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In designing, verifying, and validating distributed systems today, an engineer is

often faced with having to specify a system multiple times. For example, the engi-

neer might specify it once in a model-checker for formal analysis, in an architectural

description language for requirements analysis, and in a programming language for

testing. By specifying the same system multiple times, there is risk that each specifi-

cation has different semantics, so that the system tested differs from the one verified,

for example. To help solve this problem, we envision an architectural domain-specific

language (ADSL), or a unified language from which formal models, executable code,

and architectural models can be synthesized. To make our problem tractable, we focus

on distributed fault-tolerant systems. We present the Language for Integrated Mod-

eling and Analysis (LIMA), a particular ADSL that we have designed. We describe

LIMA and its application to case-studies motivated by avionics design.
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I. Introduction

Modern avionic systems continue to grow larger in size and complexity, and state-of-the-art flight

control systems can consist of more than a million lines of code. Lockheed Martin’s F22 Raptor

contains approximately 1.7M lines of code [1] and the next-generation F35 fighter is estimated to

comprise 5.7M lines of code. This trend is not limited to the military arena; the software content

of the Boeing 787 is estimated at 13 million lines of code [2].

Concurrently, advancements in networking technology enable increasingly distributed systems,

and network-centric Integrated Modular Avionics (IMA) architectures are now the industry norm

across all aircraft segments, from large air transport A380 [3] to general aviation [4]. This integration

of multiple aircraft functions into IMA architectures offers many benefits. Leveraging common

hardware may enable significant SWaP (size weight and power) reduction. Standardization on

hardware platforms may support the improved optimization of the system obsolescence management.

Finally, the ability to support more cooperation between traditionally federated aircraft functions

may support greater efficiency and safety. The benefits of such integration are argued in [5].

Industrial architectures often evolve and are usually based on informal assumptions. By es-

tablishing a formal model of the system, we can uncover many undocumented assumptions. Once

formal models are developed, we have found that the application of formal methods can systemat-

ically uncover edge cases and erroneous behavior that are not otherwise obvious. For example, in

our previous work developing fault-tolerant protocols [6, 7], we found that the application of model

checkers is particularly valuable for uncovering erroneous edge cases in the protocol logic. In [6], we

further demonstrated the ability to leverage the formal models developed during protocol design to

generate system-level test cases.

Formal modeling is typically—but not exclusively—used to reason about behavior. Architec-

tural modeling helps to document and reason about non-functional properties. Numerous architec-

tural languages, including AADL[8], EAST-ADL [9], SLIM [10], and SYSML [11] have emerged in

the past decade. Analysis tools support the models developed using architectural modeling nota-

tions. These tools support many aspects of system examination from schedulability [12] analysis to

failure and propagation analysis (HiHOPs [13] and ADAPT [14]), and automated fault-tree gener-
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ation [15, 16].

While introducing formal or architectural modeling into a distributed system development effort

can improve the documentation and quality of the system, it comes at a high cost. In particular,

it means there are three separate artifacts to maintain and keep consistent: the formal model, the

architectural model, and the actual system implementation. Ensuring their consistency is ad-hoc,

as each language has its own syntax and semantics with no connections between them. At best,

the additional effort required to keep the models consistent outweighs the benefits of increased

assurance. At worst, it provides a false sense of assurance, where the implementation does not

satisfy properties specified in architectural or formal models.

The central thesis of the research described here is that formal models and analysis is not cost

effective unless those models are integrated into the software development process so that there

is one central view of the system and the models and analysis are directly connected with the

software. Without a formal link through the system refinement and implementation processes, we

risk the abstraction gap where implementation details may impact the assumptions of the higher

level abstract model of the system that has been formally argued. We call the specification that

generates models and implementations an architectural domain-specific language (ADSL). The user

needs only to specify the system in one language, and from that, has multiple “views” onto the

system.

Moreover, while the work we describe here focuses on connecting executable software with

formal models for verification, it is in service of our vision for an architectural workbench as shown

in Figure 1. We envision an ADSL from which multiple analyses are available including

• Synthesizing formal models (e.g., PVS [17] for interactive theorem-proving or Sally [18] for

model checking);

• Synthesizing architectural models (e.g., SysML [19], AADL [20, 21]), hardware models (e.g.,

Verilog or VHDL), and software models (e.g., Simulink or C/C++);

• Automate test generation for system testing from ADSL system models;

• Integrate into assurance case toolsets (e.g., [22, 23]) to systematically integrate the formal sys-
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tem assurance and associated evidence (e.g., artifacts from analysis tools, model checkers, the-

orem provers, and automated test generation) and test artifacts. Ideally, these assurance-cases

can be constructed in the context of aerospace development standards (e.g., DO-178C [24],

DO-254 [25], DO-297 [26], ARP-4754 [27], ARP-4761 [28]).

We have not completed this full integrated vision, but our ADSL makes significant advances toward

it. In particular, we address the difficult aspect, which is developing a succinct language for spec-

ifying distributed systems with sufficient fidelity to synthesize implementations as well as formal

models for verification.

Such a vision touches upon a wide range of research, which we highlight in Section II, partic-

ularly focusing on architectural description languages and formal analysis tools, our current focus.

Earlier, we have described our language as an domain-specific language; the domain we focus on

here are fault-tolerant distributed systems commonly found in aerospace systems. Toward that end,
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we outline the concepts that a language specialized for this domain should imbue. For example,

such a language must be able to succinctly allow designers to specify and reason about different

fault models, message-passing constructs, and real-time constraints. We describe these concepts

in Section III. The concepts drive the design and implementation of the ADSL itself, described in

Section IV. There we introduce the prototype ADSL we have built, which we call LIMA, standing

for “Language for Integrated Modeling and Analysis”. We also describe our compilation strat-

egy to both C code and to the input language of Sally, a state-of-the-art model-checker [18] that

LIMA targets. In particular, the translation to Sally is particularly novel, as we describe an effi-

cient encoding of time, distributed communication, and faults that is amenable to decidable formal

analysis. To demonstrate the effectiveness of LIMA, we present case-studies drawn from aerospace

systems in Section V that we model in the LIMA and generate executable source code and formal

models. These case-studies highlight a unique design feature of the LIMA: it is an embedded domain-

specific language (EDSL), meaning that it is hosted in a general-purpose programming language.

The EDSL approach is common in the programming languages community; we show how it can be

used to build powerful new modeling abstractions without introducing new primitives. Finally, we

present conclusions and future work in Section VI.

II. Related Work

In this section, we overview related tools and approaches for modeling and verifying systems. We

focus on architectural modeling languages and formal verification specialized for distributed systems,

particularly noting their strengths and weaknesses with respect to specifying and reasoning about

architecture, behavior, and faults in a unified way.

A. Architectural Modeling Languages

The Architecture Analysis and Design Language (AADL) was one of the first system architecture

languages, evolving out of the META-H [29] language developed by Honeywell as part of the DARPA

DASADA program. Since its conception, AADL has matured significantly and is now standardized

by the Society of Automotive Engineers (SAE) under AS5506 [21]. AADL is primarily intended to

be a system integration language, allowing generation of an integrated model that address different
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aspects of the system to be captured. At the core, AADL provides a common notation that supports

the specification of both logical and physical aspects of the system architecture. The core language is

component-based. The physical aspects of the system may be specified utilizing a extensible palette

of hardware component primitives, such as processor, device, and system components, which may

be interconnected with bus components and access connections. The logical notation of AADL is

also component-based. AADL provides a number of software/logical model primitive abstractions,

such as system, process, thread, subprograms, that allow for logical model specification. In the

logical model, components are interconnected using data and event port connections. The core of

AADL also allows for the association between the logical and physical models to be specified by

binding property annotations to the model.

Through a flexible annex mechanism, the core AADL language can be extended with user-

defined syntax. Different aspects of the system can be specified using dedicated annexes. Of specific

interest are the behavior and error annexes, and the emerging constraint and hybrid annexes. The

behavior annex allows for discrete behavior to be specified using a finite state machine annotation

that can be associated with the logical abstraction components. This behavior may be fused with

the platform behavior of the AADL core to implement a full system simulation [30]. Similarly,

the error annex annotations allow probabilistic component error models and state machines to be

associated with each component. Error flow and error propagation annotations are also possible to

describe cross component error propagations and influences.

Using such annotations, model-based safety analyses are possible, with the annotated AADL

model used as the basis for for fault-tree generation [16]. Recent annex developments include the

requirements annex [31] that allows a systematic refinement and association of requirements with

AADL model elements, and the hybrid annex, that intends to extend AADL to address continuous

system models, and a constraint annex that allows for constraints and structural assertions to be

defined and executed within the AADL modeling framework.

The System-Level Integrated Modeling (SLIM) is a simpler variant of the ADDL. It has been

developed as part of the COMPASS project [10, 32]. The intent of SLIM is to generate formal

architecture language that can be used as the basis of architectural analyses using formal methods.
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To this end, SLIM is much simpler than AADL, excluding some of the elaborate AADL features

for hierarchical abstraction and interface complexity management. SLIM also excludes some of

the tasking and dispatch semantics of the underlying platform execution model. Therefore, logical

abstractions, such as a periodic thread dispatch, need to be explicitly modeled using the SLIM

behavioral language. However, in SLIM, behavioral and error modeling is integrated into the core

model. Using a mechanism called model extension, SLIM allows these annotations to be integrated

into a formal transition system model that can be used as the bases for formal analysis. Thus, SLIM

supports an integrated view of nominal and error behavioral models. This differs significantly from

the AADL approach, where there is little formal cross-annex linkage or semantics.

MILS-AADL, a derivative of AADL, is also under development as part of the DMILS-project[33].

This work is also targeting synthesis towards back end formal verification tooling using BIP [34].

