
Unmanned Autonomous Verification and Validation

Position Paper

Lee Pike
Galois, Inc.
galois.com

leepike@galois.com

Don Stewart
Galois, Inc.
galois.com

dons@galois.com

John Van Enk
DornerWorks, Inc.
dornerworks.com

John.VanEnk@dornerworks.com

ABSTRACT
We outline a new approach to the verification and validation
(V&V) of safety-critical avionics based on the use of ex-
ecutable lightweight domain specific languages (LwDSLs)—
domain-specific languages hosted directly in an existing high-
level programming language. We provide examples of LwDSLs
used in industry today, and then we describe the advantages
of LwDSLs in V&V. We argue the approach promises sub-
stantial automation and cost-reduction in V&V.

1. INTRODUCTION
Next-generation unmanned air vehicles (UAVs) will con-

tain highly-complex software, as human ability and judg-
ment is replaced by software systems. In addition, UAVs will
be expected to coordinate with piloted aircraft, ground sys-
tems, and even other UAVs. This new functionality requires
the specification and implementation of complex new soft-
ware systems in new design domains—for inter-UAV coor-
dination, ground-system coordination, UAV autopilot, pilot
artificial intelligence systems, internal health-management
and more. As a result, not only will the size and complex-
ity of individual software systems increase but so will the
complexity of the interactions between software systems in
different design domains.

Verification and validation (V&V) approaches to manage
this engineering effort must keep pace with both challenges.
There is a need then, we argue, for “unmanned and au-
tonomous” approachs to V&V— techniques that will make
tractable the exponential growth in complexity of UAV sys-
tems by taking advantage of new research in the automation
and mechanization of V&V.

In system design, a proven technique for managing com-
plexity, and gaining abstraction is through domain-specific
languages (DSLs)—languages tailor-made to describe the
concepts of a particular design space. A DSL exposes the ab-
stractions of the domain to the programmer, relieving them
from having to consider irrelevant detail. For example, a
simple and well-known example of a DSL is the Yacc parser

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CPS Week Workshop on Mixed Criticality 2009, San Francisco, California,
USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

generator (for writing the front-end of compilers). The Yacc

language is a stylized Backus Normal Form in which pro-
gramming language syntax is naturally expressed. Yacc then
compiles the BNF specification to C code.

Programming in a good DSL is more like writing an ex-
ecutable specification than writing a program. The DSL
relieves the developer of boilerplate programming issues.
Users of Yacc, for example, write directly in the BNF specifi-
cation notation, removing the need to translate the grammar
to a hand written parser in some concrete implementation
language. High-level DSLs, in effect, serve as the executable
requirements for an implementation. This DSL specifica-
tion can then in turn be used for modeling, simulation, and
synthesis.

Because of the variety of problem domains next-generation
UAV software must address, no single DSL can cover all re-
quirements. Instead we suggest a family of DSLs, each ap-
propriate to its domain. However, if designing a DSL means
building a new language, compiler, and V&V tools specifi-
cally for the DSL from scratch, the “DSL approach” would
be cost-prohibitive given the multitude of problem domains
that must be addressed.

There is a better way: lightweight domain-specific lan-
guages (LwDSLs) have been quietly gaining traction in in-
dustry.1 A LwDSL is a DSL hosted in a high-level general-
purpose language, allowing us to reuse all of the infrastruc-
ture provided by a mature language to implement a specific
DSL.

Many LwDSLs—and all of the ones we describe in this
paper—are hosted in the popular functional programming
language, Haskell. A high-level functional language such
as Haskell makes it easier to construct domain-specific func-
tions, libraries, and even syntax, as well as being more amenable
to verification processes. So by using a LwDSL, a domain
expert enjoys the benefits of the DSL approach in having
the right level of abstraction, while gaining access to the
host language’s existing compiler, libraries, and validation
tools. . . almost for free.

2. LIGHTWEIGHT DSLS IN PRACTICE
LwDSLs have been successfully used in industry for hard-

ware and embedded software design. The following are some
examples:

Jones employed a LwDSL for configuring large-scale, real-
time embedded systems for Boeing, showing significant im-
provements over previous approaches with reduced code size,

1LwDSLs are also referred to as embedded DSLs (EDSLs or
DSELs) in the literature [5].

increased modularity and scalability, and easier, earlier de-
tection of defects [6].

Hawkins described a LwDSL used at Eaton to intuitively
describe the safety-critical behavior of embedded code for
hydraulic hybrid vehicle control, lowering the risk of intro-
ducing bugs in the design phase. They describe this ap-
proach as “RTOS Synthesis”, automating most of the work
of a real-time operating system, with increased assurance [4].

Antiope employed a similar strategy for the design of
ultra-low power radio chips. Their LwDSL played two roles:
it was the main language for simulation used to debug their
protocol designs, and it was also the implementation lan-
guage for their verification tools [7].

