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Abstract. With proof techniques like IC3 and k-induction, model-checking
scales further than ever before. Still, fault-tolerant distributed systems
are particularly challenging to model-check given their large state spaces
and non-determinism. The typical approach to controlling complexity
is to construct ad-hoc abstractions of faults, message-passing, and be-
haviors. However, these abstractions come at the price of divorcing the
model from its implementation and making refactoring difficult. In this
work, we present a model for fault-tolerant distributed system verifica-
tion that combines ideas from the literature including calendar automata,
symbolic fault injection, and abstract transition systems, and then use
it to model-check various implementations of the Hybrid Oral Messages
algorithm that differ in the fault model, timing model, and local node
behavior. We show that despite being implementation-level models, the
verifications are scalable and modular, insofar as isolated changes to an
implementation require isolated changes to the model and proofs. This
work is carried out in the SAL model-checker.

1 Introduction

Fault-tolerant distributed systems are famously complex, yet are the backbone
of life-critical systems, such as commercial avionics. Consequently, this class of
systems demands high-assurance of correct design and implementation. Formal
verification can help provide that assurance.

The verification of this class of systems has usually been at the algorithmic
level, eliding details about a concrete implementation. Historically, it has relied
on formal models verified by interactive theorem-proving [1, 2, 3, 4]. If formal
verification is to be introduced into the workflow of system designers, though,
we need more automated methods that scale for implementation-level models.
(Mostly) automated proof techniques are required to reduce the need for spe-
cialized verification expertise. We also need programmatic verification of imple-
mentations. System designers create software and hardware implementations to
test, simulate, and deploy. Discrepancies between implementations and algorith-
mic models can arise if the latter is abstracted too much from the former [5],
particularly if those abstractions are ad-hoc and system specific. Furthermore,
as implementations are modified to explore the design space, it is easy for the
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formal model and the implementation to become inconsistent, so the verification
is no longer about the system deployed.

There are at least two classes of abstractions that separate protocol-level
models of fault-tolerant distributed algorithms from their implementations. One
is to intertwine the environmental model with the system description. For ex-
ample, the behaviors of nodes are naturally specified as a transition system in
which transitions are guarded by the node’s fault state. But faults are part of
the environment; an implementation does not typically use its own fault status
to choose actions! Another class of abstractions is used to simplify models. For
example, message passing might be abstracted with shared state, or a node’s
local behavior is elided and instead, the output is constrained by a specification
of the behavior.

In this paper, we present a fault-tolerant distributed systems model, and
use that model to verify several variant implementations of the Byzantine fault-
tolerant Hybrid Oral Messages algorithm (OMH) [3]. The model combines vari-
ous ideas from the literature to build scalable and modular formal models suit-
able for infinite-state model-checking, and it reduces the need for ad-hoc ab-
stractions and optimizations. In Section 2, we present the important aspects of
the model, including calendar automata, originally developed by Dutertre and
Sorea [6], symbolic fault-injection, and abstract transition systems for verifica-
tion.

We use the model to verify implementation-level models of OMH in which
message passing is explicit, nodes are not forced to execute strictly synchronously,
and voting is explicit. In short, the models corresponds closely with an im-
plementation of the algorithm. In Section 3, we first describe OMH, then an
implementation of it that uses the Boyer-Moore Fast Majority Vote algorithm
(Fast MJRT) [7]. We then describe a set of modular invariants, such that the
invariants only concern specific aspects of the model (e.g., faults, local node be-
havior, or the passage of time). The verification is interesting in its own right,
as it is the first fully parametric (on the number of nodes) model-checked imple-
mentation of the algorithm.

In Section 4, we first show that despite being implementation-level, the model
is scalable. Developing invariants requires some user guidance, and isolated
changes to an implementation should require isolated modifications to the model
and proof. To demonstrate this, we modify the OMH implementation along the
dimensions of faults (by adding an omissive-asymetric fault type [8]), time (by
making a time-triggered model), and local behavior (by changing the majority
vote to a mid-value selection) and show that in each case, the modifications are
small and modular.