The D-MILS project additionally targets implementation platforms based on TTEthernet.

The Robot Architecture Definition Language (RADL) [35] is a minimalist AADL targeted to-

wards the design of multi-rate distributed systems. It is under development by SRI. Similar to SLIM,

RADL is simpler than AADL, and forgoes the more elaborate features interface and property speci-

fication. RADL is also targeted towards a quasi-synchronous system architectural pattern, in which

all nodes asynchronously execute tasks and exchange messages at defined periodic intervals [36].

The RADL framework also incorporates an automatic build system, Radler, which synthesizes glue

code and platform binding code. At the time of writing, RADL does not incorporate fault modeling.

SysML [19] extends UML to address the needs of system engineering. It has been standardized

under the OMG. SysML comprises a very rich palate of notations that can be utilized to specify

system structure and behaviors. The notation is extendable, making it very adaptable to different

modeling needs. Given a disciplined model-based system engineering approach, SysML can be used

to capture the functional, logical and physical aspects of architecture, as demonstrated by Pearce

and Friedenthal [37].

Through dedicated profiles, SysML notation can be extended. For example, via a Modelica

profile [38], SysML can be used to model continuous systems. An automated translation is also

available between Modelica and SysML. Similar translations are also under development for VHDL-
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AMS [39]. SysML-AADL profiles have also been developed to support formal platform modeling [40,

41]. SysML supports relating requirements across all of the modeling elements.

Due to the flexibility of the notation, SysML can therefore be used to capture many aspects of

a system archiecture using a common notation. SysML further provides a requirements framework

to allow requirements to be refined via associates to modeling blocks, providing a similar capability

to the AADL requirements annex discussed above.

Recent work addresses fault modeling within SysML [37], allowing SysML models to be anno-

tated with failure modes, although this work is less mature than the AADL error annex.

The SCADE-System [42] defines an IMA modeling profile that provides a framework to define

functional, logical and physical platform models within SysML. The tool also provides an exten-

sive framework to generate Interface Control Documents (ICD) from integrated models. The tool

additionally provides code generation to configured commercial partitioned operating systems and

network configuration tables from the system model. The SCADE_System tool is fully integrated

with the SCADE Suite, hence lower-level system behaviour can be specified in SCADE but remains

linked to the higher level architecture. Such properties make this variant of SysML and interesting

synthesis target for ADSL.

Matlab’s Simulink [43] is one of the most widely used model-based-design notations. It provides

a very rich simulation capability that allows for behavioural exploration. However, the Simulink

notation lacks many of the features required for architecturally centric design; for example, the

separation of logical and platform designs and the associated bindings is missing. The core language

also lacks formal semantics, and is defined with reference to the behavior of the simulator. The

tooling also offers limited provisions for structured design and design factoring, which may also

limit its applicability to true architectural modeling. That said, many production systems have been

developed using Simulink, and additional tools have been developed to broaden the applicability of

Simulink. One such tool is HIPHOPS [13], that allows for fault and error annotations to be added

to the Simulink models, and provides a framework to use the model as the basis of Failure Mode

and Effects Analysis (FMEA) and system fault-tree analysis and generation.
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B. Distributed System Modeling Languages

A variety of formal modeling and verification languages and tools have been developed specif-

ically targeting distributed systems. Hoare’s Communicating Sequential Processes (CSP) is one of

the original and most influential distributed system process calculi [44]. CSP-based tools such as

CSPM [45], JCSP [46], FSPJ [47], and CSP++ [48] have been developed and are summarized and

compared in a recent report [49]. Notably, CSP++ is a relatively recent tool that includes code gen-

eration capabilities to generate C++ implementing the semantics of a specified system. Because it

uses the same input language as other tools, such as FDR, a CSP-based model-checker [50], specified

systems can be model-checked. However, application code must be written by-hand and spliced in.

This ability is unsound insofar as application code can break invariants of the concurrency model.

However, a tool like CSP++ takes promising steps in the direction of the research we present.

That said, the basic semantics do not typically handle the aspects of distributed systems with

which we are concerned. For example, there are no built-in notions of faults or timed behavior.

Perhaps more significantly, CSP has a dynamic model of a process, in which a process can be

composed to form new processes. A more static notion of processes may be appropriate in our

domain. Indeed, note the following, when trying to formalize a very simple fault-tolerant protocol

in various CSP-based tools:

As with the previous examples, our goal in this project is to use our three translation

techniques on each example. The Byzantine Agreement Protocol, however, proved to

be far more complex than the other examples. So complex, in fact, that the various

shortcomings of each technique proved too substantial to achieve translation [49].

We present a specification of Byzantine Agreement in Section VB within our ADSL.

C. General-Purpose Formal Verification Tools

General-purpose formal verification tools have been applied extensively to the specification and

verification of fault-tolerant distributed systems.

Model checkers such as the Symbolic Analysis Laboratory (SAL) [51], SMV [52], and the Tem-

poral Logic of Assertions (TLA)’s model-checker [53] have been used to specify and verify both
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software and hardware distributed systems and protocols [54–59]. Model-checking is one of the

most successful verification approaches for distributed systems, as the technology is “push-button”

and model-checkers have become exponentially more powerful as a function over time. Tools such

as SAL and the recently-developed infinite-state verification tool Ivy [60] allow users to supply in-

variants to scale verification. Still, most approaches to model-checking require ad-hoc abstractions

and by-hand models. One goal of our ADSL workbench is automatic translation to model-checkers,

creating sound abstractions for the user automatically.

Work in controller synthesis, usually from temporal logic specifications, has recently been applied

to fault-tolerant algorithms [61]. In this work, a simple self-stabilization protocol is synthesized

from an LTL specification using Boolean satisfiability. The approach uses a counter-example-guided

inductive synthesis approach [62] to improve scalability.

Another synthesis approach is followed by Liu et al. with their DistAlgo language and tool [63,

64]. DistAlgo provides constructs for specifying distributed fault-tolerant algorithms embedded in

a programming language, like Python. While specifications are terse, it can generate fairly efficient

code, both in code size and execution efficiency [64].

Theorem-proving, in contrast to model-checking, is largely manual but quite powerful. In

particular, PVS [65] has a long history of being used to specify and verify distributed systems [66, 67].

Like with model-checking, abstractions are usually ad-hoc and specifications are done by-hand.

There is usually no formal correspondence with an implementation.

III. ADSL Desiderata

We first motivate the need for another architectural description language, then we present the

fundamental concepts necessary for such a language. We focus on three concepts: clock models,

channel & buffer models, and fault models.

A. Why Another ADL?

With the numerous architectural description languages (ADLs) and accompanying tools avail-

able (see Section IIA), we must ask is is, "Why another ADL?". We are focused on the correct

specification and synthesis of distributed systems and the formal verification and validation of dis-
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tributed system protocols. A key research goal is to provide a specification framework that encom-

passes a suitable level of abstraction to allow for the efficient behavioral specification of distributed

fault-tolerant protocols. Additionally, we desire for protocol specifications to exist within the larger

context of the system architecture and anticipated fault models.

Currently, AADL is one of the most mature ADLs, yet, in our work to date we have found

that expressing the details such of protocols with AADL is non-trivial, with certain aspects not yet

possible. such as behaviours that are not compatible with the underlying AADL dispatch semantics.

A second goal is integrating the models of faults and behavior. Once again, this is an area

where current ADLs are lacking. For example, in AADL, the integration of the behavioral and

error annexes is not mature, and hence cross-annex formal semantics and linkages are not defined.

In addition, although the LIMA language (see Section IIA) incorporates provisions for integrated

specification, the level of abstraction is more cumbersome than it should be. This is another area

where our synthesis strategy to an intermediate ADL may be beneficial. For example, using our

approach, we may be able to efficiently synthesize LIMA models for formal analyses, where such

models may too expensive to develop by hand.

The final intent is to link the formal assurance argument within the ADSL work flow. Once

again, this is an area where the current ADLs continue to develop; the recent work with AADL and

RESOLUTE [68] looks promising.

In summary, there exist no ADLs that allow the efficient specification and refinement of system

models and protocol specification. Our hope is that it will be more efficient and lighteweight. That

said, where formal semantics exist for intermediate ADLs, our ADSL can target them.

B. ADSL Concepts

The three fundamental concepts we present are clocks, channels & buffers, and faults to describe

real-time distributed systems. We describe each in turn.

As we describe the following, we present the concepts based on the notion of an atom. An

atom is a hierarchical state-machine. An atom can represent a node in a distributed system, but

we also allow for the existence of a sub-atom, that is a sub-component of a node. Atoms allow us

to decompose specifications. We call a sub-atom’s encompassing atom the sub-atom’s parent.
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1. Clock Model

Fig. 2 Clocked Atom Model

In modeling distributed systems, we must often assign clocks to atoms to measure its notion of

the passage of time. The notion of clocked nodes are periodic processes or tasks. A clocked atom is

defined by a tuple of three parameters as shown in Figure 2:

• startup which indicates the duration of time elapsed from time 0 when the clock starts ticking

away i.e. initialized start up delay for the clock. Note that this startup can span multiple

periods potentially. startup ≥ 0

• phase is the offset within the period when the task/process is executed periodically. 0 ≤

phase < period

• period is the periodicity of the task i.e. inverse of the frequency of the task.

