
Programming Languages for High-
Assurance Autonomous Vehicles

Extended Abstract

Lee Pike Patrick Hickey James Bielman Trevor Elliott
Thomas DuBuisson John Launchbury

Galois, Inc.
{leepike, pat, jamesjb, trevor, tommd, john}@galois.com

Abstract
We briefly describe the use of embedded domain-specific languages
to improve programmer productivity and increase software assur-
ance in the context of building a fully-featured autopilot for un-
piloted aircraft.

Categories and Subject Descriptors D.3.2 [Specialized applica-
tion languages]

Keywords high-assurance, programming language design

1. Introduction
Domain-specific languages (DSLs) improve programmer produc-
tivity. In the “embedded DSL (EDSL) approach”, a DSL is em-
bedded within a general-purpose programming language. EDSLs
simplify developing new languages and compilers since the devel-
oper can reuse infrastructure from the host language and does not
need to implement a full parser, lexer, type-checker, etc.

While EDSLs improve productivity and are useful for rapid
prototyping, can they improve the safety and security of software?

Yes. Over the past year and a half, we have shown you can
have your cake and eat it too, using EDSLs to increase programmer
productivity while ensuring generated embedded software does not
suffer common bugs. As a case-study, we have developed a higher-
assurance, open-source autopilot system for small autonomous ve-
hicles called SMACCMPilot.1

A secure autopilot system encompasses the full spectrum of
embedded system development including

• device drivers
• hard and soft real-time multi-tasking

1 The acronym ‘SMACCM’ stands for Secure Mathematically-Assured
Composition of Control Models. The compilers and autopilot are available
at smaccmpilot.org, licenced as BSD3.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLPV ’14, January 21, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2567-7/14/01. . . $15.00.
http://dx.doi.org/10.1145/2541568.2541570

• wireless networking (with radio controllers and a ground-
control station)

• network cryptography
• multiple interacting control loops
• fail-safe subsystems and diagnostics
• hardware-in-the-loop testing

To address the complexity and heterogenity of autopilot pro-
gramming, we have developed a new EDSL called Ivory. Ivory
generates memory safe C code specialized for embedded systems
programming, and its host language is Haskell, a pure, strong
and statically-typed functional programming language [4]. As an
EDSL, the Ivory compiler is under 4k LOCs.

To make memory safety easier to guarantee at compile time,
Ivory restricts certain constructs. For example, Ivory restricts the
following:

• No heap allocation. All memory allocation is on the control
stack. All memory allocation is of statically-known sizes.

• User-code loop iterations are bounded by a constant. (There is
one special forever loop combinator for implementing oper-
ating system tasks.)

• Size types are machine-independent (with the exception of
floating point sizes).

• Expressions have no side-effects.
• No pointer arithmetic.
• Type casts are limited to information-preserving casts or casts

that require a default value if truncation may occur (e.g., casting
from a signed to unsigned value).

These restrictions are similar to Jet Propulsion Laboratory’s “Power
of 10” rules for safety-critical software design [3] except in Ivory,
the rules are enforced by the compiler, not convention.

Ivory’s type system is embedded in Haskell’s parametric poly-
morphic type system and builds on powerful extensions including
data kinds [7] (e.g., to distinguish memory areas [2]), type-level
naturals [6] (for array lengths and loops), type-level strings (for
struct definitions), and type families [5] (for controlling effects like
memory allocation and return statements).

With the restrictions described above, Ivory takes a lot of flex-
ibility from the programmer. But it adds something too: because
Ivory is embedded in Haskell, the Ivory macro system is a type-
safe, Turing-complete programming language, for free. As an
EDSL, many of these restrictions are transparent to the programmer
through the use of compile macros.



For example, consider the case of loops. At C code genera-
tion time, loop bounds become fixed, but in Haskell, the macro
language, we can write a polymorphic loop function, such as the
following:

loop :: Ix n -> Ivory ...
loop bound = ...

loop is an Ivory function, where its type is given after the double
colons and its implementation is given on the following line (irrel-
evant details are elided with ellipses). The function takes an index
(Ix n), where n is a type-level natural number, and produces an
Ivory computation that performs an action. The loop combinator
will invoke this Ivory computation with an index counting up from
0 to (bound - 1)—in C, this generates a for loop. The function
loop can be used with any bound, but at compile time, loop is
specialized for each context it is called.

Macros are used in everything from generating safe bit-data ma-
nipulations (e.g., for device drivers) to architectural coordination.

The case of architectural coordination macros is noteworthy.
Early in our project, we found ourselves generating memory-safe
C programs from Ivory for individual real-time operating system
(RTOS) tasks, but having to write the “glue code” that manages the
tasks’ setup, initialization, synchronization, and communication in
C. Rather then write a new EDSL to generate glue code, we reuse
Ivory for this purpose as well by building a set of macros over Ivory
called Tower.