Our primary contributions are (1) a model-checking verification of an OMH
implementation, and (2) demonstrating that our modeling paradigm allows for
modular verification. Additionally, the idea of symbolic fault injection (Sec-
tion 2.2) is novel.

Finally, in Section 5 we describe related work, and we make concluding re-
marks in Section 6.



The models and experiments reported herein can be found online.1

2 Formal Model

Here we describe our formal model specialized for fault-tolerant distributed sys-
tems. The model draws on three principal abstractions: calendar automata, sym-
bolic fault injection, and abstract transition systems; we describe each below.

2.1 Calendar Automata

Real-time system verification in general-purpose model-checkers requires an ex-
plicit formalism of real-time progression. Trying to encode real-time clocks di-
rectly is difficult; in particular, one must avoid Zeno’s paradox in which no
progress is made because state transitions simply update real-valued variables
by an infinite sequence of decreasing amounts whose sum is finite. To avoid
this problem, Dutetre and Sorea developed calendar automata [6], which is itself
inspired by event calendars used in discrete-event simulation. Rather than en-
coding “how much time has passed since the last event”, it encodes “how far into
the future is the next scheduled event”, and a real-valued variable representing
the current time is updated to the next event time.

Define a set of events e0, e1, . . . , en ∈ E. For now, we do not define events;
intuitively, an event is a set of state variables (shortly, we will associate events
with messages sent in a distributed system). When an event is enabled, the
transitions over events are enabled; otherwise, the variables stutter (maintain
the same value).

An event calendar {(e0, t0), (e1, t1), . . . , (en, tn)} is a set of ordered pairs
(ei, ti) called calendar events where ei ∈ E is an event and ti ∈ R is a timeout,
the time at which the event is scheduled. We denote element (ei, ti) of an event
calendar by ci.

Let cal be an event calendar and ci, cj ∈ cal be calendar events. Define an
ordering on calendar events such that ci ≤ cj iff ti ≤ tj , and min(cal) = {ci|∀cj ∈
cal, ci ≤ cj} are the minimum elements of cal.

Let a transition system M = (S, I,→), be a set of states S, a set of initial
states I ⊆ S, and a transition relation →⊆ S × S. We implicitly assume a
set of state variables such that each state σ ∈ S is a total function that maps
state variables to values. We sometimes prime a state to denote that it satisfies
the transition relation: σ → σ′. We also sometimes use a variable assignment
notation to describe what state variables are specifically updated: e.g., σ′ =
σ[v := v + 1].

We distinguish two special state variables in a transition system: (1) now ∈ R
denotes the current time in the state, and (2) cal is an event calendar.

The following laws must hold of a transition system M implementing a cal-
endar automaton:

1 https://github.com/GaloisInc/mmc-paper



1. Time is initialized to be less than or equal to every calendar timeout: ∀σ ∈ I,
∀(ei, ti) ∈ σ(cal), σ(now) ≤ ti.

2. In all states, if the current time is strictly less than every calendar event,
then the only enabled transition is a time progress update: ∀σ ∈ S, ∀(ei, ti) ∈
σ(cal), if σ(now) < ti, then ∀σ′ such that σ → σ′, σ′ = σ[now := min(cal)].

3. In all states, if the current time equals a timeout, then the only transitions
enabled are calendar event updates associated with the timeout: ∀σ ∈ S,
∃(ei, ti) ∈ σ(cal) such that σ(now) = ti implies ∀σ′ such that σ → σ′,
σ′(now) = σ(now), σ′(cj) = σ(cj) for all cj ∈ σ(cal) such that cj 6= ci
(recalling that by convention, ci = (ei, ti)), and ci /∈ σ′(cal).

From the definitions, it follows that in every state, the timeouts are never in
the past, and that time is monotonic:

Lemma 1 (Future timeouts). ∀σ ∈ S, (ei, ti) ∈ σ(cal), σ(now) ≤ ti.

Lemma 2 (Monotonic time). ∀σ, σ′ ∈ S, if σ → σ′, then σ′(now) ≥ σ(now).

