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Abstract

Runtime verification (RV) is a natural fit for ultra-
critical systems that require correct software behav-
ior. Due to the low reliability of commodity hard-
ware and the adversity of operational environments,
it is common in ultra-critical systems to replicate pro-
cessing units (and their hosted software) and incor-
porate fault-tolerant algorithms to compare the out-
puts, even if the software is considered to be fault-
free. In this paper, we investigate the use of software
monitoring in distributed fault-tolerant systems and
the implementation of fault-tolerance mechanisms us-
ing RV techniques. We describe the Copilot language
and compiler that generates monitors for distributed
real-time systems, and we discuss two case-studies in
which Copilot-generated monitors were used to de-
tect onboard software and hardware faults and mon-
itor air-ground data link messaging protocols.

1 Introduction

One in a billion, or 10−9, is the prescribed safety
margin of a catastrophic fault occurring in the avion-
ics of a civil aircraft [39]. The justification for the
requirement is to show that failures resulting in a
catastrophic effect are “so unlikely that it is not antic-
ipated to occur during the operational life of an entire
system or fleet”[1]. Let us call systems with reliabil-

ity requirements on this order ultra-critical and those
that meet the requirements ultra-reliable. Similar re-
liability metrics might be claimed for other safety-
critical systems, like nuclear reactor shutdown sys-
tems or railway switching systems.

Neither formal verification nor testing can ensure
system reliability. Contemporary ultra-critical sys-
tems may contain millions of lines of code; the full
functional correctness of approximately ten thousand
lines of code represents the state-of-the-art, taking 20
engineer-years to achieve [26]. Nearly 20 years ago,
Butler and Finelli showed that testing alone cannot
verify the reliability of ultra-critical software [11].

Runtime verification (RV), where monitors detect
and respond to property violations at runtime, holds
particular potential for ensuring that ultra-critical
systems are in fact ultra-reliable, but there are chal-
lenges. In ultra-critical systems, RV must account for
both software and hardware faults. Whereas software
faults are design errors, hardware faults can also be
a result of random failure.

For the purposes of this paper, assume that char-
acterizing a system as being ultra-critical implies it
is a distributed system with replicated hardware (so
that the failure of an individual component does not
cause system-wide failure); also assume ultra-critical
systems are embedded systems responsible for sens-
ing and/or controlling some physical plant and that
they are hard real-time, meaning that deadlines are
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fixed and time-critical.

Outline. In Section 2, we motivate the need for
runtime verification for ultra-critical systems. In Sec-
tion 3, we describe constraints and approaches to RV
for embedded systems. In Section 4, we present the
language of Copilot, our approach for ultra-critical
RV. We describe the tools (e.g., the interpreter and
compiler back-ends) associated with Copilot in Sec-
tion 5. We present two case-studies applying Copilot
to avionic systems in Section 6. Related work is given
in Section 7, and we make final remarks in Section 8.

2 When Ultra-Critical Is Not
Ultra-Reliable

Well-known, albeit dated, examples of the failure of
critical systems include the Therac-25 medical radi-
ation therapy machine [30] and the Ariane 5 Flight
501 disaster [34]. However, more recent events show
that critical-system software safety, despite certifica-
tion and extensive testing, is still an unmet goal. Be-
low, we briefly overview three examples drawn from
faults in the Space Shuttle, a Boeing 777, and an
Airbus A330, all occurring between 2005 and 2008.

Space Shuttle. During the launch of shuttle flight
Space Transportation System 124 (STS-124) on May
31, 2008, there was a pre-launch failure of the fault
diagnosis software due to a “non-universal I/O er-
ror” in the Flight Aft (FA) multiplexer de-multiplexer
(MDM) located in the orbiter’s aft avionics bay [7].
The Space Shuttle’s data processing system has four
general purpose computers (GPC) that operate in a
redundant set. There are also twenty-three MDM
units aboard the orbiter, sixteen of which are directly
connected to the GPCs via shared buses. The GPCs
execute redundancy management algorithms that in-
clude a fault detection, isolation, and recovery func-
tion. In short, a diode failed on the serial multiplexer
interface adapter of the FA MDM. This failure was
manifested as a Byzantine fault (i.e., a fault in which
different nodes interpret a single broadcast message

differently [29]), which was not tolerated and forced
an emergency launch abortion.

Boeing 777. On August 1, 2005, a Boeing 777-
120 operated as Malaysia Airlines Flight 124 de-
parted Perth, Australia for Kuala Lumpur, Malaysia.
Shortly after takeoff, the aircraft experienced an in-
flight upset, causing the autopilot to dramatically
manipulate the aircraft’s pitch and airspeed. A sub-
sequent analysis reported that the problem stemmed
from a bug in the Air Data Inertial Reference Unit
(ADIRU) software [10]. Previously, an accelerome-
ter (call it A) had failed, causing the fault-tolerance
computer to take data from a backup accelerometer
(call it B). However, when the backup accelerometer
failed, the system reverted to taking data from A.
The problem was that the fault-tolerance software
assumed there would not be a simultaneous failure
of both accelerometers. Moreover, the software was
not designed to report accelerometer A’s failure so
maintenance was not performed.

Airbus A330. On October 7, 2008, an Air-
bus A330 operated as Qantas Flight QF72 from Sin-
gapore to Perth, Australia was cruising when the au-
topilot caused a pitch-down followed by a loss of alti-
tude of about 200 meters in 20 seconds (a subsequent
less severe pitch was also made) [31]. The accident
required the hospitalization of fourteen people. Like
in the Boeing 777 upset, the source of this accident
was an ADIRU. The ADIRU appears to have suf-
fered a transient fault that was not detected by the
fault-management software of the autopilot system.

3 Runtime Monitoring for Em-
bedded Systems: Constraints
and Approaches

In this section, we present constraints to runtime
monitoring for real-time embedded systems.
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3.1 RV Constraints

Ideally, the RV approaches that have been developed
in the literature could be applied straightforwardly to
ultra-critical systems. Unfortunately, typical RV ap-
proaches violate constraints imposed on ultra-critical
systems. We summarize these constraints using the
acronym “FaCTS”:

• Functionality: the RV system cannot change the
target’s behavior (unless the target has violated
a specification).

• Certifiability: the RV system must not make re-
certification (e.g., DO-178B [37]) of the target
onerous.

• Timing: the RV system must not interfere with
the target’s timing.

• SWaP: The RV system must not exhaust size,
weight, and power (SWaP) tolerances.

The functionality constraint is common to all RV
systems, and we will not discuss it further. The cer-
tifiability constraint is at odds with aspect-oriented
programming techniques, in which source-code in-
strumentation occurs across the code base—an ap-
proach classically taken in RV (e.g., the Monitor and
Checking (MaC) [25] and Monitor Oriented Program-
ming (MOP) [13] frameworks). While runtime veri-
fication is not currently considered in the context of
certification, there are reasons for doing so, discussed
by Rushby [38]. Not modifying the observed program
could simplify the introduction of RV into certified
systems, reducing the need to re-evaluate code that
is being monitored. Source code instrumentation can
modify both the control flow of the instrumented pro-
gram as well as its timing properties.

Timing isolation is also necessary for real-time sys-
tems to ensure that timing constraints are not vio-
lated by the introduction of RV. Assuming a fixed
upper bound on the execution time of RV, a worst-
case execution-time analysis is used to determine the
exact timing effects of RV on the system—doing so
is imperative for hard real-time systems.

