Appears in the proceedings of the 1st International Conference on Runtime
Verification (RV 2010).

Copilot: A Hard Real-Time Runtime Monitor

Lee Pike', Alwyn Goodloe?, Robin Morisset®, and Sebastian Niller*

! Galois, Inc. leepike@galois.com
2 National Institute of Aerospace alwyn.goodloe@nianet.org
3 Ecole Normale Supérieure robin.morisset@ens.fr
4 Technische Universitit Ilmenau sebastian.niller@stud.tu-ilmenau.de

Abstract. We address the problem of runtime monitoring for hard real-
time programs—a domain in which correctness is critical yet has largely
been overlooked in the runtime monitoring community. We describe the
challenges to runtime monitoring for this domain as well as an approach
to satisfy the challenges. The core of our approach is a language and com-
piler called Copilot. Copilot is a stream-based dataflow language that
generates small constant-time and constant-space C programs, imple-
menting embedded monitors. Copilot also generates its own scheduler,
obviating the need for an underlying real-time operating system.

1 Introduction

Safety-critical control systems, such as avionics and drive-by-wire systems, are
well-tested, sometimes certified, and perhaps even formally verified. Yet unde-
tected errors or incorrect environmental assumptions can cause failures resulting
in the loss of life—as these control systems become more complex and pervasive,
the risk of software failure grows. Hence, this domain begs for the application of
runtime monitoring.

Hard real-time systems are ones in which correctness depends on execution
occurring within a fixed period of time [GR04]. Surprisingly, most previous re-
search in runtime monitoring focuses either on non real-time programs or soft
real-time systems, in which occasionally missing deadlines is tolerated. To par-
tially redress this deficiency in the literature, we address the problem of moni-
toring the class of hard real-time systems: in particular, we develop a monitoring
framework for periodically-scheduled hard real-time systems.

In designing our monitoring framework, we apply four guiding principles we
believe are fundamental constraints for any monitoring approach treating this
domain:

1. Functionality: Monitors cannot change the functionality of the observed pro-
gram unless a failure is observed.

2. Schedulability: Monitors cannot alter the schedule of the observed program.

3. Certifiability: Monitors must minimize the difficulty in re-validating the ob-
served program; in particular, we make it our goal to avoid modifying the
observed program’s source code.

4. SWaP overhead: Monitors must minimize the additional overhead required
including size, weight, and power (SWaP).

To satisfy these objectives, we have developed a simple stream language
called Copilot that compiles into small constant-time and constant-space (i.e.,
no dynamic memory allocation) C programs. The language follows a sampling-
based monitoring strategy in which global variables of the observed program (or
programs) are periodically sampled; Copilot provides mechanisms for controlling
when to observe the variables. Furthermore, using the Atom compiler [Haw08]
as a back-end, Copilot automatically generates its own periodic schedule, al-
lowing for easy integration into the periodic schedule of the observed program.
By generating its own schedule, the monitor obviates the need for a real-time
operating system (RTOS) for scheduling and concurrency control and so can be
executed on minimal embedded hardware. The language is implemented as an
embedded domain-specific language (eDSL) in the popular functional language
Haskell [Jon02].

Outline The remainder of the paper is organized as follows. Related work is
described in Section 2. We describe and defend the use of state-variable sampling
as our monitoring approach in Section 3. In Section 4, we present the syntax,
types, and semantics for our Copilot language. We then present a lower-level
semantics of the language with respect to logical time in Section 5; we also discuss
our scheduling assumptions in more detail there. In Section 6, we present a
synthesis (or compilation) algorithm for transforming a Copilot specification into
a state-machine and briefly describe the implementation. We make concluding
remarks and point to future work in Section 7.

2 Related Work

Monitoring and Checking (MaC) [KLKS04] and Monitor Oriented Programming
(MOP) [CDRO4] represent the state-of-the-art in monitoring frameworks, but
are targeted at Java applications that are not hard real-time systems (a version
of MaC targeted at C programs is also under development). The Requirement
Monitoring and Recovery (RMOR) [Hav08] framework is (one of the first mon-
itoring frameworks) targeting C programs. RMOR differs from our approach in
that it requires that probes, built using aspect-oriented techniques, be inserted
in the code at each location where state is updated, and it does not address the
issues of monitoring real-time programs. Recent work on time-aware instrumen-
tation applies static analysis techniques and novel algorithms to calculate an
instrumentation that, when possible, satisfies the time budget [FL09]. Although
its focus is on soft real-time systems, predictable runtime monitoring defines
a monitor budget restricting the resources allowed to the monitor so that the
composed system can perform in a predictable fashion [ZDG09]. We have taken
an alternative approach that does not require modifying the monitored program
(see Section 3). Pellizzoni et al. have constructed no-overhead monitors in which

the monitors are implemented on FPGAs; the framework targets properties of
a PCI bus [PMCRO8].