All derived clocked atoms or sub-atoms from parent have synchronous clocks with respect to the

parent clock. This means, as shown in figure 3, the startup of the sub-atoms are identical to their

parent and their clocks are initialized identical to their parent. As shown in the figure both atom1

and atom2 derived from atom have identical startup parameter. Also the derived atoms’s phases

are additive Thus atom1 has an effective phase phase + phase1 from start of period and atom2

has an effective phase phase + phase2 from the start of the period. Also derived atoms period

are harmonic with respect to the parent and at equal or slower rate. For example in the figure

period1 = period while period2 = 2×period. Thus atom and sub-atom relationships can be used to

model synchronous system whereby all distributed system nodes which are synchronous with each
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other can be modeled as sub-atoms with clocks under a single parent atom with a “notional” clock

for the whole system. Similarly ARINC 653 [69] partitions or tasks within a single node can be

modeled as sub-atoms with a single parent atom.

Fig. 3 Synchronous Derived Atom Clock Model

Fig. 4 Asynchronous Peer-to-Peer Atom Clock Model

On the other hand, as shown in Figure 4, two peer clocked atoms at the top level are considered

asynchronous with each other. As shown in the figure, their individual startup, phase, and period

for their respective clocks have no relationship with each other.

During verification, it can be useful to allow startup times, periods, and phases to be nonde-

terministic (without violating the constraints above) to verify timing properties about the system

under abstract constraints. For example, one might state timing constraints and verify that the
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system implements time-triggered behavior [67]. During C simulation, however, these timing values

must take on constant values.

2. Channel & Buffer Model

System designers typically have to contend with managing resource constraints across networked

systems. There are two high level resources they need to balance: (i) platform resources like

CPU utilization (time) and memory (space) vs (ii) network resources like bandwidth/link usage

manifesting as transport/channel delay (time) and network card memory/channel buffers (space).

Since both platform and network resources along both time and space dimensions are all finite,

optimizing along just one of those resources and/or dimension at the cost of the other is not a

viable option. Correct characterization of computation time, communication time (channels delay)

and associated buffers (memory at platform or network) at every node is a critical element of the

ADSL as it lays the foundation for accurate modeling of platform and network resources in the

system. We show the time and space attributes of network resources in terms of channel and buffer

models in Figure 5.

A channel is modeled as unidirectional flow of messageM from a transmitter Node T to multiple

receiver Nodes R1, R2, ..., Rn with corresponding channel delays D1, D2, ..., Dn. Channel delays

are all different because there may be different transport paths from transmitter to the different

receivers. Channel delays are a function of the size of messageM , the network bandwidth/link rates,

the propagation time (wire length) and the number of intermediate relays between transmitter and

the receiver. Thus a message transmitted on to the channel at time T1 from Node T is received at

each of the receiver from the channel at times T1 +D1, T1 +D2, T1 +D3, ..., T1 +Dn respectively.

Note that unicast, multicast and broadcast are all supported with this model of channel.

Also note that as shown in the Figure 5, there is string of producing processes and consuming

processes in the model and this must correctly identified in-order and in-sequence to get the modeling

of the buffer (e.g. overflow or size) correct and this is described next. For example, in Node T , there

is some platform application that is producing a message (possibly from a computation process) and

this produced message is stored in the channel buffer (network card memory). The network card
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in Node T subsequently reads from its own memory (channel buffer) and produces (transmits) the

message on to the channel.

The process is then reversed at the receiver. The receiver network card consumes the message

from the channel and stores the message locally into its own channel buffer (network card memory).

Then either the network card reads from its channel buffer and pushes the message to consuming

platform process OR the consuming platform process reads from the channel buffer and then finally

processes the message as it sees fit (possibly sent to a computation process).

Since Produce/Transmission at T and Consume/Reception(s) at R can be triggered by “inde-

pendent” clocked atoms (described in section III B 1) at T and R(s), the buffer model is critical to

manage the differences in rates and timing between production and consumption. Once the pro-

cesses are correctly modeled as stated above, then we identify two types of channel buffers at either

the transmitter or at the receivers:

• Queuing : First-in-First-Out (FIFO) Order i.e. messages are taken out of the queue in the

order in which data was produced into it. The maximum size of the queue is also specified

as k. If messages are not consumed at fast enough rate compared to rate at which message

are produced into the buffer and once the queue is already filled with “k” messages yet to be

consumed, then produced message(s) are dropped.

• Sampling : New message produced overwrites old message if not consumed.

3. Fault Model

The ability to model and specify fault models is a significant capability of the proposed ADSL.

Faults can occur at different levels of abstraction, and an ADSL should have the capability of

specifying and reasoning about faults at the different levels as well as mapping between them.

In particular, we distinguish between local and global faults. Following the taxonomy of Avizie-

nis et al. [70], we refer to faults that occur locally in any component, such as a node or channel, as

being modeled as local faults. Some examples of local faults are:

• Omission (message loss)
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Fig. 5 Channel and Buffer Models

• Commission (babbling)

• Untimely (late, early, sequence violation etc.)

• Invalid value (semantic, syntactic,..)

• Invalid protocol behavior (e.g., failure of fault handling of detection, protection etc).

On the other hand, global faults are based on relationships between two or more components

(i.e., nodes or channels) at the system level. Examples of system faults include symmetric and

asymmetric transmission faults [71]. Global faults may be dependent on the expected of degree of

consensus [72], which in itself is tied to the application’s sensitiveness to disagreements, independence

assumptions, or degree of maliciousness (e.g. assumptions on how coordinated two or more nodes

can be in triggering failures). Global faults based on relationships between two or more components

can cause interactive consistency (consensus violations) and Byzantine issues at the system level.

Finally, we wish to also characterize fault propagation through the networked system, originating

in some component and propagating from one component to another, as shown in the bottom of

Figure 6. Faults introduced/propagated from upstream components transform to other faults based

on protection mechanisms built into each component (e.g., a commission fault transforms into an
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omission fault if a bandwidth check is implemented as protection mechanism in a component) [73].

To illustrate this in a concrete example, refer to a cyclic redundant check (CRC) protection

behavior illustrated at the top of Figure 6. Nominally in a fault-free operation, Node1 adds a CRC

to a message when it transmits over the channel, and when Node2 receives the message, it does a

CRC check by comparing the re-computed CRC with the frame check sequence (FCS). If the check

fails, the message is dropped, and if the check passes, then the FCS is stripped and the message is

forwarded. Note that fault-free (nominal) behavior of a CRC check at the receiver is that (i) a good

message is never dropped incorrectly, (ii) a bad (corrupt) message is dropped with high probability,

and (iii) there is also a small finite probability that a bad message escapes detection and drop (e.g.

based on efficacy of CRC 32 etc.) [74].

Value Fault 1 in Figure 6 introduced in the node either at the indicated point or introduced

upstream before that point and propagated until that point will also continue to propagate down-

stream and CRC offers no protection. This is because the FCS is added on an already corrupted

message. Value Fault 2 introduced in the channel will be protected by CRC (modulo the CRC’s

efficacy). Further Value Fault 2 will transform to Omissive Fault downstream due the CRC pro-
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tection. Value Fault 3 introduced in Node2 at that point will propagate downstream as it is after

CRC protection.

The idea then is to capture a fault transformation function in every component node/link based

on behavior fault-protection schemes available at that component; e.g., a value fault transforms to

an omissive fault for CRC protection. These will be specified in a static manner at every component.

This way, both horizontal propagation of faults (CRC example) and vertical propagation of faults

(e.g., self-checking hardware) can be modeled as a component embedded in another component) can

be captured in an ADSL framework.

IV. LIMA: an ADSL Implementation

LIMA, which stands for “Language for Integrated Modeling and Analysis”, is a domain specific

language embedded in the functional language Haskell [75]. Its implementation makes heavy use of

Haskell as the host language for expressing macros, enabling parametrization, and the handling of

parsing and low-level compilation.

The approach is an example of the embedded domain-specific language (EDSL) approach, which

allows type-safe, Turing-complete compile time programming, and has been used in a number of

domains, from embedded software [76] to runtime monitoring [77] to GPU programming [78]. Indeed,

LIMA is built on the Atom EDSL [79]. Atom was originally designed for bare metal embedded

systems programming that supported concurrency without requiring a real-time operating system.

The state machine language, in which the computation of individual nodes is expressed, is within

the language of Atom [80].

We first present LIMA’s syntax in Section IVA. Then we describe code synthesis in LIMA in

Section IVB. Formal model synthesis is presented in IVC. Finally, we briefly describe visualization

tools associated with LIMA models in Section IVD.

LIMA is designed to implement the desiderata described in Section III. However, as a initial

implementation, some desiderata have not been fully implemented. We describe its current status

below.
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A. Syntax

Our goal here is to introduce the LIMA language. We are not, however, providing a comprehen-

sive overview of the language, but we present the major elements. In particular, we elide the portion

of the language focused on building state machines internal to an individual node or process. The

node-local state machine language is described in the Atom itself.

We first introduce the basic building blocks of LIMA for modeling communicating state ma-

chines. Then we describe the LIMA fault model.

1. Specifying Communicating State Machines

There are two main syntactic elements: atoms and channels.

• Channel : Channels are typed and unidirectional. A channel is declared in a monadic context

as follows:

1 ( tx , rx ) <− channel name i n i

creating two endpoints, tx and rx, that are user-defined variables. These variables are “han-

dles” for the channel that can be emitted or read on, respectively. The types of tx and rx

must agree in all contexts. name is a plain text name for the channel, used to connect the

syntax at this level to the formal model and C code syntax after generation. Finally, ini is

an initial value for the contents of the channel.

• Atom: An atom defines a state machine that atomically handles an incoming message, updates

state, and possibly emits new messages on other channels. An atom may, optionally, do this

on a specified period and phase.

1 myAtom rx tx = atom "myAtom" $ do

2 v <− readChannel rx

3 s <== value v

4 writeChannel tx ( Const 42)
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The code above defines an atom named “myAtom” that handles a message received on a channel

with a receive handle rx. A channel must be dereferenced to extract a value from it. In the

declaration above, the dereferenced value, v, is stored into some shared-state variable s whose

scope exceeds the current definition, and the value 42 is emitted on a channel with transmit

handler tx. Here, we use the term “handler” to mean a function that takes an incoming

message and returns an action to perform, usually doing some computation and sending out

new messages.