Code and timing isolation requirements cause the
most significant deviations from traditional RV ap-
proaches. Section 3.2 argues that these requirements

dictate a time-triggered RV approach, in which a pro-
gram’s state is periodically sampled based on the pas-
sage of time rather than occurrence of events [35].

The final constraint, SWaP, applies both to mem-
ory (embedded processors may have just a few kilo-
bytes of available memory) as well as additional hard-
ware (e.g., processors or interconnects).

3.2 Timed-Triggered Monitoring

Monitoring based on sampling state-variables has his-
torically been disregarded as a runtime monitoring
approach, for good reason: without the assumption
of synchrony between the monitor and observed soft-
ware, monitoring via sampling may lead to false pos-
itives and false negatives [16]. For example, consider
the property (0; 1; 1)∗, written as a regular expres-
sion, denoting the sequence of values a monitored
variable may take. If the monitor samples the vari-
able at the inappropriate time, then both false nega-
tives (the monitor erroneously rejects the sequence of
values) and false positives (the monitor erroneously
accepts the sequence) are possible. For example, if
the actual sequence of values is 0, 1, 1, 0, 1, 1, then an
observation of 0, 1, 1, 1, 1 is a false negative by skip-
ping a value, and if the actual sequence is 0, 1, 0, 1, 1,
then an observation of 0, 1, 1, 0, 1, 1 is a false positive
by sampling a value twice.

However, in a hard real-time context, sampling is
a suitable strategy. Often, the purpose of real-time
programs is to deliver output signals at a predicable
rate and properties of interest are generally data-flow
oriented. In this context, and under the assumption
that the monitor and the observed program share a
global clock and a static periodic schedule, while false
positives are possible, false negatives are not. A false
positive is possible, for example, if the program does
not execute according to its schedule but just hap-
pens to have the expected values when sampled. If a
monitor samples an unacceptable sequence of values,
then either the program is in error, the monitor is in
error, or they are not synchronized, all of which are
faults to be reported.

Most of the popular runtime monitoring frame-
works inline monitors in the observed program to
avoid the aforementioned problems with sampling.
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However, inlining monitors changes the real-time be-
havior of the observed program, perhaps in unpred-
icable ways. Recalling our four criteria from Sec-
tion 3.1, monitors that introduce such unpredictabil-
ity are not a viable solution for ultra-critical hard
real-time systems. In a sampling-based approach,
the monitor can be integrated as a separate sched-
uled process during available time slices (this is made
possible by generating efficient constant-time mon-
itors). Indeed, sampling-based monitors may even
be scheduled on a separate processor (albeit doing
so requires additional synchronization mechanisms),
ensuring time and space partitioning from the ob-
served programs. Such an architecture may even be
necessary if the monitored program is physically dis-
tributed.

Recent work in RV investigates the use of
time-triggered sampling for arbitrary programs and
control-flow oriented properties [18, 9, 41], which is a
harder problem than in our hard real-time context.

4 Copilot Language

Copilot is embedded into the functional programming
language Haskell [24], and a working knowledge of
Haskell is necessary to use Copilot effectively. Copi-
lot is a pure declarative language; i.e., expressions
are free of side-effects and satisfies referential trans-
parency. A program written in Copilot, which from
now on will be referred to as a specification, has a
cyclic behavior, where each cycle consists of a fixed
series of steps:

• Sample external variables, arrays, and functions.

• Update internal variables.

• Fire external triggers. (In case the specification
is violated.)

We refer to a single cycle as an iteration.
All transformation of data in Copilot is propagated

through streams. A stream is an infinite, ordered
sequence of values which must conform to the same
type. E.g., we have the stream of Fibonacci numbers:

sfib = {0, 1, 1, 2, 3, 5, 8, 13, 21, . . . }

We denote the nth value of the stream s as s(n), and
the first value in a sequence s as s(0). For exam-
ple, for sfib we have that sfib(0) = 0, sfib(1) = 1,
sfib(2) = 1, and so forth.

Copilot declarations provide an optional type and
a definition for an identifier. For example,

x :: Stream Int32

x = 5

gives the identifier x the type Stream Int32 and de-
fines x to be 5. All Copilot expressions have the type
Stream t, where t is some base-type for the stream
(we discuss Copilot types in Section 4.4).

Constants as well as arithmetic, boolean, and re-
lational operators are lifted to work pointwise on
streams:

x :: Stream Int32

x = 5 + 5

y :: Stream Int32

y = x * x

z :: Stream Bool

z = x == 10 && y < 200

Here the streams x, y, and z are simply constant
streams such that

x yields {10, 10, 10, . . . }
y yields {100, 100, 100, . . . }
z yields {T, T, T, . . . }

Two types of temporal operators are provided, one for
delaying streams and one for looking into the future
of streams:

(++) :: [a] -> Stream a -> Stream a

drop :: Int -> Stream a -> Stream a

Here xs ++ s prepends the list xs at the front of the
stream s. For example the stream w is defined as
follows, given our previous definition of x:

w = [5,6,7] ++ x

evaluates to the sequence {5, 6, 7, 10, 10, 10, . . . }. The
expression drop k s skips the first k values of the
stream s, returning the remainder of the stream. For
example we can skip the first two values of w:

u = drop 2 w

which yields the sequence {7, 10, 10, 10, . . . }.
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4.1 Streams as Lazy-Lists

A key design choice in Copilot is that streams should
mimic lazy lists. In Haskell, the lazy-list of natural
numbers can be programmed like this:

nats_ll :: [Int32]

nats_ll = [0] ++ zipWith (+) (repeat 1) nats_ll

where zipWith is a higher-order function that takes a
function and two lists as parameters and produces a
new list formed by applying the given function to the
elements of the two input lists at the same position
in each list. The Haskell function repeat creates an
infinite list with each element having the value of the
first parameter. As both constants and arithmetic
operators are lifted to work pointwise on streams in
Copilot, there is no need for zipWith and repeat

when specifying the stream of natural numbers:

nats :: Stream Int32

nats = [0] ++ (1 + nats)

In the same manner, the lazy-list of Fibonacci num-
bers can be specified as follows:

fib_ll :: [Int32]

fib_ll = [1, 1] ++ zipWith (+) fib_ll (drop 1 fib_ll)

In Copilot we simply throw away zipWith:

fib :: Stream Int32

fib = [1, 1] ++ (fib + drop 1 fib)

Copilot specifications must be causal, informally
meaning that stream values cannot depend on future
values. For example, the following stream definition
is allowed:

f :: Stream Word64

f = [0,1,2] ++ f

g :: Stream Word64

g = drop 2 f

But if instead g is defined as g = drop 4 f, then
the definition is disallowed. While an analogous
stream is definable in a lazy language, we bar it in
Copilot, since it requires future values of f to be gen-
erated before producing values for g. This is not pos-
sible since Copilot programs may take inputs in real-
time from the environment (see Section 4.5).

4.2 Functions on Streams

Given that constants and operators work pointwise
on streams, we can use Haskell as a macro-language
for defining functions on streams. The idea of us-
ing Haskell as a macro language is powerful since
Haskell is a general-purpose higher-order functional
language.