The Copilot language is influenced by functional and stream-based languages.
The syntax and semantics of infinite Haskell lists influence the syntax and the
untimed semantics (see Section 4.3) of Copilot [Jon02]. The languages Lus-
tre [HCRP91], uCryptol [PSMO06], and Lola [DSST05] are all stream-based lan-
guages that influence the design of Copilot; in particular, Lustre and pCryptol
are designed for use on embedded microprocessors.

As explained in detail in Section 6.2, Copilot is a domain specific language
(DSL) that is embedded in the functional programming language Haskell. Similar
DSLs used to generate embedded C code include Feldspar [ACD*10], used for
digital signal processing, and Atom [Haw08], used for embedded control system
design. Indeed, Copilot uses Atom as a “back-end” in the compiler.

3 Sampling-Based Monitoring

Monitoring based on sampling state-variables has largely been disregarded as a
runtime monitoring approach, for good reason: without the assumption of syn-
chrony between the monitor and observed software, monitoring via sampling
may lead to false positives and false negatives [DDE0S]. For example, consider
the property (0;1;1)*, written as a regular expression, denoting the sequence
of values a monitored variable may take. If the monitor samples the variable
at the inappropriate time, then both false negatives (the monitor erroneously
rejects the sequence of values) and false positives (the monitor erroneously ac-
cepts the sequence) are possible. For example, if the actual sequence of values is
0,1,1,0,1,1, then an observation of 0,1,1,1,1 is a false negative by skipping a
value, and if the actual sequence is 0, 1,0, 1, 1, then an observation of 0,1,1,0,1,1
is a false positive by sampling a value twice.

However, in a hard real-time context, sampling is a suitable strategy. Under
the assumption that the monitor and the observed program share a global clock
and a static periodic schedule, while false positives are possible, false negatives
are not. A false positive is possible, for example, if the program does not execute
according to its schedule but just happens to have the expected values when
sampled. If a monitor samples an unacceptable sequence of values, then either
the program is in error, the monitor is in error, or they are not synchronized, all
of which are faults to be reported.

Most of the popular runtime monitoring frameworks described in Section 2
inline monitors in the observed program to avoid the aforementioned problems
with sampling. However, in the domain of embedded real-time systems, that ap-
proach suffers the following problems, recalling our four criteria from Section 1.
First, inlining monitors changes the real-time behavior of the observed program,
perhaps in unpredicable ways. In a sampling-based approach, the monitor can
be integrated as a separate scheduled process during available time-slices (this is
made possible by generating efficient constant-time monitors). Indeed, sampling-
based monitors may even be scheduled on a separate processor (albeit doing so

requires additional synchronization mechanisms), ensuring time and space par-
titioning from the observed programs. Such an architecture may even be nec-
essary if the monitored program is physically distributed. Another shortcoming
of inlining monitors is that certified code (e.g., DO-178B for avionics [Inc92])
is common in this domain. Inlining monitors could necessitate re-certifying the
observed program. We cannot claim our approach would obviate the need for
re-certification, but it is a more modular approach than one based on instru-
menting the source code of the observed program, which may result in a less
onerous re-certification process.

4 The Copilot Language

In this section, we overview the syntax, type system, and semantics of Copilot.

4.1 Syntax

The Copilot language is a synchronous language described by a set of stream
equations. A stream is an infinite sequence of values from some type. A stream
index i is a non-negative integer; for stream o, o () is the stream’s value at index
i. It is assumed that the value stored in stream index zero ¢(0) is an initial value.

To get a feel for the Copilot language, consider the following property of an
engine controller:

If the temperature rises more than 2.8 degrees within 0.2 seconds, then
the engine is immediately shut off.

Assume the period at which the temperature variable temp is sampled is 0.1
seconds, and the shut-off variable is shutoff. Then the property can be specified
as follows in Copilot:

temps = [0, 0, 0] ++ extF temp 1
overTempRise = drop 2 var temps > const 2.3 + var temps

trigger = (var overTempRise) implies (extB shutoff 2)

When the stream trigger becomes false, the property has failed.