Atoms are hierarchical, i.e. an atom may contain other atoms and thus define a hierarchy of

global state variables and sub-atoms. All atoms declared within a parent atom have access to

the shared state of the parent. For example,

1 parent = atom "parent" $ do

2 s <− i n t "sVar" 0

3 atom "myAtom0" $ do

4 . . .

5 atom "myAtom1" $ do

6 . . .

declares an atom named “parent” that contains a shared state variable named “s” initialized

to zero. It also contains two handlers, myAtom0 and myAtom1.

A typical pattern in the language is to declare a top-level atom as a container for one or more

channels and one or more sub-atoms which communicate over the channels.

1 parent = atom "parent" $ do

2 ( tx , rx ) <− channel "myChannel" 0

3 s <− i n t "sVar" 0

4

5 atom "myAtom0" $ do

6 writeChannel tx 5

7
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8 atom "myAtom1" $ do

9 cond $ fu l lChanne l rx

10 v <− readChannel rx

11 s <== v

In this example, myAtom0 sends the message 5 to myAtom1 who stores it directly in the shared

variable s. The syntax cond $ ... declares a guard that must be true in order for the atomic

action in that block to be taken.

Finally, in addition to the hierarchical structure of shared state, the atom to sub-atom relation-

ship extends to guards. The execution of a sub-atom is predicated not only on its guard condition,

but also that of its parent, its parent’s parent, etc.

2. Specifying Faults

Here we explain how we account for the fault models in LIMA, leaving the technical details

of how faults are encoded in the formal model to Section IVC3. Part of the philosophy behind

our ADSL is that node behavior and fault behavior should be separate in order to make reasoning

more modular. It is not a surprise then that the number and type of faults to be included in the

model is not specified along with the node behavior. Instead, it is specified only in the compiler

configuration.

Currently there are three options for fault model in LIMA:

• No Faults. All nodes in the system perform as designed and channels deliver all messages on

time.

• Fixed Faults. A mapping from node name to fault type is given, allowing the designer to

specify statically the nature of faults to be considered.

• Hybrid Fault Model. The designer specifies numerical weights for each of three types of

fault: manifest, symmetric, and byzantine. In this mode, the model-checker will explore all

possible configurations of nodes with different faults as long as the weighted sum of node-fault
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combinations doesn’t exceed a given total.

The last option is the most powerful form of reasoning about faults in the system that LIMA offers.

It generalizes the well-known results of Park and Thambidari [71] and Lincoln and Rushby [81].

The fault model is decomposed from LIMA’s atom’s and channel model to specify communi-

cating state machines. This is because we need to be able to synthesize executing code from the

system; the fault model is used only within a formal verification. Thus, the fault model is presented

as additional configuration data about the environment. The configuration is passed to the Sally

model-checker compiler.

B. Code Synthesis

In the LIMA framework we can translate specifications into executable implementations by

generating C code. The code generator is optimized for embedded targets, those running without a

real-time operating system. Although, the code also compiles and runs on POSIX systems as well.

At a high level, the code generator collects all the atomic actions given in a specification and

translates them into C functions which are executed on a fixed, deterministic schedule. The schedule

is determined by a scheduler which takes into account each atom’s preferred period and phase. The

scheduler also computes the number of basic expressions present in each atomic action so that the

real-time per tick can be calibrated. In section IVC we discuss synthesizing formal models from

LIMA specifications. By contrast, in the formal models the schedule is left non-deterministic but

fixed in each system trace.

As an example, consider the specification in Figure 7. Two shared variables are declared and

two periodic atoms update their values. The code generator produces a C structure representing

the global system state; in this case it consists of two integers. The fields of the struct are nested

in several name spaces designed to keep local variables in different atoms from conflicting. The two

atomic actions are translated into “rules”; C functions that are called by a main driver function.

Figure 9 shows the rule generated for atomX. The code is mostly generated in static single-assignment

(SSA) form, with the exception of a small number of state variables.

Finally, the rule functions are driven by a scheduling function that is responsible for maintaining
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1 ex4 : : Atom ( )

2 ex4 = atom "ex4" $ do

3 x <− i n t64 "x" 0

4 y <− i n t64 "y" 0

5

6 c locked 2 0 $ atom "atomX" $ do

7 i n c r x

8 decr y

9

10 c locked 5 3 $ atom "atomY" $ do

11 i n c r y

12

13 a s s e r t "y not positive" ( va lue y <=. 0)

Fig. 7 Example specification with two periodic atoms

1 struct { /∗ s t a t e ∗/

2 struct { /∗ ex4 ∗/

3 struct { /∗ ex4 ∗/

4 int64_t x ;

5 int64_t y ;

6 } ex4 ;

7 } ex4 ;

8 } s t a t e ;

Fig. 8 Global state structure in the generated C code

a global clock value, executing the rules in the correct order and time, and executing assertion

statements. This is shown in Figure 10.

The final piece of C code generation is a user supplied main function which should repeatedly

call the generated scheduler function. This is typically a tight loop with a call to the scheduler

followed by a delay statement that should be calibrated for the platform and desired amount of

real-time per system tick.
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1 /∗ Rule { 0 , ex4 . ex4 . atomX } ∗/

2 stat ic void __r0( ) {

3 bool __0 = true ;

4 int64_t __1 = s t a t e . ex4 . ex4 . x ;

5 int64_t __2 = 1LL ;

6 int64_t __3 = __1 + __2;

7 int64_t __4 = s t a t e . ex4 . ex4 . y ;

8 int64_t __5 = __4 − __2;

9 s t a t e . ex4 . ex4 . x = __3;

10 s t a t e . ex4 . ex4 . y = __5;

11 }

Fig. 9 Translated rule for atomX

Auto-generated code like that shown in Figure 10 is only meant to be machine readable, not

human readable. One should think of this code as an intermediate representation on the way to

native machine code. It can be used by human designers for debugging purposes if really needed,

but the LIMA language and complilation tool chain is setup to avoid exposing users to these low

level details.

Certification (e.g., DO178-C [24]) of auto-generated code has been addressed elsewhere for tools

such as Simulink and Stateflow [82]. Of course, such an approach requires LIMA undergo tool

qualification.

Execution of the generated code can be very useful in the design and debugging of systems in

LIMA. To that end LIMA provides several debugging features that can be used along with forward

execution in order to examine the state of the system as it evolves over time. A special primitive

function called probe allows the user to setup a hook which monitors the value of any expression

at any point of a specification. These probes can be printed out as part of the system execution by

calling another special function printProbe. The utility function mapM_ is standard Haskell which

maps a function (printProbes) over a container of values (probes). In Figure 11, the running

example has been modified to include probes on certain runtime expressions and to print the values
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1 void ex4 ( )

2 {

3 {

4 stat ic uint8_t __scheduling_clock = 0 ;

5 i f ( __scheduling_clock == 0) {

6 __assertion_checks ( ) ; __r0( ) ; /∗ Rule { 0 , ex4 . ex4 . atomX } ∗/

7 __scheduling_clock = 1 ;

8 }

9 else {

10 __scheduling_clock = __scheduling_clock − 1 ;

11 }

12 }

13 {

14 stat ic uint8_t __scheduling_clock = 3 ;

15 i f ( __scheduling_clock == 0) {

16 __assertion_checks ( ) ; __r1( ) ; /∗ Rule { 1 , ex4 . ex4 . atomY } ∗/

17 __scheduling_clock = 4 ;

18 }

19 else {

20 __scheduling_clock = __scheduling_clock − 1 ;

21 }

22 }

23 __global_clock = __global_clock + 1 ;

24 }

Fig. 10 Generated scheduler function

of those expressions out on every tick. The output generated during the example’s execution is

shown in Figure 12.
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1 ex4 : : Atom ( )

2 ex4 = atom "ex4" $ do

3 x <− i n t64 "x" 0

4 y <− i n t64 "y" 0

5

6 c locked 2 0 $ atom "atomX" $ do

7 i n c r x

8 decr y

9 probe "x + y" ( va lue x + value y )

10

11 c locked 5 3 $ atom "atomY" $ do

12 i n c r y

13 probe "y" ( va lue y )

14

15 a s s e r t "y not positive" ( va lue y <=. 0)

16 mapM_ printProbe =<< probes

Fig. 11 Probing the values of two runtime expressions

C. Formal Model Synthesis

In this section, we describe our approach for mapping the syntax and semantics of LIMA to

a formal transition system model suitable for model checking. (Translation to C code is relatively

straightforward and we omit its description here.) One of the main arrows of Figure 1 points from

ADSL to “formal models”. In the following sections we describe concretely how a system specified

in LIMA can be translated into a model-checker, while preserving important semantic constraints.

Efficiently translating to a model-checking system without relying on ad-hoc, problem-specific

abstractions to make the translation feasible is an open research problem that we focus on herein.

Let us return to our handler example from the previous section. Execution of the handler

updates the state of the system and so in our translation it is represented by a transition relation.

In Sally, transition relations are specified by predicates over the “current” and “next” states of the

system. These are denoted by prefixing state variables with the namespaces “state” and “next”. The
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1 y : −1

2 x + y : 0

3 y : −1

4 x + y : 0

5 y : −2

6 x + y : 0

7 y : −1

8 x + y : 1

9 y : −2

10 x + y : 1

11 y : −2

12 x + y : 1

13 y : −3

Fig. 12 Printing probes during execution

transition represented by the handler becomes in Sally a predicate. Syntatically it is an S-expression

with boolean value that references the state variables.

