(if cnt == 0 || x == candidate then cnt+1 else cnt-1)

The macro specializes the algorithm for a fixed-size set of streams at compile-time
to ensure a constant-time implementation, even though the algorithm’s time-
complexity is data-dependent. (Our library function ensures sharing is preserved
to reduce the size of the generated expression.)

As an informal performance benchmark, for the majority algorithm voting
over five streams of unsigned 64-bit words, we compare C code generated from
Copilot and constant-time handwritten C. Each program is compiled using gcc

-O3, with a printf statement piped to /dev/null (to ensure the function is not
optimized away). The hand-written C code is approximately nine percent faster.

6 Due to space limitations, we will not describe the algorithm here, but an illustration
of the algorithm can be found at http://www.cs.utexas.edu/~moore/best-ideas/
mjrty/example.html.



While the Boyer-Moore algorithm is not complicated, the advantages of the
Copilot approach over C are (1) majority is a polymorphic library function
that can be applied to arbitrary (Copilot-supported) data-types and sizes of
voting sets; with (2) constant-time code, which is tedious to write, is generate
automatically; (3) the Copilot verification and validation tools (described in
Section 4.3) can be used.

4.2 Distributed Monitoring

Our case study presented in Section 5 implements distributed monitors. In a
distributed monitor architecture, monitors are replicated, with specific param-
eters per process (e.g., process identifiers). The meta-programming techniques
described in Section 4.1 can be used to generate distributed monitors by pa-
rameterizing programs over node-specific data, reducing a tedious task that is
traditionally solved with makefiles and C macros to a few lines of Haskell.

Copilot remains agnostic as to how the communication between distinct pro-
cesses occurs; the communication can be operating system supported (e.g., IPC)
if the monitors are processes hosted by the same operating system, or they can
be raw hardware communication mechanisms (e.g., a custom serial protocol and
processor interrupts). If the monitors are on separate processors, the program-
mer needs to ensure either that the hardware is synchronized (e.g., by using a
shared clock or by executing a clock synchronization protocol). Regardless of the
method, triggers, described above, are also used to call C functions that imple-
ment the platform-specific protocol. Incoming values are obtained by sampling
external variables (or functions or arrays).

4.3 Monitor Assurance

“Who watches the watchmen?” Nobody. For this reason, monitors in ultra-
critical systems are the last line of defense and cannot fail. Here, we outline our
approach to generate high-assurance monitors. First, as mentioned, the com-
piler is statically and strongly typed, and by implementing an eDSL, much of
the infrastructure of a well-tested Haskell implementation is reused. Copilot con-
tains a custom QuickCheck [21]-like test harness that generates random Copilot
programs and tests the interpreted output against the compiler to ensure cor-
respondence between the two. We have tested millions of randomly-generated
programs between the compiler and interpreter.

We use the CBMC model checker [22] to verify C code generated by Copilot
specifications. CBMC provides an independent check on the compiler. CBMC
can prove that the C code is memory-safe, including proving there are no arith-
metic underflows or overflows, no division by zero, no not-a-number floating-
point values, no null-pointer dereferences, and no uninitialized local variables.
Some of these potential violations are impossible for the Copilot compiler to gen-
erate (e.g., null-pointer dereferences), provided it is bug-free. Sometimes CBMC
cannot prove that a C program is memory-safe, since it requires the program to
be loop-free. The C code generated by Copilot implements a state machine that



generates the next values of the stream equations (see [13] for details). CBMC
can symbolically unroll the state machine a small fixed number of steps. A sep-
arate (so far informal) proof must be given that the program has been unrolled
sufficiently to prove memory-safety.

5 Case Study
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Fig. 2. Hardware stack and pitot tube configuration.

In commercial aircraft, airspeed is commonly determined using pitot tubes
that measure air pressure. The difference between total and static air pressure
is used to calculate airspeed. Pitot tube subsystems have been implicated in
numerous commercial aircraft incidents and accidents, including the 2009 Air
France crash of an A330 [23], motivating our case study.

We have developed a platform resembling a real-time air speed measuring
system with replicated processing nodes, pitot tubes, and pressure sensors to
test distributed Copilot monitors with the objective of detecting and tolerating
software and hardware faults, both of which are purposefully injected.

The high-level procedure of our experiment is as follows: (1) we sense and
sample air pressure from the aircraft’s pitot tubes; (2) apply a conversion and
calibration function to accommodate different sensor and analog-to-digital con-
verter (ADC) characteristics; (3) sample the C variables that contain the pressure
values on a hard real-time basis by Copilot-generated monitors; and (4) execute
Byzantine fault-tolerant voting and fault-tolerant averaging on the sensor val-
ues to detect arbitrary hardware component failures and keep consistent values
among good nodes.