A Copilot monitor specification is a nonempty set of stream equations defin-
ing typed monitor variables mqg, my, ..., my of the form m; = EXP where
EXP is an expression built from the BNF grammar in Figure 1. (We slightly
simplify the grammar from our implementation, omitting expression terminals
and type declarations.) In the grammar, the terminal <Identifier> is a valid
C99 variable name, and <n > is a non-negative integer. Streams of Boolean
values are used as triggers, signalling a property succeeding or failing.

Informally, the intended semantics for Copilot is the semantics of lazy streams,
like in Haskell [Jon02]. In particular, the operation 4+ is lazy list-append, and
appends a finite list onto a stream. The operation drop s n drops the first n
indexes from stream s.

stream definition EXP =VAR|CVAR| APP | DROP | FUN | CONST

monitor variable VAR = wvar <lIdentifier>

sample expression CVAR = CTYPE <lIdentifier> <n>

typed program variable CTY PE = extB | extI8 | extI16 | extI32 | extI64 |extW8 |
extW16 | extW32 | extW64 | extF | extD

stream drop DROP =drop <n> e

where e = VAR | CVAR | DROP | CONST
stream append APP =1+ EXP

where [is a finite list of constants
function application FUN = f(eo, €1, ..., €n), where

e, =VAR|CVAR| DROP | FUN | CONST
constant stream CONST = const ¢

where ¢ is a constant

Fig. 1. Simplified Copilot Grammar.

Besides monitor variables, the other class of variables in Copilot are program
variables. Program variables reference global variables being sampled. Program
variables can be any shared state accessible by the compiled C program monitor,
including hardware registers or other C program variables. In a sampling expres-
sion, e.g., extW64 v 3, the integer refers to the phase (or offset) into the periodic
schedule at which v is to be sampled (see Section 5). In CTY PFE expressions, the
‘ext’ in the constructor denotes ‘external’, ‘W denotes ‘word’, ‘I denotes ‘int’, ‘F’
denotes ‘float’, and ‘D’ denotes ‘double’. An expression containing no program
variables is a closed expression; otherwise it is an open expression. Monitors
are defined by open expressions, but closed expressions are useful as “helper
streams”—e.g., counters to create new clocks [HCRP91]—for other definitions.

An expression const 3 denotes a stream of the value 3.

The functions of the language include the usual arithmetic operators (e.g.,
+, —, %, /, modulo, ==, < and the other comparison operators), and the
logical operators not, and, or, implies. Other operators can be easily added to
the language.

The append operator binds more weakly than function application, which
binds more weakly than the drop operator. Variable operators bind most tightly.

Ezample 1 (Closed Monitor Expressions). We present simple closed monitor ex-
pressions below along with their intended semantics.

Monitor Intended semantics
mo = [T, F] + var mg T, F, T, F, ...
my = [T] ++ const F T, F, F, F, ...
mo = drop 1 (var ms) 1, 2,1, 2, ...

ms = [0, 1, 2] ++ var mq 0, 1,2, 1, 2,

my = [0, 1] + var mg + drop 1 (var my)||0, 1, 1, 2, 3,

Note that my4 generates the Fibonacci sequence.

One design choice with the language is to disallow stream append expres-
sions to appear within the context other operators. For example, the expressions
drop 1 ([0, 1] 4+ var m) and ([0, 1] ++ var m) + (const 3) are ill-formed. This
decision ensures there are no “anonymous streams” in the language—i.e., each
newly-constructed stream is either constant (const) or a function of streams
assigned to a monitoring variable. The choice provides better control over the
memory usage required by the monitor (it is a linear function of each monitor
variable defined; see Section 6).

Ezample 2 (Embedding past-time LTL). The past-time LTL (ptLTL) operators
are past-time analogues of the standard LTL operators. The ptLTL operators
include previously (P), has always been (A), eventually previously (&), and
since (S). Given their semantics defined in [MP92], they are defined in Copilot
as follows (assume the appropriate ¢T'ype and fixed phases n and 1):

Pp = mgy = [F] ++ cType p n

Ap = my =wvar me A cType p n, where
mgo = [T] + var me A Type pn

Ep = m3z =wvar myV cType p n, where

my = [T] ++ var mg V cTypepn
poSp1 = ms = cType p1 nV (cType pg I A mg), where
me = [F] ++ mg

4.2 Types

Copilot is statically and strongly typed—i.e., type-checking is done at compile-
time, and type-incorrect function application is not possible. In our implemen-
tation, Copilot types are embedded into Haskell’s type system (see Section 6.2).
Copilot specifications lift C types to streams. The C types lifted are the C types
corresponding to CTY PE in Figure 1.