Example 4.1 We define the function, even, which
given a stream of integers returns a boolean stream
which is true whenever the input stream contains an
even number, as follows:

even :: Stream Int32 -> Stream Bool

even x = x ‘mod‘ 2 == 0

Applying even on nats (defined above) yields the se-
quence {T, F, T, F, T, F, . . . }.

If a function is required to return multiple results,
we simply use plain Haskell tuples:

Example 4.2 We define complex multiplication as
follows:

mul_comp

:: (Stream Double, Stream Double)

-> (Stream Double, Stream Double)

-> (Stream Double, Stream Double)

(a, b) ‘mul_comp‘ (c, d) = (a * c - b * d, a * d + b * c)

Here a and b represent the real and imaginary part of
the left operand, and c and d represent the real and
imaginary part of the right operand.

4.3 Stateful Functions

In addition to pure functions, such as even and
mul comp, Copilot also facilitates stateful functions.
A stateful function is a function which has an inter-
nal state, e.g. as a latch (as in electronic circuits) or
a low/high-pass filter (as in a DSP).

Example 4.3 We consider a simple latch, as de-
scribed in [17], with a single input and a boolean state.
Whenever the input is true the internal state is re-
versed. The operational behavior and the implemen-
tation of the latch is shown in Figure 1.1

1In order to use conditionals (if-then-else’s) in Copilot spec-
ifications, as in Figures 1 and 2, the GHC language extension
RebindableSyntax must be set on.
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xi: yi−1: yi:
F F F
F T T
T F T
T T F

latch :: Stream Bool -> Stream Bool

latch x = y

where

y = if x then not z else z

z = [False] ++ y

Figure 1: A latch. The specification is provided at the left and the implementation is provided at the right.

inci: reseti: cnti:
F F cnti−1

* T 0
T F cnti−1 + 1

counter :: Stream Bool -> Stream Bool

-> Stream Int32

counter inc reset = cnt

where

cnt = if reset then 0

else if inc then z + 1

else z

z = [0] ++ cnt

Figure 2: A resettable counter. The specification is provided at the left and the implementation is provided
at the right.

Example 4.4 We consider a resettable counter with
two inputs, inc and reset. The input inc incre-
ments the counter and the input reset resets the
counter. The internal state of the counter, cnt, rep-
resents the value of the counter and is initially set to
zero. At each cycle, i, the value of cnti is determined
as shown in the left table in Figure 2.

4.4 Types

Copilot is a typed language, where types are enforced
by the Haskell type system to ensure generated C
programs are well-typed. Copilot is strongly typed
(i.e., type-incorrect function application is not possi-
ble) and statically typed (i.e., type-checking is done
at compile-time). The base types are Booleans, un-
signed and signed words of width 8, 16, 32, and 64,
floats, and doubles. All elements of a stream must
belong to the same base type. These types have in-
stances for the class Typed a, used to constrain Copi-
lot programs. The constraining type classes are listed
to the left of the => in a function definition.

We provide a cast operator

cast :: (Typed a, Typed b) => Stream a -> Stream b

that casts from one type to another. The cast opera-
tor is only defined for casts that do not lose informa-
tion, so an unsigned word-type a can only be cast to

another unsigned type at least as large as a or to a
signed word type strictly larger than a. Signed types
cannot be cast to unsigned types but can be cast to
signed types at least as large.

4.5 Interacting With the Target Pro-
gram

All interaction with the outside world is done by sam-
pling external symbols and by evoking triggers. Ex-
ternal symbols are symbols that are defined outside
Copilot and which reflect the visible state of the tar-
get program that we are monitoring. They include
variables, arrays, and functions (with a non-void re-
turn type). Analogously, triggers are functions that
are defined outside Copilot and which are evoked
when Copilot needs to report that the target program
has violated a specification constraint.

Sampling. A Copilot specification is open if de-
fined with external symbols in the sense that values
must be provided externally at runtime. To simplify
writing Copilot specifications that can be interpreted
and tested, constructs for external symbols take an
optional environment for interpretation.

External variables are defined by using the extern

construct:
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extern :: Typed a => String -> Maybe [a] -> Stream a

where a value of type Maybe a is either empty
(Nothing) or a value of type a (Just a). The func-
tion extern takes the name of an external variable
and a possible (Haskell) list of values to serve as the
“environment” for the interpreter, since in a compiled
monitor, these variable values come from the sampled
program. The interpreter generates a stream by sam-
pling the variable at each clock cycle, modeled as the
elements in the list. For example,

sumExterns :: Stream Word64

sumExterns = let ex1 = extern "e1" (Just [0..])

ex2 = extern "e2" Nothing

in ex1 + ex2

is a stream that takes two external variables e1 and
e2 and adds them. The first external variable con-
tains the infinite list [0,1,2,...] of values for use
when interpreting a Copilot specification containing
the stream. The other variable contains no environ-
ment. (sumExterns must have an environment for
both of its variables to be interpreted). If ex1 and
ex2 both were defined with the lists [0,1,2,...],
then the output of interpreting sumExterns would
be [0,2,4,...].

Sometimes, type inference cannot infer the type
of an external variable. For example, in the stream
definition

extEven :: Stream Bool

extEven = e0 ‘mod‘ 2 == 0

where e0 = extern "x" Nothing

the type of extern "x" is ambiguous, since it can-
not be inferred from a Boolean stream and we have
not given an explicit type signature. For convenience,
typed extern functions are provided, e.g., externW8
or externI64 denoting an external unsigned 8-bit
word or signed 64-bit word, respectively. In general
it is best practice to define external symbols with
top-level definitions, e.g.,

e0 :: Stream Word8

e0 = extern "e0" (Just [2,4..])

so that the symbol name and its environment can be
shared between streams.

Besides variables, external arrays and arbitrary
functions can be sampled. The external array con-
struct has the type

externArray :: (Typed a, Typed b, Integral a)

=> String -> Stream a -> Int

-> Maybe [[a]] -> Stream b

The construct takes (1) the name of an array, (2) a
stream that generates indexes for the array (of in-
tegral type), (3) the fixed size of the array, and (4)
possibly a list of lists that is the environment for the
external array, representing the sequence of array val-
ues. For example,

extArr :: Stream Word32

extArr = externArray "arr1" arrIdx size

(Just $ repeat (permutations [0,1,2]))

where

arrIdx :: Stream Word8

arrIdx = [0] ++ (arrIdx + 1) ‘mod‘ size

size = 3

extArr is a stream of values drawn from an external
array containing 32-bit unsigned words. The array is
indexed by an 8-bit variable. The index is ensured to
be less than three by using modulo arithmetic. The
environment provided produces an infinite list of all
the permutations of the list [0,1,2].2

Example 4.5 Say we have defined a lookup-table (in
C99) of a discretized continuous function that we
want to use within Copilot:

double someTable[42] = { 3.5, 3.7, 4.5, ... };

We can use the table in a Copilot specification as
follows:

lookupSomeTable :: Stream Word16 -> Stream Double

lookupSomeTable idx =

externArray "someTable" idx 42 Nothing

Given the following values for idx, {1, 0, 2, 2, 1, . . . },
the output of lookupSomeTable idx would be

{3.7, 3.5, 4.5, 4.5, 3.7, . . . }

Finally, the constructor externFun takes (1) a
function name, (2) a list of arguments, and (3) a pos-
sible list of values to provide its environment.