1 handler rx tx = atom "someHandler" $ do

2 l e t v = readChannel rx

3 s <== v

4 writeChannel tx ( Const 42)

Fig. 13 Handler in the ADSL

The variable cal in Figure 14 is a state variable referencing the “calendar”, a data structure which

keeps track of the times that future events will take place. Sending a message is implemented by

adding a (future) time, channel identifier, and message content to the calendar. At the proper time,

a transition is enabled for the receiver to act upon the message. This mechanism is described in more

detail below. In the Sally transition relation, the notations msg_pending(...), msg_read(...),

and msg_send(...) are shorthand for more complicated expressions:

• msg_pending is a boolean expression that checks whether there is a message available for
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1 ;; someHndler:

2 ( and msg_pending ( s t a t e . ca l , s t a t e . rx )

3 (= next . s msg_read ( s t a t e . ca l , s t a t e . rx ) )

4 (= next . c a l msg_send ( s t a t e . ca l , s t a t e . tx , 42) )

5 (= next . other_var1 s t a t e . other_var1 )

6 (= next . other_var2 s t a t e . other_var2 )

7 . . . )

Fig. 14 Handler as part of a formal model

delivery at the current time.

• msg_read returns a message value from the appropriate entry in the calendar.

• msg_send(...) is an calendar-valued expression which computes the new value of the calen-

dar, typically involving the overwrite of a calendar entry with the message contents and the

overwrite of the entry’s delivery time with the current time plus the configured message delay.

Various kinds of systems with real-time constraints can be implemented on top of the calendar

automata framework. In LIMA, two main constructs are used to express features such as periodic

execution and aperiod timeouts. First, there is a primitive function clocked, which takes a concrete

period value (in ticks) and either a concrete phase value (between 0 and the period), or a special

value that indicates phase should be indeterminate. In this context, indeterminate phase means

that phase of execution is non-deterministic, but fixed within each system trace. This allows us to

explore phase-dependent properties in real-time systems such as the Automatic Airbreak System

case study presented in VC.

Second, there is another primitive function writeChannelWithDelay which, like writeChannel,

sends a message over a channel, but with a specified delay added to the delivery time. This feature

can be used to program reset-able, aperiodic timeouts. For example, in the following specification,

a node sets itself a timeout of 100 ticks, after which it sets a flag.

1 t imeout = atom "timeout" $ do

2 f l a g <− bool "flag" False
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3 ( tx , rx ) <− channel "self_loop" False

4 writeChannelWithDelay 100 tx true

5

6 atom "on_wake" $ do

7 cond $ fu l lChanne l rx

8 f l a g <== true

In this example, the relationship between the outer atom and the inner atom is key. The flag

and channel are shared between the two atoms (being in scope for both of them), but the “on_wake”

atom’s execution is predicated on the guard of both itself, and its parent. Since the parent has no

guard in this case we can think of “timeout” and “on_wake” as two different nodes communicating

over the “self_loop” channel.

1. Calendar Automata

Real-time system verification in general-purpose model-checkers requires an explicit formalism

of real-time progression. Trying to encode real-time clocks directly is difficult; in particular, one

must avoid Zeno’s paradox in which no progress is made because state transitions simply update

real-valued variables by an infinite sequence of decreasing amounts whose sum is finite. To avoid

this problem, Dutetre and Sorea developed calendar automata [59], which is itself inspired by event

calendars used in discrete-event simulation. Rather than encoding “how much time has passed since

the last event”, it encodes “how far into the future is the next scheduled event”, and a real-valued

variable representing the current time is updated to the next event time.

Define a set of events e0, e1, . . . , en ∈ E. For now, we do not define events; intuitively, an

event is a set of state variables (shortly, we will associate events with messages sent in a distributed

system). When an event is enabled, the transitions over events are enabled; otherwise, the variables

stutter (maintain the same value).

An event calendar {(e0, t0), (e1, t1), . . . , (en, tn)} is a set of ordered pairs (ei, ti) called calendar

events where ei ∈ E is an event and ti ∈ R is a timeout, the time at which the event is scheduled.
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We denote element (ei, ti) of an event calendar by ci.

Let cal be an event calendar and ci, cj ∈ cal be calendar events. Define an ordering on calendar

events such that ci ≤ cj iff ti ≤ tj , and min(cal) = {ci|∀cj ∈ cal, ci ≤ cj} are the minimum elements

of cal.

Let a transition system M = (S, I,→), be a set of states S, a set of initial states I ⊆ S,

and a transition relation →⊆ S × S. We implicitly assume a set of state variables such that each

state σ ∈ S is a total function that maps state variables to values. We sometimes prime a state to

denote that it satisfies the transition relation: σ → σ′. We also sometimes use a variable assignment

notation to describe what state variables are specifically updated: e.g., σ′ = σ[v := v + 1].

We distinguish two special state variables in a transition system: (1) now ∈ R denotes the

current time in the state, and (2) cal is an event calendar.

The following laws must hold of a transition systemM implementing a calendar automaton:

1. Time is initialized to be less than or equal to every calendar timeout: ∀σ ∈ I, ∀(ei, ti) ∈ σ(cal),

σ(now) ≤ ti.

2. In all states, if the current time is strictly less than every calendar event, then the only enabled

transition is a time progress update: ∀σ ∈ S, ∀(ei, ti) ∈ σ(cal), if σ(now) < ti, then ∀σ′ such

that σ → σ′, σ′ = σ[now := min(cal)].

3. In all states, if the current time equals a timeout, then the only transitions enabled are calendar

event updates associated with the timeout: ∀σ ∈ S, ∃(ei, ti) ∈ σ(cal) such that σ(now) = ti

implies ∀σ′ such that σ → σ′, σ′(now) = σ(now), σ′(cj) = σ(cj) for all cj ∈ σ(cal) such that

cj 6= ci (recalling that by convention, ci = (ei, ti)), and ci /∈ σ′(cal).

From the definitions, it follows that in every state, the timeouts are never in the past, and that

time is monotonic:

Lemma IV.1 (Future timeouts) ∀σ ∈ S, (ei, ti) ∈ σ(cal), σ(now) ≤ ti.

Lemma IV.2 (Monotonic time) ∀σ, σ′ ∈ S, if σ → σ′, then σ′(now) ≥ σ(now).
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Proofs of these two lemmas are straightforward and omitted.

In a distributed system, it is convenient to distinguish global actions and local actions. Global

actions are principally interprocess communication, while local actions are those carried out by each

process to update its local state and produce new messages to broadcast. While both global and

local actions can both be modeled as events in a calendar automata, doing so is generally overkill

and complicates the model. From the global perspective, individual processes can update their local

state atomically.

Again, following Dutetre and Sorea, we associate calendar events with channels in a distributed

system [59]. Specializing calendars to message passing does not lose generality since all external

communication from an individual process can be abstracted as message passing. Furthermore, fault

models can be abstracted to act over channels rather than processes [83]. The calendar introduces

real-time constraints on when processes send and receive messages.

Assume processes are indexed from a finite set Id. A channel from process i to j is an ordered

pair (i, j). Fix a set of messages Msg. Given a channel and a timeout, let send be a relation on

messages sent on a channel at a given time:

send ⊆ Id× Id× R×Msg

So send(i, j, t,m) holds iff i sends to j message m at time t. Likewise, let

recv ⊆ Id× Id× R×Msg

be a relation on messages received on a channel at a time, so that recv(i, j, t,m) holds iff the message

m received by j from i at time t.

In the absence of faults, we require that messages received were previously sent and not pre-

viously received: if (i, j, t,m) ∈ recv, then ∃t′ such that (i, j, t′,m) ∈ send where t′ < t, and ¬∃t′′

such that t′ < t′′ < t and (i, j, t′′,m) = (i, j, t,m). (We address faults in Section IVC3.)

Then an event calendar for sending and receiving messages on channels is the union of the send

and recv relations.

The event of receiving a message initiates a process to update its local transition system and

generate additional messages to send. When the process is updating its local transition system, the
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event calendar is paused. That is, updating an event (i, j, t,m) ∈ recv also includes updating j’s

transition system.

2. System Properties

In order to specify safety properties of a system in our ADSL, we’ve chosen to use the syn-

chronous observer pattern [84]. The synchronous observer is a module that is composed with a

target system synchronously. Its job is to monitor the state variables of the system and raise a flag

when safety properties are violated. This idea is a popular alternative to specifying properties in

a special language (usually a temporal logic like LTL) that has the advantage of being written in

the same language and environment as the system. Additionally, writing a synchronous observer is

second nature to the systems engineers; it is essentially like adding a runtime check to a program.

Using observers allows us to sidestep the integration and expression of temporal logic in our

ADSL. Instead, the programmer adds an observer to her system as a top-level monitor along with

annotations that indicate which state variables are to be observed. From this we automatically

generate a corresponding observer module as well as the theorems and lemmas that the model

checker expects.

Our experiments with a few specific distributed fault-tolerant systems suggest that using syn-

chronous observers in place of LTL properties introduces very little overhead during verification.

3. Fault Models

The typical approach to modeling faults is to add new state variables to each process representing

its fault state. Then a node chooses actions based on its fault state. As a simple example, we might

define a node that sends a good message if it is non-faulty and a bad message otherwise. In pseudo-

code using guarded commands, its definition might look like the following:

node:

health: Fault_Type;

faulty(health) --> send(bad_msg);

non_faulty(health) --> send(good_msg);
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But this approach mixes the specification of a node’s behavior with the fault model, an aspect of

the environment. Generally, nodes do not contain state variables assigned to their faults, or use

their fault-status to determine their behavior [85]! The upshot is that combining faults and node

state divorces the specification from its implementation.