-

In the following, let T denote the type T lifted to the type of an infinite stream
of values of type T. We denote that “expression exp has type T” by exp :: T.
The type of an expression is the smallest relation satisfying the following:

— —
— If m is a monitor variable of type T, then (var m) :: T.

o
— For a program variable expression, (¢I'ype v n) :: T, where T is the type
corresponding to the operator ctype.

N
— If ¢ :: T for each constant ¢ in the list [and exp :: T”, then (I ++ exp) ::

- =
(TuT).
— —
— If exp :: T, then drop i exp :: T.
— If f is a n-ary function such that f :: Ty, Th, ..., T, — T, and exp| :
— — — —
To, expy =Ty, ..., exp), i)TT“ then f(expy, expl, ..., expl) :: T.

— If ¢:: T, then (const ¢) :: T.

— - = =
If exp :: T and Ty, Ty CT and Ty # T1, then the expression is type incorrect.

4.3 TUntimed Semantics

Due to space considerations, we do not provide a formal semantics for Copilot.
Following [DSS'05], Copilot’s untimed semantics is defined in terms of evalua-
tion models. Informally, an evaluation model is the n-tuple of streams denoted
by a monitor specification, assuming a fixed set of streams denoting the values
of program variables. Evaluation models are constructed inductively over the
syntax of the specification assuming a fixed set of program variable values. A
specification is said to be well defined if the values of the monitor variables at
time ¢ are uniquely defined by the values of the monitored variables at times
0...t

For example, well-definedness rules out specifications of the form m = —(var m)
no value for m can statisfy that equation. Well-definedness also rules out specifi-
cations of the form m = drop 1 (var m) since it admits several different solutions
(e.g., both of the streams T, T, ... and F, F, ...).

Monitor specifications can be restricted syntactically to ensure they are well-
defined. Define a dependency graph to be a directed, weighted, graph (V, E)
such that the vertexes V' are the monitor and program variables. The edges E
are constructed as follows: for variables v and v', v = v’ € E if and only if v’
appears in some subexpression in the right-hand side of the stream equation for
v (note that program variables are only sinks in the graph), and w = weight(v),
where

weight(exp) = case exp of

l4++e — weight(e) — length(l)
drop i e — i+ weight(e)
fleo, €1, ..., en) — maz(weight(ep), ..., weight(e,)) .
var v’ - 0 !
cType v' n - 0
const ¢ — —00

A walk of a dependency graph is a finite sequence of variables vy, v1, ..., v,

such there exists an edge from v; to v;y1, for each v; of the sequence. Variable
v; depends on v; if v; and v; both appear in some walk, and i < j. A loop is a
walk vg, v1, ..., v, such that vg = v,. A closed walk is a walk vy, vy, ..., v,
such that v; = v, for some 0 < i < n. The weight of a walk vy, v1, ..., v, is
the sum of the weights in the sequence.

Ezample 3. The dependency graphs for msy, ms, and m4 in Example 1 are de-

picted below.
0
1

We make two restrictions to ensure that specifications are well-defined; one
constrains the dependencies between program variables, and one constrains the
dependencies of monitor variables on program variables. For the first constraint,
we preclude circular dependencies on future values in stream definitions. For
example, m = drop 1 (var m), has a circular dependency on its own future
values, and in

mg = drop 1 (var mq)

my; = var my

mg and m; depend on each others’ future values. Both specifications are not well-
defined. A sufficient condition is to require the weight of loops in the dependency
graph to be less than zero.

The second restriction is analogous but ensures a specification does not at-
tempt to reference future program values: the weight of a walk terminating in a
program variable must be less than or equal to zero. Thus, we have the following
definition:

Definition 1 (Well-Formed Specification). A monitor specification is well-
formed if there exists

— No loop with a non-negative walk weight.
— No walk with a positive weight terminating in an external variable.

Theorem 1 (Well-Formedness Theorem). Every well-formed specification
1s well-defined.