2The function permutations comes from the Haskell stan-
dard library Data.list.
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externFun :: Typed a => String -> [FunArg]

-> Maybe [a] -> Stream a

Each argument to an external function is given by a
Copilot stream. For example,

func :: Stream Word16

func = externFun "f" [arg e0, arg nats] Nothing

where

e0 = externW8 "x" Nothing

nats :: Stream Word8

nats = [0] ++ nats + 1

samples a function in C that has the prototype

uint16_t f(uint8_t x, uint8_t nats);

Both external arrays and functions must, like ex-
ternal variables, be defined in the target program
that is monitored. Additionally, external functions
must be without side effects, so that the monitor
does not cause undesired side-effects when sampling
functions. Finally, to ensure Copilot sampling is not
order-dependent, external functions cannot contain
streams containing other external functions or exter-
nal arrays in their arguments, and external arrays
cannot contain streams containing external functions
or external arrays in their indexes. They can both
take external variables, however.

Triggers. Triggers, the only mechanism for Copilot
streams to effect the outside world, are defined by
using the trigger construct:

trigger :: String -> Stream Bool -> [TriggerArg] -> Spec

The first parameter is the name of the external func-
tion, the second parameter is the guard which de-
termines when the trigger should be evoked, and the
third parameter is a list of arguments which is passed
to the trigger when evoked. Triggers can be combined
into a specification by using the do-notation:

spec :: Spec

spec = do

trigger "f" (even nats) [arg fib, arg (nats * nats)]

trigger "g" (fib > 10) []

let x = externW32 "x" Nothing

trigger "h" (x < 10) [arg x]

The order in which the triggers are defined is irrele-
vant.

Example 4.6 We consider an engine controller with
the following property: If the temperature rises more
than 2.3 degrees within 0.2 seconds, then the fuel
injector should not be running. Assuming that the
global sample rate is 0.1 seconds, we can define a
monitor that surveys the above property:

propTempRiseShutOff :: Spec

propTempRiseShutOff =

trigger "over_temp_rise"

(overTempRise && running) []

where

max = 500 -- maximum engine temperature

temps :: Stream Float

temps = [max, max, max] ++ temp

temp = extern "temp" Nothing

overTempRise :: Stream Bool

overTempRise = drop 2 temps > (2.3 + temps)

running :: Stream Bool

running = extern "running" Nothing

Here, we assume that the external variable temp de-
notes the temperature of the engine and the external
variable running indicates whether the fuel injector
is running. The external function over temp rise is
called without any arguments if the temperature rises
more than 2.3 degrees within 0.2 seconds and the en-
gine has not been shut off. Notice there is a latency
of one tick between when the property is violated and
when the guard becomes true.

4.6 Explicit Sharing

s1 = let x = nats + nats

in x * x

s2 = local (nats + nats)

(\x -> x * x)

Figure 3: Implicit sharing (s1) versus explicit
sharing (s2).

Copilot facilitates sharing in expressions by the local -
construct:

local

:: (Typed a, Typed b)

=> Stream a

-> (Stream a -> Stream b)

-> Stream b
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The local construct works similar to let-bindings in
Haskell. For example, from a semantic point of view,
the streams s1 and s2 in Figure 3 are equivalent.
However, by sharing expression definitions, the size
of the Copilot program can be dramatically reduced.
Printing the expressions results in something like the
following:

s1 = (nats + nats) * (nats + nats)

s2 = let x = nats + nats in

x * x

Note that in s1, because the sharing is at the Haskell
level, the expressions are inlined, resulting in replica-
tion in the resulting expression.

4.7 Extended Example: The Boyer-
Moore Majority-Vote Algorithm

In this section we demonstrate how to use Haskell
as an advanced macro language on top of Copilot
by implementing an algorithm for solving the voting
problem in Copilot.

Reliability in mission critical software is often im-
proved by replicating the same computations on sep-
arate hardware and by doing a vote in the end based
on the output of each system. The majority vote
problem consists of determining if in a given list of
votes there is a candidate that has more than half of
the votes, and if so, of finding this candidate.

The Boyer-Moore Majority Vote Algorithm [33, 23]
solves the problem in linear time and constant mem-
ory. It does so in two passes: The first pass chooses a
candidate; and the second pass asserts that the found
candidate indeed holds a majority.

Without going into details of the algorithm, the
first pass can be implemented in Haskell as shown
in Figure 4. The second pass, which simply checks
that a candidate has more than half of the votes, is
straightforward to implement and is shown in Fig-
ure 5. E.g. applying majorityPure on the string
AAACCBBCCCBCC yields C, which aMajorityPure can
confirm is in fact a majority.

When implementing the majority vote algorithm
for Copilot, we can use reuse almost all of the code
from the Haskell implementation. However, as func-
tions in Copilot are macros that are expanded at com-

pile time, care must be taken in order to avoid an
explosion in the expression size; thus, note the use of
the local construct. The Copilot implementations
of the first and the second pass are given in Figure
6 and Figure 7 respectively. Comparing the Haskell
implementation with the Copilot implementation, we
see that the code is almost identical, except for the
type signatures and the explicit sharing annotations.

5 Tools

As a framework for runtime verification, Copilot
comes with a variety of tools to support the genera-
tion of runtime monitor code as well as to assist in
assurance of the monitors. The Copilot toolchain is
depicted in Figure 8. A Copilot program is trans-
formed into the Copliot Core language via process
called reification. An interpreter providing an ex-
ecutable semantics for the Core language is pro-
vided as an integral part of the toolchain. The
interpreter can be used to prototype Copilot pro-
grams as well as for verification and validation pur-
poses. Reified programs can be printed using the cus-
tom pretty-printing tool. Currently, two back-ends
are included in the toolchain, which we describe in
Section 5.3.Both back-ends translate Copilot Core-
language programs into a Haskell-hosted embedded
domain-specific language (eDSL) for C code genera-
tion. In addition, a custom Quickcheck engine and
a test harness are provided along with support for
model checkers to aide in verifying the generated C
monitors. We will demonstrate these tools and their
usage in the remainder of this section. A more thor-
ough discussion about the verification approach can
be found in [36].

5.1 Pretty-Printing

Pretty-printing is straightforward. For some specifi-
cation spec,

prettyPrint spec

returns the specification after static macro expan-
sion. Pretty-printing can provide some indication
about the complexity of the specification to be eval-
uated. Specifications that are built by recursive
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majorityPure :: Eq a => [a] -> a

majorityPure [] = error "majorityPure: empty list!"

majorityPure (x:xs) = majorityPure’ xs x 1

majorityPure’ [] can _ = can

majorityPure’ (x:xs) can cnt =

let

can’ = if cnt == 0 then x else can

cnt’ = if cnt == 0 || x == can then succ cnt else pred cnt

in

majorityPure’ xs can’ cnt’

Figure 4: The first pass of the majority vote algorithm in Haskell.

aMajorityPure :: Eq a => [a] -> a -> Bool

aMajorityPure xs can = aMajorityPure’ 0 xs can > length xs ‘div‘ 2

aMajorityPure’ cnt [] _ = cnt

aMajorityPure’ cnt (x:xs) can =

let

cnt’ = if x == can then cnt+1 else cnt

in

aMajorityPure’ cnt’ xs can

Figure 5: The second pass of the majority vote algorithm in Haskell.