Proofs of these two lemmas are straightforward and omitted.
In a distributed system, it is convenient to distinguish global actions and

local actions. Global actions are principally interprocess communication, while
local actions are those carried out by each process to update its local state and
produce new messages to broadcast. While both global and local actions can
both be modeled as events in a calendar automata, doing so is generally overkill
and complicates the model. From the global perspective, individual processes
can update their local state atomically.

Again, following Dutetre and Sorea, we associate calendar events with chan-
nels in a distributed system [6]. Specializing calendars to message passing does
not lose generality since all external communication from an individual process
can be abstracted as message passing. Furthermore, fault models can be ab-
stracted to act over channels rather than processes [9]. The calendar introduces
real-time constraints on when processes send and receive messages.

Assume processes are indexed from a finite set Id . A channel from process i
to j is an ordered pair (i, j). Fix a set of messages Msg . Given a channel and a
timeout, let send be a relation on messages sent on a channel at a given time:

send ⊆ Id × Id × R×Msg

So send(i, j, t,m) holds iff i sends to j message m at time t. Likewise, let

recv ⊆ Id × Id × R×Msg

be a relation on messages received on a channel at a time, so that recv(i, j, t,m)
holds iff the message m received by j from i at time t.

In the absence of faults, we require that messages received were previously
sent and not previously received: if (i, j, t,m) ∈ recv, then ∃t′ such that (i, j, t′,m) ∈
recv where t′ < t, and ¬∃t′′ such that t′ < t′′ < t and (i, j, t′′,m) = (i, j, t,m).
(We address faults in Section 2.2.)



Then an event calendar for sending and receiving messages on channels is
the union of the send and recv relations.

The event of receiving a message initiates a process to update its local tran-
sition system and generate additional messages to send. When the process is
updating its local transition system, the event calendar is paused. That is, up-
dating an event (i, j, t,m) ∈ recv also includes updating j’s transition system.

2.2 Symbolic Fault Injection: a Synchronous Kibitzer

The typical approach to modeling faults is to add new state variables to each
process representing its fault state. Then a node chooses actions based on its
fault state. As a simple example, we might define a node that sends a good
message if it is non-faulty and a bad message otherwise. In pseudo-code using
guarded commands, its definition might look like the following:

node:

health: Fault_Type;

faulty(health) --> send(bad_msg);

non_faulty(health) --> send(good_msg);

But this approach mixes the specification of a node’s behavior with the fault
model, an aspect of the environment. Generally, nodes do not contain state
variables assigned to their faults, or use their fault-status to determine their
behavior!2 The upshot is that combining faults and node state divorces the
specification from its implementation.

A second difficulty with model-checking fault-tolerant systems in general is
that modeling faults requires adding state and non-determinism. The minimum
number of additional states that must be introduced may depend non-obviously
on other aspects of the fault model, specific protocol, and system size. Such con-
straints lead to “meta-model” reasoning, such as the following, in which Rushby
describes the number of data values that a particular protocol model must in-
clude to model the full range of Byzantine faults (defined later in this section):

To achieve the full range of faulty behaviors, it seems that a faulty source
should be able to send a different incorrect value to each relay, and this
requires n different values. It might seem that we need some additional
incorrect values so that faulty relays can exhibit their full range of be-
haviors. It would certainly be safe to introduce additional values for this
purpose, but the performance of model checking is very sensitive to the
size of the state space, so there is a countervailing argument against in-
troducing additional values. A little thought will show that . . .. Hence,
we decide against further extension to the range of values [10].

2 There are exceptions; for example, benign faults may be detected by a node itself
(e.g., in a built-in-test).



The second problem is the most straightforward to solve. In infinite-state
model-checking, we can use either the integers or the reals as the datatype for
values. Fault-tolerant voting schemes, such as a majority vote or mid-value se-
lection (see Section 3), require only equality, or a total order, respectively, to be
defined for the data.