As noted in [DSST05], the converse of the theorem does not hold:

mo = (var mg) VT

my = [0, 1] ++ if F then drop 1 (¢Type p n) else var my

Both specifications are well-defined but not well-formed.

In addition to the well-formedness constraints, we introduce two minor ad-
ditional constraints in Section 6 for the purpose of reducing the worst-case exe-
cution time and memory usage in our implementation.

5 Scheduling Semantics

In Section 4.3, we described an untimed semantics for Copilot. In this section,
we describe the semantics of a Copilot implementation with respect to logical
time [Lam78]. That is, we assume a global clock is the sequence of non-negative
integers, and every stream shares the global clock. A (clock) tick is a value from
the global clock sequence. We assume synchronization with respect to the ab-
stract global clock, so every stream agrees on the time, but we do not assume
an order of execution within a clock tick. Thus, one stream cannot depend on
another stream having computed its next-state value during the current tick.

Not assuming an order of execution within a tick provides flexibility in imple-
menting a monitor; for example, a monitor might be distributed on separate
processors with the guarantee that synchronization is only required up to the
global clock [HCRP91]. The compiler ensures the same behavior regardless of
the order in which state variables are updated in the same tick (see Section 6).

We follow a standard model of hard real-time scheduling [GR04]. A monitor
is a collection of recurring tasks (in our setting, C functions) that obtain inputs
and compute output in a statically-bounded amount of time. We assume tasks
are periodic and have a round-robin non-preemptive schedule. Consequently, all
tasks have the same priority and run to completion without interrupts. The
global clock is an abstraction of the hardware clock; the duration of each tick of
the global clock is expected to be sufficiently long to account for the worst-case
execution time (WCET) of all possible computation that occurs within a tick.
A tick is triggered by sampling the hardware clock.

Typically, we assume the monitored program also has these scheduling char-
acteristics. In this case, the monitor can be integrated into the round-robin sched-
ule of the observed program, provided WCET constraints are met. However, the
monitor can also be scheduled as a single high-priority task that manages its own
sub-tasks (e.g., sampling) according to the schedule it generates. Care must be
taken that the monitor’s temporal assumptions are met under this framework.

At the ticks at which a state variable is scheduled to be assigned a new
value, we say the variable fires; otherwise, we say the variable idles. A variable’s
schedule can be succinctly stated in terms of a positive integer p that is its period
and a non-negative integer h, where h < p, that is the stream’s phase. The period
denotes the number of ticks between successive firings for a state variable, and
the phase denotes the offset into each period for when it fires. For a clock tick
C, when (C — h) mod p = 0, the variable fires; otherwise, it is idle.

Ezample 4 (Timed Semantics). Consider the stream specifications for ms and
mgs from Example 1. Suppose ms has period 3 and phase 0, and mg has period 3
and phase 1. Then the stream’s timed semantics are as follows, where | denotes
“undefined” or “do not care”:

global clock =012345678910...
me=1112221112 2 ...
mg=10001112221 ...

While the schedule of a monitor variable denotes when the variable fires,
the schedule of a program variable denotes when the monitor samples it. Con-
sequently, a sampling expression (i.e., cT'ype v n) denotes that v is sampled at
phase n in each period. For period p, we require 0 < n < p. The constraint 0 < n
ensures that the compiler has a tick to update state when variables are not being
sampled (see Section 6). Recall the initial specification in Section 4.1: there we
formalized “the engine is immediately shut off” by sampling the program variable
shutoff in the tick just after sampling temp.

Given our model, we can state the correctness condition for a stream in a
monitor specification to be implemented by a scheduled state variable:

Definition 2 (Stream Implementation). We say that the state variable v
with period p and phase h implements the stream o if for all clock times C,

v(C) = o(idz(C)), where idz(C) = {%J if h < C, and idz(C) = {%—‘

otherwise.

6 Monitor Synthesis

In this section, we describe the synthesis of a Copilot specification to a state ma-
chine, which Atom [Haw08] compiles to C code. The state machine is represented
by a set of state variables associated with each stream in the specification, an ini-
tial state, a state-update function for each variable, and a schedule for applying
the state-update function. The synthesis algorithm is very simple and produces
code with a low and uniform WCET. However, the simple algorithm requires
us to make two additional well-formedness restrictions, generalizing Definition 1
slightly; we describe these additions in Section 6.1.