Haskell programs (e.g., the majority voting exam-
ple in Section 4.7) can generate expressions that are
large. Large expressions can take significant time to
interpret or compile.

5.2 Interpreting Copilot

The copilot interpreter is invoked as follows (e.g.
within GHCI, the GHC compiler’s interpreter for
Haskell):

GHCI> interpret 10 propTempRiseShutOff

The first argument to the function interpret is the
number of iterations that we want to evaluate. The
third argument is the specification (of type Spec)
that we wish to interpret.

The interpreter outputs the values of the argu-
ments passed to the trigger, if its guard is true, and
-- otherwise. For example, consider the following
Copilot program:

spec = do

trigger "trigger1" (even nats) [ arg nats

, arg (odd nats)]

trigger "trigger2" (odd nats) [arg nats]

where nats is the stream of natural numbers, and
even and odd are functions that take a stream and
return whether the point-wise values are even or odd,
respectively. The output of

interpret 10 spec

is as follows:

trigger1: trigger2:

(0,false) --

-- (1)

(2,false) --

-- (3)

(4,false) --

-- (5)

(6,false) --

-- (7)

(8,false) --

-- (9)

Sometimes it is convenient to observe the behavior
of a stream without defining a trigger. We can do so
declaring an observer. For example:

10



majority :: (Eq a, Typed a) => [Stream a] -> Stream a

majority [] = error "majority: empty list!"

majority (x:xs) = majority’ xs x 1

majority’ [] can _ = can

majority’ (x:xs) can cnt =

local

(if cnt == 0 then x else can) $

\ can’ ->

local (if cnt == 0 || x == can then cnt+1 else cnt-1) $

\ cnt’ ->

majority’ xs can’ cnt’

Figure 6: The first pass of the majority vote algorithm in Copilot.

aMajority :: (Eq a, Typed a) => [Stream a] -> Stream a -> Stream Bool

aMajority xs can = aMajority’ 0 xs can > (fromIntegral (length xs) ‘div‘ 2)

aMajority’ cnt [] _ = cnt

aMajority’ cnt (x:xs) can =

local

(if x == can then cnt+1 else cnt) $

\ cnt’ ->

aMajority’ cnt’ xs can

Figure 7: The second pass of the majority vote algorithm in Copilot.

spec :: Spec

spec = observer "obs" nats

can be interpreted using

interpret 5 spec

as usual. Observers can be combined in larger Copilot
programs. For example, consider the following:

spec :: Spec

spec = do

let x = externW8 "x" (Just [0..])

trigger "trigger" true [arg $ x < 3]

observer "debug_x" x

Interpreting spec as follows

interpret 10 spec

yields

trigger: debug_x:

(true) 0

(true) 1

(true) 2

(false) 3

(false) 4

(false) 5

(false) 6

(false) 7

(false) 8

(false) 9

5.3 Compiling Copilot

Compiling the engine controller from Example 4.6 is
straightforward. First, we pick a back-end to com-
pile to. Currently, two back-ends are implemented,
both of which generate constant-time and constant-
space C code. One back-end is called copilot-c99 and
targets the Atom language,3 originally developed by
Tom Hawkins at Eaton Corp. for developing control
systems. The second back-end is called copilot-sbv
and targets the SBV language4, originally developed
by Levent Erkök. SBV is primarily used as an inter-
face to SMT solvers [6] and also contains a C-code
generator. Both languages are open-source.

3http://hackage.haskell.org/package/atom
4http://hackage.haskell.org/package/sbv
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Interpreter

Copilot Libraries
Copilot Language

Copilot Core Pretty Printer

Atom Back-End SBV Back-End
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DSL-specific
type-checking

Translation

Evaluation

QuickCheck
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Figure 8: The Copilot toolchain.

The two back-ends are installed with Copilot, and
they can be imported, respectively, as

import Copilot.Compile.C99

and

import Copilot.Compile.SBV

After importing a back-end, the interface for com-
piling is as follows:5

reify spec >>= compile defaultParams

(The compile function takes a parameter to rename
the generated C files; defaultParams is the default,
in which there is no renaming.)

The compiler now generates two files:

• “copilot.c” —

• “copilot.h” —

5Two explanations are in order: (1) reify allows sharing in
the expressions to be compiled [19], and >>= is a higher-order
operator that takes the result of reification and “feeds” it to
the compile function.

The file named “copilot.h” contains prototypes for
all external variables, functions, and arrays, and con-
tains a prototype for the “step”-functions which eval-
uates a single iteration.

/* Generated by Copilot Core v. 0.1 */

#include <stdint.h>

#include <stdbool.h>

/* Triggers (must be defined by user): */

void over_temp_rise();

/* External variables (must be defined by user): */

extern float temp;

extern bool running;

/* Step function: */

void step();

Using the prototypes in “copilot.h” we can build a
driver as follows:

/* driver.c */

12



#include <stdio.h>

#include "copilot.h"

bool running = true;

float temp = 1.1;

void over_temp_rise()

{

printf("The trigger has been evoked!\n");

}

int main (int argc, char const *argv[])

{

int i;

for (i = 0; i < 10; i++)

{

printf("iteration: %d\n", i);

temp = temp * 1.3;

step();

}

return 0;

}

Running “gcc copilot.c driver.c -o prop” gives a
program “prop”, which when executed yields the fol-
lowing output:

iteration: 0

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

The trigger has been evoked!

iteration: 8

The trigger has been evoked!

iteration: 9

The trigger has been evoked!

5.4 QuickCheck

QuickCheck [14] is a library originally developed for
Haskell such that given a property, it generates ran-
dom inputs to test the property. We provide a similar
tool for checking Copilot specifications. Currently,
the tool is implemented to check the copilot-c99 back-
end against the interpreter. The tool generates a ran-
dom Copilot specification, and for some user-defined
number of iterations, the output of the interpreter is

compared against the output of the compiled C pro-
gram. The user can specify weights to influence the
probability at which expressions are generated.

The copilot QuickCheck tool is installed with Copi-
lot and assuming the binary is in the path, it is exe-
cuted as

copilot-c99-qc

5.5 Verification

“Who watches the watchmen?” Nobody. For this
reason, monitors in ultra-critical systems are the last
line of defense and cannot fail. Here, we outline
our approach to generate high-assurance monitors.
First, as mentioned, the compiler is statically and
strongly typed, and by implementing an eDSL, much
of the infrastructure of a well-tested Haskell imple-
mentation is reused. We have described our cus-
tom QuickCheck engine. We have tested millions of
randomly-generated programs between the compiler
and interpreter with this approach.

Additionally, Copilot includes a tool to generate a
driver to prove the equivalence between the copilot-
c99 and copilot-sbv back-ends that each generate
C code (similar drivers are planned for future back-
ends). To use the driver, first import the following
module:

import qualified Copilot.Tools.CBMC as C

(We import it using the qualified keyword to ensure
no name space collisions.) Then in GHCI, just like
with compilation, we execute

reify spec >>= C.genCBMC C.defaultParams

This generates two sets of C sources, one compiled
through the copilot-c99 back-end and one through
the copilot-sbv back-end. In addition, a driver (that
is, a main function) is generated that executes the
code from each back-end. The driver has the follow-
ing form:

int main (int argc, char const *argv[])

{

int i;

for (i = 0; i < 10; i++)

{
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sampleExterns();

atm_step();

sbv_step();

assert(atm_i == sbv_i);

}

return 0;

}

This driver executes the two generated programs for
ten iterations, which is the default value. That de-
fault can be changed; for example:

reify spec >>=

C.genCBMC C.defaultParams {C.numIterations = 20}

The above executes the generated programs for 20
executions.