The solution to the first problem is more involved. Our solution is to intro-
duce what we call a synchronous kibitzer that symbolically injects faults into
the model. The kibitzer decomposes the state and transitions associated with
the fault model from the system itself. For the sake of concreteness in describing
the synchronous kibitzer, we introduce a particular fault model, the hybrid fault
model of Thambidurai and Park [11]. This fault model distinguishes Byzantine,
symmetric, and manifest faults. It applies to broadcast systems in which a pro-
cess is expected to broadcast the same value to multiple receivers. A Byzantine
(or arbitrary) fault is one in which a process that is intended to broadcast the
same value to other processes may instead broadcast arbitrary values to different
receivers (including no value or the correct value). A symmetric fault is one in
which a process may broadcast the same, but incorrect, value to other processes.
Finally, a manifest (or benign) fault is one in which a process’s broadcast fault is
detectable by the receivers; e.g., by performing a cyclic redundancy check (CRC)
or because the value arrives outside of a predetermined window.

Define a set of fault types

Faults = {none, byz, sym,man}.

As in the previous section, let Id be a finite set of process indices, and let the
variable

faults : Id → Faults

range over possible mappings from processes to faults.

The hybrid fault model assumes a broadcast model of communication. A
broadcast : Id → 2Id → R → Msg → 2E takes a sender, a set of receivers, a
real-time, and a message to send each receiver, and returns a set of calendar
events:

broadcast(i, R, t,m) = {m|j ∈ R and send(i, j, t) = m}

With this machinery, we can define the semantics of faults by constraining
the relationship between a message broadcast and the values received by the
recipients. For a nonfaulty process that broadcasts, every recipient receives the
sent message, and for symmetric faults, there is no requirement that the messages
sent are the ones received, only that every recipient receives the same value:



nonfaulty constraint =

∀i, j ∈ Id , t ∈ R.
faults(i) = none

implies recv(i, j, t) = send(i, j, t)

sym constraint =

∀i, j, k ∈ Id , t ∈ R.
( faults(i) = sym

and broadcast(i, {j, k}, t,m))

implies recv(i, j, t) = recv(i, k, t)

Byzantine faults are left completely unconstrained.
Thus, faults can be modeled solely in terms of their effects on sending and

receiving messages. A node’s specification does not have to depend on its fault
status directly.

If the faults mapping is a constant, then faults are permanently but non-
deterministically assigned to nodes. However, we can easily model transient faults
in which nodes are faulty temporarily by making faults a state variable that is
updated non-deterministically. Whether we model permanent or transient faults,
a maximum fault assumption (MFA) describes the maximum number of faults
permitted in the system. The faults mapping can be non-deterministically up-
dated during execution while satisfying the MFA using a constraint such as
faults ∈ {f |mfa(f)}, where the MFA is defined by the function mfa.

2.3 Abstract Transition Systems

Due to the sheer size of implementation-level models, manually examining coun-
terexamples is tedious. To scale up verification, we use abstract transition sys-
tems (also known as disjunctive invariants) [12,13]. In this context, an abstract
transition system, relative to a given transition system M = (S, I,→), is a set
of state predicates A1, . . . , An over S and a transition system M∗ = (S∗, I∗, )
such that:

1. S∗ = {a1, . . . , an} is a set of “abstract states” which correspond one-to-one
with the state predicates Ai.

2. ∀s ∈ I, ∃i : ai ∈ I∗ ∧Ai(s)
3. ∀ai ∈ S∗ ∀σ, σ′ : Ai(σ) ∧ σ → σ′ =⇒ Ak1

(σ′) ∨ . . . ∨ Akm
(σ′) where

{ak1
, . . . , akm

} are the abstract states to which M∗ may transition from ai.

For verification purposes, it is important to note that if M and M∗ satisfy
the requirements above, then A1 ∨ . . . ∨ An is an inductive invariant of M. We
may use such an invariant freely as a powerful assumption in the proof of other
invariants (see Section 3.3).

The use of abstract transition systems not only allows us to scale proofs
farther, but also to improve traceability and debugging while developing a model.
In models like the ones described in Section 4.2 where there are on the order
of 100 state variables and counterexample traces could be 30 steps long, the
designer can be easily lost trying to identify the essence. In such cases, the



values of the abstract predicates can serve to focus the designer’s attention on
one particular mode of the system where the counter example is taking place.
At the present we do not have a good method for synthesizing the predicates
A1, . . . , An automatically for general systems; they must be supplied by the user.