Besides synthesizing the specification, the compiler schedules the monitors
within the overall periodic schedule of the observed program. The synthesis
algorithm generates a schedule that (1) respects causality constraints—i.e., the
data required to compute a value is available and that (2) interferes with the
program’s real-time constraints as little as possible. In our implementation, these
two criteria are handled at different levels of the compiler. The purpose of (1) is
to ensure that the Stream Implementation definition (Definition 2) holds. (2) is
an optimization issue; the Atom scheduler handles (2) by optimizing the schedule
(see Section 6.2).

Remark 1 (Array and List Notation). We store state values in arrays, and define
some functions that operate over arrays and lists. We denote the value at index
j in an array or list a by a[j]. The function len(a) takes an array or finite list and
returns the length of a. The array <> is the empty array. The function [app a
takes a finite list [and array a and returns an array o’ formed by appending the
values in [onto the front of a.

In the following, assume a monitor specification consists of a finite sequence
of monitor variable definitions of the form

Mo = expo, M1 = €TP1, ..., My = €TPp

State For each monitor variable m;, its state contains the following:

— History variables: stream values are stored in a history array, a;. The length
of the history array is statically-computed from the monitor specification.

— Update and output indezes: two elements of the history array are respectively
designated as an update index (upldz), the index of the next-state value, and
an output index (outldr), the index of the current output value.

Additionally, for each unique sampling expression ¢T'ype v n, in a specification,
we introduce a temporary sampling variable v, that contains the value sampled
from v at phase n in the current period. The variable v,, holds the sampled value
until it is used in the next-state function.

State Update The next-state value for stream m; is computed by nextSt(exp;, 0),
where

nextSt(e, k) = case e of

l++ ¢ — nextSt(e, k)
drop k' € — nextSt(e', k+ k)
fleo, €1, ..., en) — f(nextSt(eo, k), ..., nextSt(e,, k))
var m; — ifk <len(a;) —1
then a;[(k + outIdz;) mod len(a;)]
else nextSt(exp;, k — (len(a;) — 1))
cT'ype v n — Up
const ¢ — ¢

Initial State The initial state is computed as follows. For each monitor variable
m;, the initial state of history array a; = init(exp;) app nextSt(exp;,0), where

init(e) = case e of
I ++ ¢ — 1 app init(e)
otherwise — <>

init(exp;) may produce an empty array, but this array is always augmented
by one last index with an initial arbitrary value. Initially, the next-state index
points to that last index, while the output index is 0

For each temporary sampling variable v, its initial value is L, pronounced
‘undefined’, representing the undefined value of a program variable that has not
been sampled (L is polymorphic and a member of all types).

Ezxample 5. The following are initial values of the history arrays:

specification history array

mo =10, 1, 2] ++ extW64 x 3+ const 3|a; =<0, 1, 2, 1>
my = var mg + var mg <0>

meo = drop 2 (var mq) <4 >

Scheduling Each monitor variable in a specification has the same period, and
each program variable is sampled once each period. Just like in Lustre, new
logical clocks can be defined in terms of the underlying period [HCRP91]. This
allows control over when variables are sampled. For example, in the following
monitor, the program variable x sampled is only used every other period:

mo = [T, F] ++ var mg

my = if var mg then (extW8 z 3) else var m;y

The period for a monitor specification is either provided as an input to the
compiler, or the compiler can compute the minimum necessary period. The pe-
riod must satisfy the following constraint: let n be the largest phase n that
appears in a sampling expression (of the form ¢T'ype v n). Then the period p
must satisfy the constraints: 1 < p and n < p. The first constraint ensures there

are enough ticks per period to perform the actions described below, and the
second constraint ensures all the program variables can be sampled within the
period. Thus, we have the following order of actions each period:

— Phase 0: apply the state-update function for each monitor variable.

— Phase 1: increment the update and output indexes by 1 mod len(a;). The
output is current for the current period from phase 1 until phase 0 of the
next period.

Our algorithm ensures that the output for each stream is updated synchronously,
in the same tick.

6.1 Well-Formedness Generalizations

The synthesis algorithm presented is simple and produces efficient code, but it
requires two small generalizations to the well-formedness restrictions given in
Definition 1. The algorithm guarantees that the Stream Implementation prop-
erty (Definition 2) is satisfied for any Copilot specification satisfying these the
constraints.