We sample five pitot tubes, attached to the wings of an Edge 540 subscale
aircraft. The pitot tubes provide total and static pressure that feed into one
MPXV5004DP and four MPXV7002DP differential pressure sensors (Figure 2).



The processing nodes are four STM 32 microcontrollers featuring ARM Cor-
tex M3 cores which are clocked at 72 Mhz (the number of processors was selected
with the intention of creating applications that can tolerate one Byzantine pro-
cessing node fault [7]). The MPXV5004DP serves as a shared sensor that is read
by each of the four processing nodes; each of the four MPXV7002DP pressure
sensors is a local sensor that is only read by one processing node.

Monitors communicate over dedicated point-to-point bidirectional serial con-
nections. With one bidirectional serial connection between each pair of nodes,
the monitor bus and the processing nodes form a complete graph. All monitors
on the nodes run in synchronous steps; the clock distribution is ensured by a
master hardware clock. (The clock is a single point of failure in our prototype
hardware implementation; a fully fault-tolerant system would execute a clock-
synchronization algorithm.)

Each node samples its two sensors (the shared and a local one) at a rate of
16Hz. The microcontroller’s timer interrupt that updates the global time also pe-
riodically calls a Copilot-generated monitor which samples the ADC C-variables
of the monitored program, conducts Byzantine agreements, and performs fault-
tolerant votes on the values. After a complete round of sampling, agreements,
and averaging, an arbitrary node collects and logs intermediate values of the
process to an SD-card.

We tested the monitors in five flights. In each flight we simulated one node
having a permanent Byzantine fault by having one monitor send out pseudo-
random differing values to the other monitors instead of the real sampled pres-
sure. We varied the number of injected benign faults by physically blocking the
dynamic pressure ports on the pitot tubes. In addition, there were two “control
flights”, leaving all tubes unmodified.

The executed sampling, agreement, and averaging is described as follows:

1. Each node samples sensor data from both the shared and local sensors.
2. Each monitor samples the C variables that contain the pressure values and

broadcasts the values to every other monitor, then relays each received value
to monitors the value did not originate from.

3. Each monitor performs a majority vote (as described in Section 4.1) over
the three values it has for every other monitor of the shared sensor (call this
maji(S) for node i) and the local sensor (call this maji(L) for node i).

4. Copilot-generated monitors then compute a fault-tolerant average. In our
implementation, we remove the least and greatest elements from a set, and
average the remaining elements. For each node i and nodes j 6= i, fault-
tolerant averages are taken over four-element sets: (1) ftAvg(S) = {Si} ∪
{majj(S)} where Si is i’s value for the shared sensor.

5. Another fault-tolerant average is taken over a five-element set, where the
two least and two greatest elements are removed (thus returning the median
value). The set contains the fault-tolerant average over the shared sensor
described in the previous step ( ftAvg(S) ), the node’s local sensor value
Li, and {majj(L)}, for j 6= i. Call this final fault-tolerant average ftAvg.

6. Finally, time-stamps, sensor values, majorities and their existences are col-
lected by one node and recorded to an SD card for off-line analysis.



(a) (b)

(c) (d)

Fig. 3. Logged pressure sensor, voted and averaged data.

The graphs in Figure 3 depict four scenarios in which different faults are
injected. In each scenario, there is a software-injected Byzantine faulty node
present. What varies between the scenarios are the number of physical faults. In
Figure 3(a), no physical faults are introduced; in Figure 3(b), one benign fault
has been injected by putting a cap over the total pressure probe of one local
tube.7 In Figure 3(c), in addition to the capped tube, sticky tape is placed over
another tube, and in Figure 3(d), sticky tape is placed over two tubes in addition
to the capped tube.

The graphs depict the air pressure difference data logged at each node and
the voted and averaged outcome of the 3 non-faulty processing nodes. The gray
traces show the recorded sensor data S1, . . . , S4, and the calibrated data of the
local sensors L1, . . . , L4. The black traces show the final agreed and voted values
ftAvg of the three good nodes.