3 Modeling and Verification for Oral Messages

The Hybrid Oral Messages (OMH) algorithm [3] is a variant of the classic Oral
Messages (OM(m)) algorithm [14], originally developed by Thambidurai and
Park [11] to achieve distributed consensus in the presence of a hybrid fault
model. However, OMH had a bug, as originally formulated, which was corrected
and the mended algorithm was formally verified by Lincoln and Rushby using
interactive theorem-proving [3].

First, we briefly describe the algorithm, sketch our instantiation of the model
for the particular protocol in Section 2, then describe it’s invariants.

3.1 OMH(m) Algorithm

OMH is a recursive algorithm that proceeds in rounds of communication. Here
we give a recursive specification for OMH(m), parameterized by the number of
rounds, m. Consider a finite set of nodes N . Distinguish one node as the general,
g, and the remaining nodes L = N \{g} as the lieutenants. We assume the iden-
tity of any general or lieutenant cannot be spoofed. Broadcast communication
proceeds in rounds. Denote any message that is detectably faulty (e.g., fails a
CRC) or is absent, by ERR. Additionally, in the algorithm, nodes report on val-
ues they have previously received. In doing so, nodes must differentiate reporting
ERR from an ERR itself. Let R denote that an error is being reported. Finally,
let V be a special, designated value.

The algorithm is recursively defined for m ≥ 0:

– OMH(0): g broadcasts a value to each lieutenant and the lieutenants return
the value received (or ERR).

– OMH(m), m > 0:
1. g broadcasts a value to each lieutenant, l.
2. Let lv be the value received by l ∈ L from g. Then for each l, exe-

cute OMH(m − 1), assigning l to be the general and L \ {l} to be the
lieutenants. l sends lv, or R if lv = ERR.

3. For each lieutenant l ∈ L, remove all ERR values received in Step 2 from
executing OMH(m−1). Compute the majority value over the remaining
values, or V if there is no majority. If the majority value is R, return E.

In particular, OMH(1) includes two rounds of broadcast communication: one in
which the general broadcasts, and one in which the lieutenants exchange their
values.

OMH is designed to ensure validity and agreement properties under suitable
hypotheses on the number and type of faults in the system. Validity states that



if the general is nonfaulty, then every lieutenant outputs the value sent by the
general. Agreement states that each lieutenant outputs the same value. More
formally, Let li, lj denote the outputs of lieutenants i, j ∈ L, respectively, and
let v be the value the general broadcasts:

∀ i. li = v (Validity) ∀ i, j. li = lj (Agreement)

We described a hybrid fault model in Section 2.2. Under that fault model,
validity and agreement hold if 2a+2s+b+1 ≥ n, where n is the total number of
nodes, a is the number of Byzantine (or asymmetric) faults, s is the number of
symmetric faults, and b is the number of benign faults. Additionally, the number
of rounds m must be greater or equal to the number of Byzantine faults, a [3,11].

3.2 Model Sketch

We have implemented OMH(1) (as well as the variants described in Section 4.2)
in the Symbolic Analysis Laboratory (SAL) [15]. SAL contains a suite of model-
checkers. In our work, we use infinite-state (SMT-based) k-induction [6].

We follow Rushby [10] in “unrolling” the communication among lieutenants
into two sets of logical nodes: relays and receivers. Relays encode the lieutenants’
Step 2 of the OMH algorithm, in which they rebroadcast the values received from
the general after filtering manifestly bad messages, while the receivers encode
the voting step. We refer to the general as the source. The unrolling shows
that a generalization of the original algorithm holds: the number of relays and
receivers need not be the same. We model communication through one-way,
typed channels. The source broadcasts a message to each relay which, in turn,
each broadcast their messages to all receivers.

The relays and receivers explicitly send and receive messages and store them
in local buffers as needed. In addition, the receivers implement the Fast MJRY
algorithm [7].