— We extend the restriction of no loop with a non-negative weight to no closed
walk with a non-negative weight. Without the extension, the following spec-
ification is valid, but it requires pre-computing the next 3 elements of the
stream generated by my:

mo = [0] + var mg+1

my = drop 3 (var myg)

A specification with a closed walk with a non-negative weight that does not
contain a loop with a non-negative weight is semantically equivalent to some
specification in which all closed walks have negative weights. For example,
the following specification is equivalent to the preceding one but does not
violate the new restriction:

mo = [0, 1, 2, 3] ++ drop 3 ((var mg) + 1)
my = drop 3 (var mg)

— Let vg, v1, ..., v, be a walk of a specification’s dependency graph such
that v, is a program variable, and let w be the weight of the walk. Then
we require that w < —init(exp,,), where exp,, is the defining expression
for monitor variable vy. The intuition behind this requirement is that our
synthesis algorithm does not keep track of previously-sampled values of ex-
ternal variables to be used in stream equations. For example, the following
specification violates this condition:

mg = extW8 x 2
my = 1[0, 1, 2] ++ drop 1 (var my)

Our experience is that monitors violating these extended well-formedness con-
straints are relatively contrived.

6.2 Implementation

P | language/compiler
Host

|
|
language | Atom | } Scheduling,
| |
J

C code generation

Haskell

—

Fig. 2. The eDSL architecture for Copilot.

Copilot is implemented as an embedded domain-specific language (eDSL). In
the eDSL approach, a DSL is a set of operators defined in a host language. A
DSL specification defines data in the host language which can be manipulated; in
our case, we rewrite the specification to C code. Because the DSL is embedded,
there is no need to build custom compiler infrastructure—the host language’s
parser, lexer, type system, etc. can all be reused. In particular, the type system
of Copilot is embedded in the type system of Haskell, which provides a Hindley-
Milner polymorphic type system, extended with type classes [Jon02]. By using
a well-tested implementation, we have strong guarantees of correctness, and we
can keep the size of the compiler low (3000 lines of code at the time of writ-
ing). Finally, in a higher-order host language, one can write combinators over
the DSL, acting as a macro system for the language. The architecture of our
implementation of Copilot is shown in Figure 2. Copilot uses Atom, an open
source eDSL (see Section 2) as an intermediate language that does the C-code
generation and scheduler synthesis. Atom performs the schedule generation and
optimization (optimization is not described in this paper), too. Informally, the
Atom scheduler distributes events across the ticks of a period (without violating
causality constraints) to minimize the WCET per tick.

The Copilot compiler has been tested against a simple interpreter on thou-
sands of random streams, which discovered subtle issues, like the additional
restrictions on the dependency graph presented in Section 6.1.

We have executed Copilot-generated specifications on the Arduino Duemi-
lanove (ATmega328 microprocessor) as well as on ARM Cortex M3. The mon-
itors generate C99 code, so any processor for which a C compiler exists is a
potential target. However, the program’s hard real-time guarantees depend on
various hardware environmental assumptions; e.g., a cache can break hard real-
time guarantees.

We have constructed several small examples to corroborate our design and
approach. These examples are drawn from the domain of distributed and fault-
tolerant systems and include simple distributed computations, a simple Byzan-
tine agreement protocol, and a simple bus arbiter.

We are currently completing a more substantial case-study involving a fault-
tolerant pitot tube sensor (using air pressure for measuring airspeed) on dis-
tributed ARM Cortex M3 microprocessors with injected faults.

Copilot will be released open-source (BSD3); please email the authors for an
advance copy.

7 Conclusion

Summary In the Introduction, we presented four constraints for a hard real-time
monitoring framework: functionality, schedulability, certifiability, and SWaP over-
head. We have presented a framework that together satisfies these constraints. In
particular, our approach is based on sampling program variables and computing
properties over the sampled values. Copilot-generated monitors can be integrated
with the observed program without modifying its functionality or real-time guar-
antees. Finally, no real-time operating system is necessary for scheduling. Our
language is a highly-constrained language that makes compilation simple and
the ability to statically-compute memory and time usage straightforward. Nev-
ertheless, it is powerful enough to encode typical monitoring formulas, such as
past-time LTL and bounded LTL formulas.

Future Work Beyond additional case-studies, one area of future work is to en-
sure that Copilot monitors are correct. One approach is to borrow from the
coinductive verification techniques developed for hardware specifications, since
our language is a stream language [Min98]. We have performed initial experi-
ments using Frama-C [Fra] to verify the memory-safety of our generated C code.