A second difficulty with model-checking fault-tolerant systems in general is that modeling faults

requires adding state and non-determinism. The minimum number of additional states that must

be introduced may depend non-obviously on other aspects of the fault model, specific protocol,

and system size. Such constraints lead to “meta-model” reasoning, such as the following, in which

Rushby describes the number of data values that a particular protocol model must include to model

the full range of Byzantine faults (defined later in this section):

To achieve the full range of faulty behaviors, it seems that a faulty source should be

able to send a different incorrect value to each relay, and this requires n different values.

It might seem that we need some additional incorrect values so that faulty relays can

exhibit their full range of behaviors. It would certainly be safe to introduce additional

values for this purpose, but the performance of model checking is very sensitive to the size

of the state space, so there is a countervailing argument against introducing additional

values. A little thought will show that . . .. Hence, we decide against further extension

to the range of values [54].

The second problem is the most straightforward to solve. In infinite-state model-checking, we

can use either the integers or the reals as the datatype for values. Fault-tolerant voting schemes,

such as a majority vote or mid-value selection (see Section VB), require only equality, or a total

order, respectively, to be defined for the data.

The solution to the first problem is more involved. Our solution is to introduce what we call

a synchronous kibitzer that symbolically injects faults into the model. The kibitzer decomposes

the state and transitions associated with the fault model from the system itself. For the sake of

concreteness in describing the synchronous kibitzer, we focus on a particular fault model, the hybrid

fault model of Thambidurai and Park [71]. This fault model distinguishes Byzantine, symmetric,

and manifest faults. It applies to broadcast systems in which a process is expected to broadcast
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the same value to multiple receivers. A Byzantine (or arbitrary) fault is one in which a process

that is intended to broadcast the same value to other processes may instead broadcast arbitrary

values to different receivers (including no value or the correct value). A symmetric fault is one in

which a process may broadcast the same, but incorrect, value to other processes. Finally, a manifest

(or benign) fault is one in which a process’s broadcast fault is detectable by the receivers; e.g., by

performing a cyclic redundancy check (CRC) or because the value arrives outside of a predetermined

window.

Define a set of fault types

Faults = {none, byz, sym,man}.

As in the previous section, let Id be a finite set of process indices, and let the variable

faults : Id→ Faults

range over possible mappings from processes to faults.

The hybrid fault model assumes a broadcast model of communication. Define rnd : R→ N such

that if rnd(t0) < rnd(t1), then t0 < t1. A broadcast : Id → 2Id → R → Msg → 2E takes a sender,

a set of receivers, a real-time, and a message to send each receiver, and returns a set of calendar

events (recall that E refers to the set of possible events):

broadcast(i, R, t,m) = {(i, j, t,m)|j ∈ R and send(i, j, t) = m}

With this machinery, we can define the semantics of faults by constraining the relationship

between a message broadcast and the values received by the recipients. For a nonfaulty process

that broadcasts, every recipient receives the sent message, and for symmetric faults, there is no

requirement that the messages sent are the ones received, only that every recipient receives the

same value:
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nonfaulty_constraint =

∀i, j ∈ Id, t ∈ R.

faults(i) = none

implies recv(i, j, t) = send(i, j, t)

sym_constraint =

∀i, j, k ∈ Id, t ∈ R.

( faults(i) = sym

and broadcast(i, {j, k}, t,m))

implies recv(i, j, t) = recv(i, k, t)

Byzantine faults are left completely unconstrained.

Thus, faults can be modeled solely in terms of their effects on sending and receiving messages.

A node’s specification does not have to depend on its fault status directly.

Implementing the synchronous kibitzer fault injection in Sally consists of three details. First,

state variables are allocated for each of the system nodes to represent its fault state. A state

variable is also allocated for each channel to represent potential faulty values sent over that channel.

These channel values are left to vary non-deterministically through each system trace, but they are

constrained according the the fault type of the sender. For example, if the sender is symmetrically

faulty, then the fault values of all its outgoing channels should be non-deterministic, but equal.

Second, these state variables are constrained by fault model formulas generated by the compiler

depending on the fault model chosen in configuration. In the general Hybrid Fault Model case, these

formulas are inequalities involving weighted sums over the nodes. Last, the expression denoted by

msg_read in subsection IVC is a conditional. If the sending node’s fault state is non-faulty, then

msg_read returns the intended message (a value that lives in some entry on the calendar). If not,

then msg_read returns the (constrained) non-deterministic fault value associated with the sender.

D. Visualization

We conclude this section by mentioning a third backend for LIMA that allows system specifica-

tions to be visualized in various ways. To produce a visualization one calls the graphAtom function

with a filename prefix and an atom specification. The result is a png image file containing an abstract

representation of the system. Nodes are displayed with their name in diamonds. Atom/Subatom

relationships are denoted with dotted black arrows and channels are depicted by purple arrows.
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Fig. 15 Graph representation of an atom specification

Figure 15 shows a typical example.

V. Case-Studies: Representative Distributed Systems

As mentioned in Section I, our ADSL is focused on the kinds of systems found in avionics.

Particularly, we limit ourselves to distributed systems with the following characteristics: a finite,

fixed, and usually small number of nodes; a fixed number of communication channels between

nodes; possibly local and system-wide real-time constraints; and fault-tolerance requirements and

constraints.

We present here representative case-studies, each highlighting particular aspects that the ADSL

must handle. These case studies exercise and demonstrate the breadth and expressiveness of our

ADSL:

• a high level model of a redundant, switched ethernet network

• the Hybrid Oral Messages protocol [81], OMH(1), which is a synchronous Byzantine agreement

protocol supporting a hybrid fault model;

• and an asynchronous “push-button” brake-by-wire [86] case-study.

For each case-study, we first informally describe the protocol or system, then we present its

formalization in the ADSL. We focus on how the primitives and library functions built on those
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EA EB EC

S1 S2

Fig. 16 A switched ethernet network for 3 nodes and 2 switches

primitives succinctly capture the model.

A. Switched Ethernet Network

As a warmup to the more complicated case-studies presented in later sections, we start with

a high-level model of a redundant, switched ethernet network. This network provides broadcast

communication among a set of n nodes and provides redundancy through a set of m independent

switches. Figure 16 depicts the network for the choice of 3 nodes and 2 switches.

The network operates as follows. A node, say A, wants to broadcast a message. It sends a

message to an endpoint node EA that handles the broadcast to each of the 2 switches S1 and

S2. When a switch receives a message it relays it to all the other endpoints on the network. The

endpoints are responsible for sorting out which message to eventually deliver to the node. For

simplicity we describe a network where endpoints deliver all messages they receive from switches to

their corresponding node.

To specify a network in LIMA we declare a function mkSWEther that takes as parameters a

number of nodes and a number of switches and returns a list of channel input/output pairs. The

channels are meant to be attached to user specified nodes in a specific order. Internally, mkSWEther

builds the endpoints and switches as nodes and builds all the channels in between as well as those

pointing in and out of the network which will be returned.
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1 -- generate the internal channels: [ [ (in_k_j , [out_1 , ...]) ] ]

2 -- where in_k_j goes from endpoint j to switch k and out_1 .. out_{n-1} go

3 -- from switch k to the other endpoints (but not the j-th).

4 interna lChans <−

5 forM rm # \k −> -- loop over switches

6 forM rn # \ j −> do -- loop over endpoints

7 in_k_j <− channel ( p r i n t f "in_s%d_e%d" k j ) typ

8 l e t mkOChan i = do c <− channel ( p r i n t f "out_s%v_e%v_e%v" k j i ) typ

9 re turn ( i , c )

10 outs <− mapM mkOChan ( bar j )

11 re turn ( in_k_j , outs )

Fig. 17 Declaration of internal channels

Figure 17 shows how the internal channels are built. There is a unidirectional channel for each

switch and each endpoint and each other endpoint. They are stored in a particular order for ease

of use in attaching them to switches and endpoints.

The switches are built from atoms having n handler sub-atoms. Each handler listens to a

particular incoming channel (from one of the endpoints) and whenever it sees a message there it

broadcasts it out to all the other endpoints. The declaration of switches is seen in Figure 18.

The endpoints are mostly similar to the switches: they listen to the channel coming from the

corresponding node and broadcast and received message to the switches. However, in the opposite

direction we have a problem. Each endpoint must also listen to all the switches and decide what to

do with the messages. Listening is not a problem, we simply declare sub-atoms for each incoming

switch channel and set them up to listen to the correct channel. But now we need these sub-atoms

to write each message they receive to the one outgoing channel that points to the corresponding

node. This is a problem because it means we have multiple atoms writing to the same channel. This

is not allowed in LIMA by design. Instead we must buffer the sending of messages to the node. In

our case-study implementation we chose to buffer messages using a FIFO queue of fixed length.
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1 -- generate the switches:

2 -- each one listes on each incoming chan and broadcast to all outgoing chans

3 forM_ rm # \k −>

4 atom ( p r i n t f "sw%v" k ) # do

5 l e t myChans = interna lChans ! ! k -- :: [ (in_k_j , outs) ]_j

6 forM_ rn # \ j −> do

7 l e t (myIn , myOuts) = myChans ! ! j

8 atom ( p r i n t f "handler_%v_%v" k j ) # do

9 cond # fu l lChanne l ( snd myIn)

10 v <− readChannel ( snd myIn)

11 mapM_ ( ( ‘ writeChannel ‘ ( v : : E Typ) ) . f s t . snd ) myOuts

Fig. 18 Declaration of switches

B. Synchronous Fault-Tolerant OM(1) Systems

1. Informal Model

Our first case study is is a system that implements one of the “Oral Messages” algorithms. These

are synchronous, distributed, and fault-tolerant systems that solve the Byzantine Generals Prob-

lem [87]. The family of systems that implement OMm have different numbers of communicating

nodes and offer varying levels of fault tolerance. We’ve chosen to focus our attention on systems

that implement the specific algorithm OMH1, “Hybrid Oral Messages with 1 Round”. In this algo-

rithm, n nodes communicate in order to reach agreement on a valid course of action (or equivalent

information). This is done in the presence of at most 1 faulty node, whose communications and

behavior are assumed to be completely unconstrained (“Byzantine”). The difference between OM(1)

and OMH(1) lies in the details of how certain types of faulty messages are treated. OMH(1) can be

viewed as an extension of OM(1) which tolerates a broader set of fault patterns.