Our SAL model defines seven transition systems in total: clock, source,
relay (parametrized over an ID), receiver (parametrized over an ID), observer,
abstractor, and abstract monitor. The first four of these are composed asyn-
chronously, in an intermediate system we label system, and share access to a
global calendar consisting of event slots (message, time), one for each channel
in the system. The clock transition system is responsible for updating a global
variable t (called now in Section 2.1) representing time according to the rules
for calendar automata.

The asynchronous composition of the system relaxes the original specification
of the algorithm considerably. For example, in our implementation, a receiver
may receive a message from one relay before another relay has received a message
from the source. We only require that all relays and receivers have executed
before voting. With a general asynchronous model, it is easy to refine it further;
for example, we refine it to a time-triggered model in Section 4.2.



The observer is a synchronous observer [16] that encodes the validity and
agreement properties as synchronously-composed transition systems. State vari-
ables denoting validity and agreement are set to be false if the receivers have
completed their vote but the respective properties do not hold.

Finally, the abstractor and abstract monitor encode an abstract transi-
tion system for the system, as described in Section 2.3.

3.3 Invariants

calendar (1)
receiver

local behavior (2)

faults (5) ATS (1) voting (2)

Fig. 1. Invariant classification and dependencies.

To make the proof scalable, we specify inductive invariants to be used by
SAL’s k-induction engine. There are 11 invariants, falling into five categories:

1. Calendar automata: Lemmas relating to the calendar automata model. These
include lemmas such as time being monotonic, channels missing messages if
there is no calendar event, and only nodes associated with a calendar event
may execute their local transition systems.

2. Abstract transition sytem (ATS): Lemmas relating the ATS states to the
implementation states.

3. Receiver local behavior : Lemmas describing the modes of behavior of the
receivers. The major modes of their behavior are receiving messages, then
once it has filled its buffer, it votes, and after voting returns the result. An
additional lemma notes that the messages currently received plus missing
messages equals the total number of expected messages.

4. Faults: Lemmas characterizing the effect of a fault in a single broadcast. Ex-
amples include lemmas stating that if a node receives a faulty message, some
“upstream” node in the communication path was faulty. Another example is
that the faults of messages latched by a node in its buffer match the faults
ascribed to the sender in the calendar event.

5. Voting : Lemmas proving that the Fast MJRTY algorithm implements a ma-
jority vote, if one exists. These lemmas are nearly verbatim transcriptions
from the journal proofs for the algorithm [7].

The proof structure is shown in Figure 1. The number of lemmas per category
are shown in parentheses. Arrows denote dependencies. For example, the ATS
lemmas depend on both the calendar automata and receiver state-machine lem-
mas. As can be seen, the proof structure is modular. The calendar lemmas are



general and independent of any particular protocol or fault model. Similarly,
lemmas about the internal behavior of a receiver is independent of the global
protocol behavior. It is also independent of the effect of faults on the system—
the only “knowledge” of faults that receiver has is whether a fault is benign or
not. Lemmas about the behavior of faults in the system are also independent of
the particular protocol being modeled. Likewise, lemmas about the particular
voting algorithm used depend only on the receiver’s internal behavior. Only the
ATS depends on both calendar-specific and local state-machine results, since it
is an abstraction of the entire system implementation. Recall, however, that the
ATS is a convenience for debugging and can be elided.

4 Experimental Results

Here we present two classes of experimental results. First, we demonstrate the
scalability results of the verification, despite the low-level modeling. Then we
describe modularity results, demonstrated by making modifications to the model
and re-validating the model.

4.1 Scalability

Receivers
1 2 3 4 5 6 7 8 9 10

Relays

1 7 9 12 15 21 25 32 40 54 74
2 17 14 21 30 42 53 74 99 144 -
3 21 22 40 50 81 102 155 279 - -
4 27 34 59 99 141 237 1114 - - -
5 22 94 125 335 T 1406 - - - -
6 36 132 2966 844 2457 - - - - -
7 83 487 T T - - - - - -
8 298 T T - - - - - - -
9 1428 T - - - - - - - -
10 T - - - - - - - - -

Fig. 2. Benchmark of full proof computation time for OMH(1) implementation. Times
are in seconds with a timeout (T) limit of one hour. Dashes (’-’) denote no benchmark
was run.