In every figure except for Figure 3(d), the black graphs approximate each
other, since the fault-tolerant voting allows the nodes to mask the faults. This
is despite wild faults; for example, in Figure 3(b), the cap on the capped tube
creates a positive offset on the dynamic pressure as well as turbulences and low
pressure on the static probes. At 1.2E7 clock ticks, the conversion and calibration
function of the stuck tube results in an underflowing value. In Figure 3(d), with

7 Tape left on the static pitot tube of Aeroperú Flight 603 in 1996 resulted in the
death of 70 passengers and crew [24].



only two non-faulty tubes out of five left, ftAvg is not able to choose a non-faulty
value reliably anymore. All nodes still agree on a consistent—but wrong—value.

Discussion. The purpose of the case-study is to test the feasibility of using
Copilot-generated monitors in a realistic setting to “bolt on” fault-tolerance to
a system that would otherwise be lacking that capability. The Copilot agreement
monitor is around 200 lines. The generated real-time C code is nearly 4,000 lines.

Copilot reduced the effort to implement a non-trivial real-time distributed
fault-tolerant voting scheme as compared to implementing it directly in C. While
a sampling-based RV approach works for real-time systems, one major challenge
encountered is ensuring the monitor’s schedule corresponds with that of the
rest of the system. Higher-level constructs facilitating timing analysis would be
beneficial. Furthermore, it may be possible to reduce the size of the monitor’s C
code using more aggressive optimizations in the Copilot compiler.

6 Related Work

Using RV to implement fault-tolerance can be considered to be a “one-out-
of-two” (1oo2) architecture [25], similar in spirit to the idea of the Simplex
architecture [26]. In a 1oo2 architecture, one component may be an arbitrarily
complex control system, and the other component is a monitor.

Copilot shares similarities with other RV systems that emphasize real-time or
distributed systems. Krüger, Meisinger, and Menarini describe their work in syn-
thesizing monitors for a automobile door-locking system [27]. While the system is
distributed, it is not ultra-reliable and is not hard real-time or fault-tolerant via
hardware replication. The implementation is in Java and focuses on the aspect-
oriented monitor synthesis, similar in spirit to JavaMOP [28]. Syncraft is a tool
that takes a distributed program (specified in a high-level modeling language)
that is fault-intolerant and given some invariant and fault model, transforms the
program into one that is fault-tolerant (in the same modeling language). [29].

There are few instances of RV focused on C code. One exception is Rmor,
which generates constant-memory C monitors [30]. Rmor does not address real-
time behavior or distributed system RV, though.

Research at the University of Waterloo also investigates the use of time-
triggered RV (i.e., periodic sampling). Unlike with Copilot, the authors do not
make the assumptions that the target programs are hard real-time themselves, so
a significant portion of the work is devoted to developing the theory of efficiently
monitoring for state changes using time-triggered RV for arbitrary programs,
particularly for testing [14, 15]. On the other hand, the work does not address
issues such as distributed systems, fault-tolerance, or monitor integration.

With respect to work outside of RV, other research also addresses the use of
eDSLs for generating embedded code. Besides Atom [18], which we use as a back-
end, Feldspar is an eDSL for digitial signal processing [31]. Copilot is similar in
spirit to other languages with stream-based semantics, notably represented by
the Lustre family of languages [16]. Copilot is a simpler language, particularly



with respect to Lustre’s clock calculus, focused on monitoring (as opposed to
developing control systems). Copilot can be seen as an generalization of the idea
of Lustre’s “synchronous observers” [32], which are Boolean-valued streams used
to track properties about Lustre programs. Whereas Lustre uses synchronous
observers to monitor Lustre programs, we apply the idea to monitoring arbitrary
periodically-scheduled real-time systems. The main advantages of Copilot over
Lustre is that Copilot is implemented as an eDSL, with the associated benefits;
namely Haskell compiler and library reuse the ability to define polymorphic
functions, like the majority macro in Section 4.1, that get monomorphised at
compile-time.

7 Conclusions

Ultra-critical systems need RV. Our primary goals in this paper are to (1) mo-
tivate this need, (2) describe one approach for RV in the ultra-critical domain,
(3) and present evidence for its feasibility.

Some research directions that remain include the following. Stochastic meth-
ods might be used to distinguish random hardware faults from systematic faults,
as the strategy for responding to each differs [33]. We have not addressed the
steering problem of how to address faults once they are detected. Steering is
critical at the application level, for example, if an RV monitor detects that a
control system has violated its permissible operational envelop. Because we have
a sampling-based monitoring strategy, we would also like to be able to infer the
periodic sampling rate required to monitor some property.

Research developments in RV have potential to improve the reliability of
ultra-critical systems, and we hope a growing number of RV researchers address
this application domain.
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