We are current developing infrastructure to generate distributed monitors.
This allows a global property to be specified for a distributed system, and to
distribute the monitors to the system’s nodes.

Finally, another topic of interest is to apply statistical techniques to distin-
guish systematic software faults from transient hardware faults [SLSR07].

Acknowledgements

This work is supported by NASA Contract NNLOS8AD13T. We thank Ben Di Vito
for his direction and input.

References

[ACD'10] E. Axelsson, K. Claessen, G. Dvai, Z. Horvth, K. Keijzer, B. Lyckegrd,
A. Persson, M. Sheeran, J. Svenningsson, and A. Vajda. Feldspar: a domain
specific language for digital signal processing algorithms. In 8th ACM/IEEFE
Int. Conf. on Formal Methods and Models for Codesign, 2010.

[CDR04] F. Chen, M. D’Amorim, and G. Rogu. A formal monitoring-base framewrok
for software development analysis. In Proceedings of the 6th International
Conference on Formal Engineering Methods (ICFEM’0/4), number 3308 in
LNCS, pages 357-373. Springer-Verlag, 2004.

[DDE0S]

[DSS05)

[FLO9]

[Fra]
[GRO4]
[Hav08]

[HawO08]

[HCRPY1]

[Inc92]
[Jon02]

[KLKS04]

[Lam78]
[Min9s]

[MP92]

M.B. Dwyer, M. Diep, and S. Elbaum. Reducing the cost of path prop-
erty monitoring through sampling. In Proceedings of the 23rd International
Conference on Automated Software Engineering, pages 228-237, 2008.

B. D’Angelo, S. Sankaranarayanan, C. Snchez, W. Robinson, Zohar Manna,
B. Finkbeiner, H. Spima, and S. Mehrotra. LOLA: Runtime monitoring
of synchronous systems. In 12th International Symposium on Temporal
Representation and Reasoning, pages 166-174. IEEE, 2005.

S. Fishmeister and P. Lam. On time-aware insrumentation of programs. In
RTAS’09: 15h IEEE Real-Time and Embedded Technology and Application
Symposium, 2009.

Frama-C. Accessed August, 2010. http://frama-c.com/index.html.

J. Goossens and P. Richard. Overview of real-time scheduling problems
(invited paper). In Euro Workshop on Project Management and Scheduling,
2004.

K. Havelund. Runtime verification of C programs. In TestCom/FATES,
number 5047 in LNCS. Springer-Verlag, 2008.

Tom Hawkins. Controlling hybrid vehicles with Haskell. Presentation.
Commercial Users of Functional Programming (CUFP), 2008. Available
at http://cufp.galois.com/2008/schedule.html.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language Lustre. Proceedings of the IEEE, 79(9),
September 1991.

RTCA Inc. Software considerations in airborne systems and equipment
certification, 1992. RCTA/DO-178B.

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Re-
vised Report. http://haskell.org/, 2002.

M. Kim, I. Lee, S. Kannan, and O. Sokolsky. Java-MaC: a run-time as-
surance tool for Java. Formal Methods in System Design, 24(1):129-155,
2004.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, 1978.

Paul Miner. Hardware verification using coinductive assertions. PhD thesis,
Indiana University, Bloomington, 1998. Adviser-Johnson, Steven D.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer Verlag, 1992.

[PMCRO8] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu. Hardware run-

[PSMOG6]

[SLSRO7]

[ZDG09)

time monitoring for dependable cots-based real-time embedded systems.
In RTSS’08: Proceedings of the 29th IEEE Real-Time System Symposium,
pages 481-491, 2008.

L. Pike, M. Shields, and J. Matthews. A verifying core for a cryptographic
language compiler. In Proceedings of the 6th Intl. Workshop on the ACL2
Theorem Prover and its Applications, pages 1-10. ACM, 2006.

U. Sammapun, I. Lee, O. Sokolsky, and J. Regehr. Statistical runtime
checking of probabilistic properties. In RV’07: Proceedings of Runtime Ver-
ification, LNS, pages 164-175, 2007.

H. Zhu, M. Dwyer, and S. Goddard. Predictable runtime monitoring. In
ECRTS’09: 21st Euromicro Conference on Real-Time Systems, pages 173—
183, 2009.