We present benchmarks in Figure 2. The benchmarks were performed on a
server with Intel Xeon E312xx (Sandy Bridge) CPUs. The table provides execu-
tion times in seconds, with a timeout limit of one hour, for verifying the model,
given a selected number of relays and receivers. The voting logic is in the re-
ceivers, so they have substantially more state than the relays, and dominate the
execution time. The execution times sums the execution times for verifying each
of the eleven lemmas individually, as well as the final agreement and validity



theorems. Each proof incurs the full startup, parsing, type-checking, and model-
generation time of SAL. Observe the theorems hold even in the degenerate cases
of one relay or one receiver.

As a point of comparison, Rushby presents an elegant high-level model of
OM(1), also in SAL [10]. For small numbers of relays/receivers, the verification
of Rushby’s model is much faster, likely due to making only one call to SAL.
However, for six relays and two receivers, it takes 449 seconds and timeouts (at
one hour) for seven relays and two receivers. Checking Rushby’s model requires
use of symbolic, BDD-based model-checking techniques which are well-known to
scale poorly. On the other hand, our model requires the use of k-induction which
scales well, but requires (inductive) invariants to be provided.

4.2 Modular Verification

Transition
systems
(7 total)

Definitions
(58 total)

Invariants
(11 total)

Invariant
classes
(5 total)

Omissive
Asymmetric Faults

none 1 new, 2
modified

2 modified faults

Time-Triggered
Messaging

source, relays,
receivers,
ATS

3 new 2 modified, 3
modified

calendar,
faults

Mid-Value Selection receivers 4 new, 3
modified

2 modified ATS, voting

Fig. 3. Refactoring effort for protocol modifications, measured by which portions of
the model have to be modified.

To demonstrate the modularity of the modelling and verification approach,
in this section, we explore variants to the model and report the effort required to
implement the modifications and repair the proofs. The results are summarized
in Figure 3 and sketched below. In the table, for each modification, we report how
much of the model must be modified. We report on four aspects of the system:
which transition systems are modified (as described in Section 3.2), how many
definitions have to be added or modified, the number of invariants that have
to be added or modified, and which invariant classes (as defined in Section 3.3)
those lemmas belong to. We modify the implementation along the axes of faults,
time, and local node behavior.

Omissive Asymmetric Faults. Removing faults already described by the fault
model is easy. Recall that in our model faults do not appear in the system
specification and only operate on the calendar. Removing a fault from the system
requires only setting the number of a particular kind of faults to zero in the
maximum fault assumption.



Adding new kinds of faults requires more work but is still modular. Consider
adding omissive asymmetric faults, a restriction of Byzantine faults in which
a broadcaster either sends the correct value or a benign fault [8], to the fault
model. Doing so requires modifying none of transition systems, because of the
synchronous kibitzer. We add a new uninterpreted function definition for omis-
sive asymmetric faults, then modify the type of faults, and their effect on the
calendar. Two invariants, both in the class of invariants cover faults, are extended
to cover the cases where a sender is omissive asymmetric.

Time-Triggered Messaging. A time-triggered distributed system is one in which
nodes are independently clocked, but clock constraints allow the model to appear
as if it is executing synchronously [17].

Changing the model to be time-triggered principally requires making the
source, relays, and receivers driven explicitly by the passage of time (we do
not model clock drift or skew). As well, a “receive window” is defined at which
messages from non-faulty nodes should be received. Messages received outside
the window are marked as coming from manifest-faulty senders. The model re-
quires three new definitions to encode nondeterministic message delay and two
are small helper functions. The guards in the relays and receivers are modified
to latch messages received outside the receive windows as being manifest faults.
The ATS definition is modified to track the times in the calendar, not just the
messages. Two new calendar invariants are introduced, stating that the calen-
dar messages are either empty, or their time-stamps fall within the respective
message windows. Then, three invariants classifying faults are relaxed to allow
for the possibility of faulty nodes sending benign messages.