The verification depends on an open-source model-
checker for C source-code originally developed at
Carnegie Mellon University [15]. A license for the
tool is available.6 CBMC must be downloaded and
installed separately; CBMC is actively maintained at
the time of writing, and is available for Windows,
Linux, and Mac OS.

CBMC symbolically executes a program. With dif-
ferent options, CBMC can be used to check for arith-
metic overflow, buffer overflow/underflow, floating-
point NaN results, and division by zero. Addition-
ally, CBMC can attempt to verify arbitrary assert()

statements placed in the code. In our case, we wish
to verify that on each iteration, for the same input
variables, the two back-ends have the same state.

CBMC proves that for all possible inputs, the two
programs have the same outputs for the number of
iterations specified. The time-complexity of CBMC is
exponential with respect to the number of iterations.
Furthermore, CBMC cannot guarantee equivalence
beyond the fixed number of iterations.

After generating the two sets of C source files,
CBMC can be executed on the file containing the
driver; for example,

cbmc cbmc_driver.c

6http://www.cprover.org/cbmc/LICENSE. It is the user’s
responsibility to ensure their use conforms to the license.

6 Case Studies: Monitoring
Avionics

We describe two case studies in which we have used
Copilot monitors.

6.1 Pitot Tube Fault-Tolerance

In commercial aircraft, airspeed is commonly deter-
mined using pitot tubes that measure air pressure.
The difference between total and static air pressure
is used to calculate airspeed. Pitot tube subsystems
have been implicated in numerous commercial air-
craft incidents and accidents, including the 2009 Air
France crash of an A330 [4], motivating our case
study.

We have developed a platform resembling a real-
time air speed measuring system with replicated pro-
cessing nodes, pitot tubes, and pressure sensors to
test distributed Copilot monitors with the objective
of detecting and tolerating software and hardware
faults, both of which are purposefully injected. The
platform and its inclusion in an Edge 540 test air-
craft, is depicted in Figure 9.

The high-level procedure of our experiment is as
follows: (1) we sense and sample air pressure from the
aircraft’s pitot tubes; (2) apply a conversion and cali-
bration function to accommodate different sensor and
analog-to-digital converter (ADC) characteristics; (3)
sample the C variables that contain the pressure val-
ues on a hard real-time basis by Copilot-generated
monitors; and (4) execute Byzantine fault-tolerant
voting and fault-tolerant averaging on the sensor val-
ues to detect arbitrary hardware component failures
and keep consistent values among good nodes.

We sample five pitot tubes, attached to the wings
of an Edge 540 subscale aircraft. The pitot tubes
provide total and static pressure that feed into
one MPXV5004DP and four MPXV7002DP differ-
ential pressure sensors (Figure 10). The process-
ing nodes are four STM 32 microcontrollers featur-
ing ARM Cortex M3 cores which are clocked at
72 Mhz (the number of processors was selected with
the intention of creating applications that can toler-
ate one Byzantine processing node fault [29]). The
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Figure 9: Stack configuration in the Edge 540 aircraft.

MPXV5004DP serves as a shared sensor that is read
by each of the four processing nodes; each of the four
MPXV7002DP pressure sensors is a local sensor that
is only read by one processing node.

Monitors communicate over dedicated point-to-
point bidirectional serial connections. With one
bidirectional serial connection between each pair of
nodes, the monitor bus and the processing nodes form
a complete graph. All monitors on the nodes run in
synchronous steps; the clock distribution is ensured
by a master hardware clock. (The clock is a single
point of failure in our test hardware implementation;
a fully fault-tolerant system would execute a clock-
synchronization algorithm.)

Each node samples its two sensors (the shared sen-
sor and a local one) at a rate of 16Hz. The micro-
controller’s timer interrupt that updates the global
time also periodically calls a Copilot-generated mon-
itor which samples the ADC C-variables out of the
monitored program, conducts Byzantine agreements,
and performs fault-tolerant votes on the values. Af-
ter a complete round of sampling, agreements, and
averaging, an arbitrary node collects and logs inter-
mediate values of the process to an SD-card.

We tested the monitors in five flights. In each flight
we simulated one node having a permanent Byzantine

fault by having one monitor send out pseudo-random
differing values to the other monitors instead of the
real sampled pressure. We varied the number of in-
jected benign faults by physically blocking the dy-
namic pressure ports on the pitot tubes. In addition,
there were two “control flights”, leaving all tubes un-
modified.

The executed sampling, agreement, and averaging
is described as follows:

1. Each node samples sensor data from both the
shared and local sensor.

2. Each monitor samples the C variables that con-
tain the pressure values and broadcasts the val-
ues to every other monitor, then relays each re-
ceived value to monitors the value did not origi-
nate from.

3. Each monitor performs a majority vote (as de-
scribed in Section 4.7) over the three values it
has for every other monitor of the shared sen-
sor (call this maji(S) for node i) and the local
sensor (call this maji(L) for node i).

4. Copilot-generated monitors then compute a
fault-tolerant average. In our implementation,
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Figure 10: Hardware stack and pitot tube configuration.

we remove the least and greatest elements from
a set, and average the remaining elements. For
each node i and nodes j 6= i, fault-tolerant
averages are taken over four-element sets: (1)
ftAvg(S) = {Si} ∪ {majj(S)} where Si is i’s
value for the shared sensor.

5. Another fault-tolerant average is taken over a
five-element set, where the two least and two
greatest elements are removed (thus returning
the median value). The set contains the fault-
tolerant average over the shared sensor described
in the previous step ( ftAvg(S) ), the node’s lo-
cal sensor value Li, and {majj(L)}, for j 6= i.
Call this final fault-tolerant average ftAvg.

6. Finally, time-stamps, sensor values, majorities
and their existences are collected by one node
and recorded to an SD card for off-line analysis.

The graphs in Figure 11 depict four scenarios in
which different faults are injected. In each scenario,
there is a software-injected Byzantine faulty node
present. What varies between the scenarios are the
number of physical faults. In Figure 11(a), no physi-
cal faults are introduced; in Figure 11(b), one benign
fault has been injected by putting a cap over the total
pressure probe of one local tube.7 In Figure 11(c), in

7Tape left on the static pitot tube of Aeroperú Flight 603
in 1996 resulted in the death of 70 passengers and crew [28].

addition to the capped tube, adhesive tape is placed
over another tube, and in Figure 11(d), the tape is
placed over two tubes in addition to the capped tube.

The plots depict the pressure difference samples
logged at each node and the voted and averaged out-
come of the 3 non-faulty processing nodes. The gray
traces show the recorded sensor data S1, . . . , S4, and
the calibrated data of the local sensors L1, . . . , L4.
The black traces show the final agreed and voted val-
ues ftAvg of the three good nodes.