For example, to define an RTOS task called fooTask we might
write a Tower/Haskell function as follows:

fooTask :: ChannelSource 10 (Struct "state")
-> Task ...

fooTask src = do
emitter <- withChannelEmitter src "src"
onPeriod 250 ( \now -> do

...
emit emitter ... )

The function takes as an argument a queue (channel) on which
it broadcasts typed values that are state structures, which we
leave undefined for this example. The queue can contain up to
10 values. In the task’s definition, we extract the queue from the
Task monad, and in this example, write a body that executes every
250 milliseconds. After performing some actions, the task emits a
state on its channel.

In a sense, Tower is a separate language with a different syntax
and semantics from Ivory, but it does not even have its own abstract
syntax. Tower macros evaluate directly to Ivory code, using only a
few RTOS-specific system calls, imported in Ivory as foreign C
functions.

Tower does more than just simplify access to RTOS system
calls. Channels and shared memory are statically typed in Haskell,
and a graph describing communication channels between tasks
is captured as a Haskell value during code generation. With this
information, we can make security-critical guarantees, such as “all
out-bound messages sent to the serial driver (sending data to the
radio) pass through the encrypter first.”

Because the Tower macro system generates the bulk of the code
for composing Ivory components into the autopilot application,
adding new functionality often has the feeling of writing a state-
machine in Ivory then “plumbing” the new component into the
system with Tower.

Moreover, a developer who writes macros that generate Ivory
programs knows that no matter how complex her Haskell functions
are, compiled C code is guaranteed to be memory safe. In addition,
she can write macros over her DSL using general-purpose libraries
without porting them or requiring a foreign-function interface. For
example, we use QuickCheck, a library for automated test-case

generation [1], to automatically generate Ivory programs which test
the user’s Ivory program.

At the time of writing, our autopilot application has taken about
two engineer-years of effort, and generates approximately 50k
lines of code (LOCs) of C code from approximately 5k LOCS
of Ivory/Tower EDSL code. Comparing our work to similar open-
source projects, we estimate that the autopilot application would be
about 25k LOCs if hand-written in C.

Ivory’s generated C code is typically more verbose and contains
more duplicate statements than hand-written C. We’ve found the
Ivory programmer often uses host-language (Haskell) macros to
duplicate code where a C programmer would factor duplication
using function calls. The Ivory language retains the flexibility to
factor into functions if required for code size or performance, but
often, Ivory’s verbose code generation makes no difference to the
modern optimizing C compiler.

Additionally, the generated C code has just under 2500 asser-
tions that are automatically inserted by the Ivory compiler. Most
of the assertions are checks on arithmetic underflow/overflow and
division by zero. The assertions simplify testing and verification.

Conclusions EDSLs are not a panacea for building high assur-
ance systems. We still write logical bugs, we still have to tune con-
trol systems, we still have to deal with hardware failure and the
intricacies of cross-compilers, linker scripts, poor hardware docu-
mentation. We are far from formally specifying the requirements of
an autopilot; doing so would be a research topic of its own.

However, we do not spend our time hunting down segmentation
faults or buffer overflows. We do not make mistakes in using RTOS
primitives to set up inter-task communication. We spend more of
our time implementing and debugging core functionality. We write
what appear to be high-level functional programs despite efficiently
executing on a small embedded microprocessor.

In summary, EDSLs allow you to have your productivity and
your assurance, too.

Acknowledgments
This work is sponsored by DARPA High-Assurance Cyber-Military
Systems (HACMS) program. The SMACCMPilot autopilot project
draws on the work of the ArduPilot open source project, and we
thank the ArduPilot developer community and 3D Robotics for
their time and support.

References
[1] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random

testing of Haskell programs. In ACM SIGPLAN Notices, pages 268–
279. ACM, 2000.

[2] I. S. Diatchki and M. P. Jones. Strongly typed memory areas program-
ming systems-level data structures in a functional language. In Pro-
ceedings of the Workshop on Haskell, pages 72–83. ACM, 2006.

[3] G. J. Holzmann. The power of 10: Rules for developing safety-critical
code. Computer, 39(6):95–97, 2006.

[4] S. P. Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. http://haskell.org/, 2002.

[5] T. Schrijvers, S. Peyton Jones, M. Chakravarty, and M. Sulzmann. Type
checking with open type functions. In Proceedings of the International
Conference on Functional Programming, ICFP ’08. ACM, 2008.

[6] H. Xi and F. Pfenning. Eliminating array bound checking through de-
pendent types. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation, PLDI ’98, pages 249–257. ACM,
1998.

[7] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and
J. P. Magalhães. Giving haskell a promotion. In Proceedings of the
Workshop on Types in Language Design and Implementation, TLDI
’12, pages 53–66. ACM, 2012.