Mid-Value Selection. Our OMH(1) model leverages a majority vote in order to
tolerate faults. Another choice for the fault masking algorithm used is mid-value
selection. This choice is common in applications involving hardware, signal se-
lection, or cases where information about congruence is useful. To implement
mid-value selection in our model, we allow messages sent to take values in R and
the receiver transition system is modified in two ways. First, a second buffer is
introduced which will hold the sorted contents of the main buffer once voting has
commenced. Second, a mid-value select function is called on the sorted buffer
and the result is stored as the receiver’s vote. The only invariants needing mod-
ification were the ATS definition (to account for the values stored by the new
buffer and the relation between it and the main buffer) and the voting invariant.

4.3 Proof Effort Remarks

The lemmas described in Section 3.3 are constructed by-hand and represent mul-
tiple days of effort, but that effort includes both model and protocol construction
and generalization as well as verification. The counterexamples returned by SAL
are very useful for strengthening invariants, but tedious to analyze—a model with
five relays and two receivers contains 90 state variables, and there are known



counterexamples to models that size [3]. Once we developed the synchronously-
composed ATS observer, the verification effort was sped up considerably.

The invariants are surprisingly modular. One benefit of a model-checking
based approach is that it is automated to rerun a proof of a theorem omit-
ting lemmas to see if the proof still holds. This allowed us to explore reducing
dependencies between invariants related to different aspects of the system.

The modifications to the implementation described in Section 4.2 took at
most hours to develop. Moreover, most of the invariants do not concern the spe-
cific protocol modeled at all, and we hypothesize that for completely different
fault-tolerance protocols, only the modeling aspects related to the protocol be-
havior and local node behavior would change, and the invariant structure would
remain modular.

Moreover, we are agnostic about how lemmas are discovered. As techniques
like IC3 scale, they may be discovered automatically. k-induction in infinite-
state model-checking blurs the lines between interactive and automated theorem
proving. IC3 can even be strengthened using k-induciton [18].

5 Related Work

The Oral Messages algorithm and its variants and its variants have a long history
of formal verification. OM(1) was verified in both the PVS and ACL2 interac-
tive theorem-provers [2]. Also in ACL2, an implementation of a circuit design
to implement OM(1) is given [1]; the low-level model most closely relates to our
level of detail. A refinement-based verification approach is used, and OM(1) is
specialized to a fixed number of nodes. Bokor et al. describe a message-passing
model for synchronous distributed algorithms that is particularly amenable to
partial-order reduction for explicit-state model-checking [19]. The model is ef-
ficient for up to five nodes, but results are not presented beyond that. Very
recently, Jovanović and Dutertre use a “flattened” high-level model of OM(1) as
a benchmark for IC3 augmented with k-induction [18].

Moreover, our work is heavily influenced by previous verifications of fault-
tolerant and real-time systems in SAL [6,10,13].

6 Conclusions

This work fits within a larger project, in collaboration with Honeywell Labs, to
build an architectural domain-specific language (ADSL) for specifying and veri-
fying distributed fault-tolerant systems. The ADSL should be able to synthesize
both software and/or hardware implementations as well as formal models for
verification. Before building such an ADSL, we needed a scalable general formal
model to which to compile, leading to the work presented in this paper. We
hypothesize that the ADSL will make refactoring even easier, and we can gen-
erate invariants or invariant templates useful for verification. Indeed, we have



developed a preliminary ADSL that generates C code as well as formal models
in SRI’s Sally [18], to be described in a future paper.3

Beyond building an ADSL, another avenue of research is producing a formal
proof that a software implementation satisfies the node specification in our for-
mal model. While our model of node behavior is low-level, there are gaps. For
example, our work is in SAL’s language of guarded commands [15] and needs
to be either refined or verified to be equivalent to a software implementation’s
semantics. Another aspect is that behavior related to networking, serialization,
etc. is left abstract, implicit in the send and recv functions.
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