In every figure except for Figure 11(d), the black
graphs approximate each other, since the fault-
tolerant voting allows the nodes to mask the faults.
This is despite wild faults; for example, in Fig-
ure 11(b), the cap on the capped tube creates a
positive offset on the dynamic pressure as well as
turbulences and low pressure on the static probes.
At 1.2E7 clock ticks, the conversion and calibration
function of the stuck tube results in an underflow-
ing value. In Figure 11(d), with only two non-faulty
tubes out of five left, ftAvg is not able to choose
a non-faulty value reliably anymore. All nodes still
agree on a consistent—but wrong—value.

Fault-tolerant monitoring of real-time systems can
relieve the monitored underlying implementation of
adding in and executing fault-tolerant variants of the
executed algorithms (but does not exclude double-
checking such). It can be used as a way to simplify
the software assurance effort, while still having fault-
tolerance separately added through monitors.
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(a) (b)

(c) (d)

Figure 11: Logged pressure sensor, voted and averaged data.

6.2 MAVLink Monitoring

The MAVLink (Micro Air Vehicle Link8) protocol
consists of a set of messages to be sent between small
air vehicles and ground stations. Although it can be
used to send messages on parameters like wind speed
or attitude, the usual applications of MAVLink are in
avionic systems with an autopilot. MAVLink is used
by ground-station software packages, like QGround-
Control, Happy Killmore Ground Control Station,
the Ardupilot Mega Planner and autopilot systems
like PIXHAWK or the Ardupilot Mega. MAVLink
commands and messages of version 2 of the protocol
are specified in XML files that contain common and

8http://qgroundcontrol.org/mavlink/start

groundstation/autopilot specific packet definitions.
We have implemented portions of the common set

MAVLink protocol as Copilot monitors and have ex-
ecuted them on binary MAVLink log files. Addition-
ally, we have executed the monitor in real-time on
three flights of an Edge R540T subscale aircraft to
analyze MAVLink packets from an Ardupilot Mega.
The configuration in the Edge is depicted in Fig-
ure 12. In the center is a Beagleboard xM that ex-
ecutes the monitors described below. On the right-
hand side, inside the silver box, is an Arduino Mega
board that runs the Ardupilot autopilot. The red
board below the silver box is a Seeeduino, that is
used as a serial hub that connects the XBee radio to
the groundstation, the Beagleboard and the Ardupi-
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Figure 12: Beagle Board executing the MAVLink monitor.

lot.

The layout of a packet frame in MAVLink version is
listed in Table 1. The example column lists a packet
of the MAVLink heartbeat type (message id 0x00

and payload length three) as it was captured from
a ZigBee link between an ArduPilot Mega and an
ArduPilot Mega Planner groundstation. Heartbeat
messages are sent in regular intervals and are used to
keep track of different vehicles as they appear and go
out of reception of receiving nodes. The three pay-
load bytes stand for the type of aircraft (0x01 - fixed
wing), the type of the autopilot (0x03 - Ardupilot)
and the MAVLink version (0x02).

According to Table 1, we define some protocol spe-
cific sizes and limits, next to their constant Copilot
stream versions:

startSequenceSize = 1

startSequenceSize’ = startSequenceSize :: Stream Word32

headerSize = 6

headerSize’ = headerSize :: Stream Word32

crcSize = 2

crcSize’ = crcSize :: Stream Word32

To analyze incoming packets, we define an input
stream that has a long enough initial array to keep
one MAVLink packet of maximum length.9 In each
tick, the next MAVLink byte is sampled from the
C variable extern input and shifted into the array
from the right:

-- The input stream, allows dropping up to

-- the maximum packet length

inputStream :: Stream Word32

inputStream = replicate maxPacketLength 0 ++ externInput

-- The actual MAVLink input

externInput :: Stream Word32

externInput = extern "extern_input" Nothing

Further, we define where in a packet to access
header values and payload by defining a stream for

9At the time of this writing, Copilot did not handle streams
of arrays. Modeling the protocol as a stream of Word32s, as we
explain herein, is inefficient, resulting in a large specification.
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Table 1: MAVLink packet fields.

Byte Index Content Value Example
0 Packet start sign 0x55, ASCII: U 0x55
1 Payload length n 0− 255 0x03
2 Packet sequence 0− 255 0x13
3 System ID 1− 255 0x01
4 Component ID 0− 255 0x01
5 Message ID 0− 255 0x00

6 to n + 6 Payload data 0− 255 per byte 0x01, 0x03, 0x02
n + 7 to n + 8 Checksum over 0− 65535 0x32, 0xb7

bytes 1..(n+6)

each field, dropping values from the inputStream ac-
cording to Table 1.

payloadLength = drop 1 inputStream

packetLength = headerSize’ + payloadLength

+ crcSize’

packetSequenceNumber = drop 2 inputStream

systemID = drop 3 inputStream

componentID = drop 4 inputStream

messageID = drop 5 inputStream

payload = drop 6 inputStream

The MAVLink checksum is a modification of the
checksum used in the X.25 protocol; it uses the same
calculation as the X.25 cyclic redundancy check, but
does not invert the final remainder. A Copilot func-
tion that takes an initial remainder r and 8 bits of the
input stream d, then calculates a new remainder by
dividing d by the X.25 polynomial x16 +x12 +x5 + 1,
is listed below:

mavlinkCrcUpdate :: Stream Word32 -> Stream Word32

-> Stream Word32

mavlinkCrcUpdate r d =

let d’ = d .&. 0xff

tmp = d’ .^. ( r .&. 0xff )

tmp’ = tmp .^. ( shiftL tmp 4 .&. 0xff )

in foldl1 (.^.) [ shiftR r 8, shiftL tmp’ 8

, shiftL tmp’ 3, shiftR tmp’ 4 ]

where .&. and .^. denote bitwise and, and exclusive
or operators respectively.

Left-folding the mavlinkCrcUpdate function with
an initial value crcInit = 0xffff into the initial ar-
ray, starting from the second packet byte up to the

maximum packet length (and keeping the intermedi-
ate CRC results), is achieved by the Copilot nscanl

library function.10

crcStreams :: [ Stream Word32 ]

crcStreams = nscanl

( maxPacketLength - startSequenceSize )

mavlinkCrcUpdate crcInit

( drop 1 inputStream )

The crcStreams function returns a Haskell list of
Copilot streams. A stream at position i in the list
calculates the CRC value over the prefix of length i
of the inputStream, excluding the possible start sign.

Since Copilot is a synchronous language, with each
new input byte sampled from the C program in a tick,
all stream values will be recalculated. In each tick we
can check if we have a possible valid packet candidate.
The CRC of a valid packet in the crcStreams list at
the position after a suspected packet CRC will be
zero:

crcIndex :: Stream Word32

crcIndex = headerSize’ + payloadLength

- startSequenceSize’ + crcSize’

crc :: Stream Word32

crc = crcStreams !! crcIndex

crcValid :: Stream Bool

crcValid = crc == 0

10Copilot’s nscanl is a fixed-length (of n) analogue of the
Haskell scanl function in Haskell, such that scanl f z [x1,

x2, ...] == [z, z ‘f‘ x1, (z ‘f‘ x1) ‘f‘ x2, ...].
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Given the definitions to check the CRC values of
a packet, a boolean stream that signals valid packet
candidates can be given by two more definitions 11:

startMatch :: Stream Bool

startMatch = inputStream == 0x55

validPacket :: Stream Bool

validPacket = startMatch && crcValid

The communication between an autopilot and a
ground-station runs over a ZigBee link. In case of
dropped radio packets, there is no guarantee a re-
ceiver will not (on reconnection of the radio link) in-
terpret a wrong packet. The start sign 0x55 may
appear anywhere in a packet and a following length-
/CRC pair can form a valid “ghost packet” (i.e.,
a packet that is contained within an actually sent
packet or that spans multiple actually sent packets.