Figure 19 depicts the communication pattern for OM1 (and also OMH(1)). Each of the n

nodes in the system represents a (Byzantine) General. In this formulation, the center node is the

commanding general, while the n−1 outer generals are the lieutenants. The algorithm starts with the

commanding general sending each lieutenant the same message v. Upon receipt of the commander’s
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message, each lieutenant in turn sends the message received to each of the other lieutenants. Once a

lieutenant has received all n− 1 expected messages, a majority vote is taken among the n messages

and the lieutenant declares its output (course of action) to be whichever message is in the majority.

Commander Lieutenant 1

Lieutenant 2

Lieutenant 3

v

v

v

v

v

x

v

x

v

Fig. 19 OMH1 Four generals, one traitor

For a fault model we follow [54] and assume that nodes are the only source of faults. Moreover,

node faults are assumed to be either manifest, symmetric, or byzantine. A fault is called manifest if

it is detectable by the non-faulty nodes; for example a node that sends to another node a message

that explicitly indicates there is a fault. On the other hand, a fault is called symmetric if its presence

is not necessarily detectable as a fault to the other components; for example a node which sends

wrong messages, as opposed to invalid or missing messages.

Given a formal model of OMH1, the standard target for verification is validity and agreement.

If we let li denote the output for lieutenant i (where 1 ≤ i ≤ n− 1), then validity states:

∀ i. li = v (1)

whereas agreement states:

∀ i, j. li = lj (2)
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where i, j range over the non-faulty nodes.

It is a classical result that OM1 can tolerate at most 1 (byzantine) faulty node as long as there

are at least 4 nodes in total. By adding additional communication rounds, OM1 can be extended

to an algorithm OMm which tolerates at most m faults. On the other hand it is known that any

system which tolerates m byzantine faults must involve at least 3m+ 1 nodes.

In the results above there are several assumptions made regarding the underlying computational

platform which aren’t obvious from the informal description, but become so when one considers

formally modelling it. To make as many assumptions as possible explicit, we require:

1. every message sent by a node is received successfully by the addressed node,

2. when a node receives a message it may determine who sent it,

3. each node can detect the absence of a message.

These are the assumptions made by Lamport in his constructed solution for OMm and the cor-

responding impossibility result (see [87] §2). It follows that a system implementing OM1 must

transition synchronously. In particular, in an asynchronous system there is no general method for

detecting when a message is absent.

2. ADSL Specification

We now describe our implementation of Oral Messages in the ADSL. While we have specified

and verified the extension, OMH(1) in the ADSL, we elide for simplicity the differences between

OMH(1) and OM(1) and just present OM(1) here.

Our ADSL implementation of OM(1) makes heavy use of the facilities of the host language,

Haskell. Indeed, the main part of the definition of the system is given in just a few lines thanks to

the use of parameterization.

In this specification we refer to the Commander as the “source” and the Lieutenants are unrolled

into two sets: “relays” and “receivers”. Here, the source broadcasts to the relays which, in turn,

broadcast to the receivers which proceed with their vote. The code of Figure 20 shows first channels

being setup for communication, then the source is declared by calling a function which we define
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1 om1 : : Atom ( )

2 om1 = do

3 -- setup channels for communication between source , relays , and receivers

4 s 2 r s <− mapM newChannel [ "s2r" ++ show i | i <− r e l aySe t ]

5 r 2 r s <− mapM (mapM newChannel ) [ [ "r2r" ++ show i ++ show j | j <− r ecvSet ]

6 | i <− r e l aySe t ]

7 -- declare the set of vote variables that receivers will populate

8 votes <− mapM msgVar [ "vote" ++ show j | j <− r ecvSet ]

9

10 -- declare source node

11 source (map f s t s 2 r s )

12

13 -- declare relay nodes

14 forM_ re l aySe t 3 \ i d t −>

15 r e l a y ident ( snd ( s 2 r s ! ! i d t ) )

16 (map f s t ( r 2 r s ! ! i d t ) )

17

18 -- declare receiver nodes

19 dones <− forM recvSet # \ id t −>

20 recv i d t [ snd ( ( r 2 r s ! ! i ) ! ! i d t ) | i <− r e l aySe t ] ( votes ! ! i d t )

21

22 -- state the "agreement" property

23 l e t votesEqual (v ,w) = value v ==. value w

24 a s s e r t "agreement" # imply (and_ (map value dones ) )

25 ( a l l_ votesEqual

26 [ ( v ,w) | v <− votes , w <− votes ] )

27

28 -- state the "validity" property

29 l e t voteGood v = value v ==. goodMsg

30 a s s e r t "validity" # imply (and_ (map value dones ) ) ( a l l_ voteGood votes )

Fig. 20 Setting up OM(1)
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1 recv : : Int -- ^ receiver id

2 −> [ ChanOutput ] -- ^ channels from relays

3 −> V MsgType -- ^ vote variable

4 −> Atom (V Bool )

5 r e l a y i d t inC outCs = atom ("relay" ++ id t ) # do

6 -- declare local variables

7 done <− bool "done" False

8 msg <− msgVar ("relay_msg" ++ id t )

9

10 -- activation condition:

11 -- we haven ’t stored a value yet and there is a message waiting

12 -- on the channel ’inC’

13 cond # i sMi s s i ng msg &&. fu l lChanne l inC

14

15 -- behavior

16 m <− readChannel inC

17 msg <== m

18 done <== true

19 forM_ outCs # \c −> writeChannel c m

Fig. 21 Function for declaring a generic relay

shortly. The relays and receivers are also declared by calling functions provided different parameters.

Note, the functions forM and forM_ are standard Haskell constructs for defining iterations, i.e. “for

loops”.

For example, Figure 21 shows the function definition for a generic relay.

The relay function takes an identifier, an incoming channel (for receiving) and a list of channel

outputs (for broadcasting). Recall that the cond primitive acts as a guard on the atomic action to

be taken in the last 4 lines of the definition. In those last lines, the relay reads a message from the

incoming channel, stores it in a local variable, sets its done flag, and then writes that message out

on each of the outgoing channels it has.
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1 computeVote : : [E MsgType ] −> E MsgType

2 computeVote = f s t . f o l d r i t e r (missingMsgValueE , 0)

3 where

4 i t e r x (y , c ) = ( mux (x ==. y ) onTrue1 onFalse1

5 , mux (x ==. y ) onTrue2 onFalse2 )

6 where

7 onTrue1 = y

8 onTrue2 = c + 1

9 onFalse1 = mux ( c ==. 0) x y

10 onFalse2 = mux ( c ==. 0) 1 ( c − 1)

Fig. 22 Fast Majority Vote in LIMA

The definition of recv is similar, except that each receiver possibly makes two atomic actions

through the declaration of two sub-atoms. The first sub-atom listens for messages from the relays

and fills a buffer as they arrive. The second sub-atom is enabled only when the buffer is full and it

computes a majority vote on the buffer and stores the result in its vote variable argument.

The majority vote computation is specified using the “Fast Majority Vote” algorithm due to

Boyer and Moore [88]. This algorithm requires only a single pass over the vote buffer. This is

accomplished in our DSL using a right fold operation as seen in Figure 22. A buffer value and a

counter are maintained during the pass. When the next element in the buffer equals the currently

maintained value, the counter is increased. If the next element is different and the counter is zero,

then the maintained value is replaced, else the counter is decreased. In this way, at the end of the

pass, if there is a majority, it will be equal to the value maintained. It is worth pointing out here

that it is precisely this aspect, the level of detail in implementing the majority vote, that sets our

model of OM(1) apart from previous models.

Finally, we have the system properties declared at the end of om1 using assertions. Both

agreement and validity are predicated on the receivers being done and the values in the list of vote

variables.
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1 ( query

2 om1_transition_system

3 ( l e t

4 ( ( temp ! 0 t rue )

5 ( temp ! 1 om1 ! vote_2 )

6 ( temp ! 2 om1 ! vote_1 )

7 ( temp ! 3 (= temp !1 temp ! 2 ) )

8 ( temp ! 4 om1 ! vote_0 )

9 ( temp ! 5 (= temp !1 temp ! 4 ) )

10 ( temp ! 6 (= temp !2 temp ! 1 ) )

11 ( temp ! 7 (= temp !2 temp ! 4 ) )

12 ( temp ! 8 (= temp !4 temp ! 1 ) )

13 ( temp ! 9 (= temp !4 temp ! 2 ) )

14 ( temp !10 ( and temp ! 3 temp ! 5 temp !6 temp ! 7 temp ! 8 temp ! 9 ) )

15 ( temp !11 ( not temp ! 1 0 ) )

16 ( temp !12 om1 ! recv_2 ! done )

17 ( temp !13 om1 ! recv_1 ! done )

18 ( temp !14 om1 ! recv_0 ! done )

19 ( temp !15 ( and temp !11 temp !12 temp !13 temp ! 1 4 ) )

20 ( temp !16 ( not temp ! 1 5 ) ) )

21 ( not temp ! 1 5 ) ) )

Fig. 23 A Sally query rendered in A-normal form

3. Generated Model

The formal model generated for OM(1) by LIMA is quite large. Whereas the LIMA specification

file is only 5632 bytes, the Sally model LIMA generates for it is 110,581 bytes. The generated model

has 65 state variables, 12 input variables, and 16 transitions in total. As an example of what

the Sally model looks like, consider the translation of the “agreement” property. Figure 23 shows

the corresponding Sally query. The terms in the query are rendered in A-normal form [89] to get

maximum benefit from sharing sub-terms.
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Some verification of these models can be done automatically, without any further work. For

example, if we reduce OM(1) system above so that it has only 2 relays and 2 receivers, then the

Sally model checker can automatically verify that both agreement and validity hold in just over 11

minutes. With the hybrid fault model assumption made, this is still a fairly non-trivial verification

and it is a highly non-trivial one for the model checker to decide.