In partnership with Chalmers University, Xilinx designed
a hardware description language that provides high-level ab-
stractions and aids in proving circuit equivalence [1].

These are just some examples of industrial LwDSLs; com-
panies in a variety of industries are continuously realizing
their cost-effectiveness and assurance guarantees.

3. UNMANNED AUTONOMOUS V&V
As we have mentioned, V&V must scale with software

complexity, to become what we call“unmanned autonomous”
V&V (UAV&V). In this section, we describe some of the
tools a good host language makes available to LwDSLs (we
use Haskell as our running example host) that make UAV&V
possible, including invariant enforcement, automatic test-
case generation, and coverage analysis.In addition, LwDSLs
are used not only for V&V activities like modeling, testing,
and simulation but also for direct synthesis of executable
code, so we mention tools enabling synthesis.

V&V Tools.
Semantic Types: By using Haskell to host domain-concepts,

we can reuse the significant effort required to construct a so-
phisticated static type system—which is one of the cheaper
ways to gain static assurance against a variety of defects.
The Haskell type-system is particularly powerful and ex-
pressive and can be used to ensure deep program invariants
hold at compile-time.

Automated Testing & Coverage Analysis: Tools are avail-
able that automate testing and coverage analysis of the host
language. QuickCheck [2], for example, allows one to embed
properties in Haskell programs and automatically generate
random data (that meets coverage criteria) to test those
properties. One writes properties about Haskell programs
(or hosted LwDSLs) in Haskell directly, which can in turn
face coverage analysis via tools such as HPC [3].

Libraries and Support : The popular host language lives in
a much larger ecosystem than a domain-specific language.
Haskell has over 1,000 released open-source libraries at the
time of writing—effort that could not be duplicated using
only a DSL approach. In addition, the host language’s for-
eign function interface eliminates the need to rewrite existing
libraries and code, cutting risk and costs.

Formal Verification Tools: Mechanical theorem-provers,
model checkers, and automated solvers (e.g., decision pro-
cedures) are essential V&V tools for ultra-critical systems.
Haskell has libraries and tools that make it easy to trans-
late a hosted LwDSL into those tools. Furthermore, as a
functional language itself, Haskell is naturally amenable to
mathematical modeling and analysis.

Synthesis Tools.
Code Synthesis Tools: Along with tools for testing and

coverage, a lightweight DSL approach saves effort through
the transparent reuse of techniques and tools for code gen-
eration and synthesis from the host language (such as C
generation libraries and tools), making synthesis cheaper.

Portability and Maintainance: An LwDSL also allows us
to gain improve maintainance and portability, as the LwDSL
needn’t commit to any particular architecture, instead being
as cross-platform as the host language.

4. CONCLUSIONS
LwDSLs will not make the challenges of mixed-criticality

systems go away. In particular, the systems must be de-
signed from the outset to be modular and compositional.
The right architectural abstractions must be made from the
outset to ensure time and space partitioning, fault-tolerance,
and security. However, LwDSLs have already proven them-
selves in other related industries. We believe they are an
essential part of the solution to cost-effective V&V for next-
generation UAV systems.

About the Authors
Dr. Lee Pike is a Senior R&D Engineer at Galois, Inc. spe-
cializing in formal methods for critical systems. Previously,
Dr. Pike was a staff scientist at the NASA Langley Research
Center. He has a best-paper award from Formal Methods in
Computer-Aided Design in 2007.

Don Stewart is a Senior R&D Engineer at Galois, Inc. spe-
cializing in functional languages. He is the coauthor of the
popular textbook Real World Haskell and has a best-paper
award from Practical Aspects of Declarative Languages, 2007.

John Van Enk is a software engineer at DornerWorks spe-
cializing in safety-critical applications, embedded software,
and certification.

5. REFERENCES
[1] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:

hardware design in Haskell. In Proceedings of the
International Conference on Functional Programming
(ICFP). ACM SIGPLAN, 1998.

[2] K. Claessen and J. Hughes. QuickCheck: A lightweight
tool for random testing of Haskell programs. In Proc. of
the ICFP. ACM SIGPLAN, 2000.

[3] A. Gill and C. Runciman. Haskell program coverage. In
Haskell ’07: Proceedings of the ACM SIGPLAN
workshop on Haskell workshop, pages 1–12. ACM, 2007.

[4] T. Hawkins. Controlling hybrid vehicles with Haskell.
In Proc. ACM CUFP ’08, New York, NY, USA, 2008.
ACM.

[5] P. Hudak. Building domain-specific embedded
languages. ACM Computing Surveys (CSUR),
28(4es):196, 1996.

[6] M. P. Jones. Experience report: playing the DSL card.
In ICFP ’08: Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming,
pages 87–90, New York, NY, USA, 2008. ACM.

[7] G. Wright. Functions to junctions: ultra low power chip
design with some help from Haskell. In Proc. ACM
CUFP ’08, New York, NY, USA, 2008. ACM.