C. Asynchronous Airbus A320 Autobrake System

1. Informal Description

The third case-study is based on the runway excursion of an Airbus 320, occurring on an Ibiza

Airbus on 21st of May, 1998. The full details of and the root cause analysis are detailed in the

incident report [86]. The excursion resulted from a total loss of the braking system, due to the

simultaneous failure of both channels of the Brake System Control Unit (BSCU) in conjunction

with a contamination within the braking system hydraulic system. From the ADSL perspective, it

is the failure of the software and BSCU architecture that is of primary interest.

In the A320 system, the BSCU comprises two channels, with each channel incorporating com-

mand and monitor lanes. The command lane provides the active control path to the system, whereas

the monitor lane checks and enforces that the command lane is operating within the expected en-

velope of performance. On the detection of the first failure, the monitoring lane indicates a failure,

and control is passed to the other channel. All processing of the system is executed using a quasi-

synchronous computational model. That is to say, processing of each channel is quasi-synchronous

with respect to one another, and the channels themselves are also quasi-synchronous.

In the Ibiza incident, the root cause of the loss of normal and alternative braking systems, was

the Byzantine induced failure of both BSCU channels. The failure was due to the sampling of the

auto-brake mode control input panel buttons. The auto-brake panel comprise three buttons, LO,

MED and MAX that can be used to select the corresponding auto-braking mode. Momentarily pushing

the LO button selects the LO auto-braking mode. Pressing LO again de-selects the auto-braking

function, whereas pressing the MED or MAX buttons selects the corresponding automatic braking

modes. The state of the selected mode is communicated to the crew by indicators for each mode
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Fig. 24 Oscilloscope chart of pressing times of AUTO/BRK LO vs. acquisition times of

COM/MON functions

that are illuminated when the corresponding mode is active.

In the Airbus implementation, the buttons were sampled periodically by software every 25ms.

Given the asynchronous composition of the system, each processor samples the button state relative

to its own operating time-line. This implementation is vulnerable to short button presses that

are too short (< 25ms) and therefore not consistently perceived by all of the sampling units as

shown in Figure 24. (Additional inter-lane mode agreement logic, to mitigate Byzantine sampling

is not implemented in the system [90].) Hence, the system failure occurred when the command

and monitoring lanes of both channels fell into disagreement, following the momentary selection of

the LO auto-brake mode. The LO selection was only detected by one of the lanes of each channel,

hence the command and monitor mode disagreement detection logic was erroneously stimulated. In

the excursion, the disagreement occurred on both channels simultaneously. Given that the system

mode logic was also event driven, there was no path to recovery. Pressing LO would be subject to

the same Byzantine vulnerability, and even if not Byzantine, the incrementally edge driven mode

selection logic would not recover into a consistent state.
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The design errors represent a failure uncovered by the traditional design assurance framework.

Given the correct-by-construction synthesis focus, it is unlikely that our approach would allow

such an implementation to be developed. However, ensuring that the formal synthesis framework is

sufficient to represent and explore such design vulnerabilities is a good test case for the ADSL formal

tooling. The A320 Airbus brake system offers a good case-study in asynchronous system design and

verification. For example, the system also requires a protocol to manage the channel in control, and

additional logic and protocols to that communication is healthy. From the incident report these

details of the Airbus protocol implementations in these areas are not available. From the description

it appears that the channel-in-control logic utilizes an asymmetric power-on timeout to yield a first-

up channel in control. This may also leave the system vulnerable to assumptions of BSCU power-on

order, and transient recovery strategies. The protocols may also be vulnerable to failures of the inter-

lane and inter-channel communication lines. Utilizing the provisions within the LIMA workbench,

the long-term goal of this case-study is to support the systematic exploration of candidate protocols

and fault models; yielding a better understanding how protocol and communication architecture

related design decisions impact core-system properties.

2. Formal Model

The formal model of the Wheel Brake System closely follows its architecture. However, to

simplify the logic, and to reduce the size of the model, the three buttons of the brake control panel are

abstracted into a single button that selects between manual and auto-mode operation. The channel

in control is also simplified from the temporal first-up raced based selection, to a fixed-priority

scheme, where a pre-configured preferred channel remains in control until it is faulted. Although

simpler, this model is sufficient to explore and demonstrate the Byzantine failure vulnerability of

the original system.

The formal model starts with a top-level wbs atom that is used to host all the system subcom-

ponents. At the top level, three channels are also implemented, two to convey the button status to

each of the lanes, and a third to convey the button state to the lane observer process. The implemen-

tation of the lanes leverages and illustrates DSL provisions for parameterized replication. Using a

48



map as shown below, each lane is instantiated with an assigned boolean priority; as described above

this priority arbitrates which lane is in control when the system is in full-up operational mode (i.e.

no faults present).

1 -- Declare two lanes

2 l an e In s <− mapM mkLane [ True , Fa l se ] -- high/low priority

The lane implementation comprises two clocked periodic processes, one each for the command

and monitor functions, together with an an initialization atom. At every period, the command

and monitor sample the input from the button and toggle status of a boolean operational model

variable cautoMode, on the detection of a rising button edge. At each period, the update status

of the cautoMode variable is shared with the local lane monitor. The DSL extract for this logic is

shown below.

1

2 cautoMode <== mux ( ( va lue bs ==. Const True ) &&.

3 ( va lue prevbs ==. Const Fa l se ) )

4 (not_ ( value cautoMode ) )

5 ( va lue cautoMode )

6 writeChannel c to In ( va lue framecount ) -- send ’framecount ’ to

observer

7 writeChannel ctmIn ( value cautoMode )

The principal periodic process of the monitor atom is symmetrical to the periodic command atom.

However, the monitor logic is extended with additional agreement counting logic, to monitor the

agreement of the local and command lane exchanged cautoMode status. If disagreement persists for

three periods, the monitor channel yields control to the other lane, by signaling agreement failure.

1 atom "wait_x_side_autoMode" $ do

2 cond $ fu l lChanne l ctmOut

3 v <− readChannel ctmOut

4 xSideAutoMode <== v
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5 probeP "monitor.XsideAutoMode" ( va lue xSideAutoMode )

6

7 atom "mon_agreement" $ do

8 agreementFai lureCount <==

9 mux ( value mautoMode /=. value xSideAutoMode )

10 ( Const one + value agreementFai lureCount )

11 ( Const zero )

12 -- cond $ value mautoMode /=. value xSideAutoMode

13 -- incr agreementFailureCount

14

15 atom "mon_agreement_count" $ do

16 cond $ value agreementFai lureCount ==. Const three

17 agreementFai lure <== Const True

The representation of the WBS model in the DSL is very compact with the core logic only

requiring about 150 lines of code. When contrasted with the approximately 12,000 lines of Sally

code, which the LIMA synthesizes, this is a significant reduction. It may be argued, that without

such a DSL and the associated synthesis, the industrial viability of Sally alone may be challenging.

Properties of interest are simply asserted within any of the atoms as illustrated below. However,

it should be noted that the variables used within the assert statements need to be within the

atom scope. To simply model construction and instrumentation, it is recommended that variables

significant to system properties are sent to a top-level observer process, that can provide a central

point of property specification.

1 atom "mon_agreement" $ do

2 agreementFai lureCount <= =

3 mux ( value mautoMode /=. value xSideAutoMode )

4 ( Const one + value agreementFai lureCount )

5 ( Const zero )
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6 a s s e r t (pName pp "my assert" ) ( va lue agreementFai lureCount <=. Const

three )

In the Airbus braking example, no physical faults were actually present. Hence, in our initial

model, we also omit a fault model. However, the DSL framework ensures that the full state of the

asynchronous interaction of the sampling and channel in control logic, will be explored within the

synthesized Sally model. Therefore, the workbench is anticipated to uncover the system Byzantine

failure as part of the formal model analysis.

As part of future work, we intend to augment the fault model of the intra-lane and inter-lane

communication channels, and use the DSL and workbench to explore how such failures can impact

the assumed system level invariants and safety properties. We also intend to re-introduce the first

up leader election protocol, which selects the initial lane in control. One again, we envisage that

this will demonstrate how the DSL and formal analysis workbench will support the systematic

exploration of how potential faults, and start-up timing variations can disrupt and impact system

safety properties and assumptions.

VI. Conclusions

We have laid out a vision in this technical report for an architectural domain specific language

and associated tools. Our work is heavily driven by real-world case-studies, which we have covered

in depth. We hope to convince the reader that there is an industrial need for simplifying the

specification and verification of distributed fault-tolerant systems and for connecting specifications

to their implementations. We have described related work toward this end, as well as our work

in building the underlying constructs to support a language and modeling framework. Much of

our focus has been on the specification and verification aspects, as we believe that formal proof is

necessary for tedious, high-consequence systems.

Although we have promising results and worked case-studies, the future work associated with

the research agenda involves significant engineering work which we hope to address in coming years.

This includes both developing the modeling workbench itself as well as fleshing out more substantial

case-studies.
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