We define a stream called analyzingPacket, that
signals a running analysis of a valid packet as:

-- The analyzingPacket signals True from start to the end

-- of a valid packet

analyzingPacket = analyzingPacket’ > 1

where analyzingPacket’ = [ 0 ] ++ mux

( validPacket && not analyzingPacket )

-- set the counter

( ( drop 1 inputStream

+ headerSize’

+ crcSize’ )

-- count down the packet length

( mux ( analyzingPacket’ == 0 )

0

( analyzingPacket’ - 1 ) )

The analyzingPacket stream uses a helper stream
analyzingPacket’ as a counter, analyzingPacket

stays true as long as the counter is greater zero. If we
are not yet analyzing a packet and the validPacket

signal becomes true, the counter is set to the value
of the packet length field plus header and field CRC
sizes. In any other case, the counter decrements until
zero on each tick.

We then can recognize ghost packets by check-
ing for valid packets that appear while we are in

11We could incorporate further analysis of the packets as
well, like checking for the correct length of certain MAVLink
packet types or inspection of the payload. Some of these tests
could be derived from the MAVLink XML protocol description
automatically.

the process of analyzing a packet, provided that
analyzingPacket starts out on an actually sent
packet and not on a ghost packet:

ghostPacket = analyzingPacket && validPacket

We ran the ghostPacket monitor on about 660
megabytes of binary MAVLink logs recorded during
several months of hardware-in-the-loop testing of an
Ardupilot Mega in an Edge 540T subscale model.
The ghostPacket monitor fired a trigger 32 times.

On a lost radio connection that sets in after the
dropout, the receiver has a chance to misinterpret
such a ghost packet. For a receiver not to accept a
ghost packet, it can relate the sequence numbers of
packets to its actual system time. If such measures
are not implemented, an autopilot may receive com-
mands over MAVLink that might lead to unexpected
behaviors.

MAVLink carries a number of sensor values. We
wrote a simple monitor that analyses the payload of
GLOBAL POSITION INT messages to retrieve a trajec-
tory of flight:

packetWithID mId = validPacket && messageID == mId

packetWithIDLength mId pLen =

packetWithID mId && payloadLength == pLen

-- the global position in integer values has

-- message id 73 and payload length 18

globalPositionINT = packetWithIDLength 73 18

The first 12 bytes of the payload of a
GLOBAL POSITION INT messages are interpreted as
three Word32 values of latitude, longitude and alti-
tude 12. Reconstruction of the position is done by 3
streams, globalPositionIntLat, globalPositionIntLon
and globalPositionIntAlt:

s3 = ( .<<. ( constant 24 :: Stream Word32 ) )

s2 = ( .<<. ( constant 16 :: Stream Word32 ) )

s1 = ( .<<. ( constant 8 :: Stream Word32 ) )

globalPositionIntLat :: Stream Word32

globalPositionIntLat = let l1 = drop 0 payload

l2 = drop 1 payload

l3 = drop 2 payload

l4 = drop 3 payload

12Latitude and longitude in degrees, altitude in meters.
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in s3 l1 + s2 l2 + s1 l3 + l4

globalPositionIntLon :: Stream Word32

globalPositionIntLon = let l1 = drop 4 payload

l2 = drop 5 payload

l3 = drop 6 payload

l4 = drop 7 payload

in s3 l1 + s2 l2 + s1 l3 + l4

globalPositionIntAlt :: Stream Word32

globalPositionIntAlt = let l1 = drop 8 payload

l2 = drop 9 payload

l3 = drop 10 payload

l4 = drop 11 payload

in s3 l1 + s2 l2 + s1 l3 + l4

where .<<. denotes the left shift operator that takes
two streams as parameters.

The streams become parameters of a globalPosi-
tionInt trigger:

trigger "globalPositionINT" globalPositionIN

[ arg globalPositionIntLat

, arg globalPositionIntLon

, arg globalPositionIntAlt ]

The globalPositionINT trigger C function logs each
set of three values. We ran the monitors on three
flights and plotted the trajectories.

Consider the two graphs shown in Figure 13 and 14,
respectively, which graph the latitude, longitude, and
altitude of the aircraft during two flights. Compar-
ing the graphs, in Figure 14, the graph has small dis-
crete “steps” resulting from the quantization error
that is caused by the GPS receiver losing tracking,
updating positions at a lower rate. (The disturbance
was caused by an unknown condition, but we were
nonetheless able to monitor its effect.) The MAVLink
GLOBAL POSITION INT packet type we analyzed con-
tains latitude and longitude as given by the GPS and
altitude as a combination of barometric altitude and
GPS altitude. Because the latitude and longitude
are not updated at the usual rate, the most recently-
seen values together with the changed altitude (the
altitude changes because–while GPS altitude is not
updated–barometric altitude is) and causes the stair
effect.

6.3 Discussion

The purpose of the case studies is to test the fea-
sibility of using Copilot for avionics monitoring. In
the first case-study, Copilot-generated monitors are
used to implement fault-tolerance mechanisms to de-
compose the problem of implementing a sensor sys-
tem and implementing fault-tolerance. In the second,
Copilot allows us to synthesize protocol parsers and
analyzers.

To give a sense of code-sizes, in the pitot tube mon-
itoring case-study, the Copilot agreement monitor is
around 200 lines, and the generated real-time C code
is nearly 4,000 lines. In the MAVLink case-study,
the Copilot monitor is around 300 lines, with an ad-
ditional 350 lines of support C code, implementing
triggers and the CRC.13 The Copilot monitor gener-
ates about 2500 lines of real-time C code.

7 Related Work

Copilot shares similarities with other RV systems
that emphasize real-time or distributed systems.
Krüger, Meisinger, and Menarini describe their work
in synthesizing monitors for a automobile door-
locking system [27]. While the system is distributed,
it is not ultra-reliable and is not hard real-time or
fault-tolerant via hardware replication. The imple-
mentation is in Java and focuses on the aspect-
oriented monitor synthesis, similar in spirit to Java-
MOP [12]. Syncraft is a tool that takes a dis-
tributed program (specified in a high-level modeling
language) that is fault-intolerant and given some in-
variant and fault model, transforms the program into
one that is fault-tolerant (in the same modeling lan-
guage). [8].

There are few instances of RV focused on C code.
One exception is Rmor, which generates constant-
memory C monitors [21]. Rmor does not address
real-time behavior or distributed system RV, though.

Research at the University of Waterloo also investi-
gates the use of time-triggered RV (i.e., periodic sam-
pling). Unlike with Copilot, the authors do not make

13When streams of arrays are implemented in Copilot, the
CRC can be derived from a Copilot specification.
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Figure 13: Positional data for flight 1.

Figure 14: Positional data for flight 2.
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the assumptions that the target programs are hard
real-time themselves, so a significant portion of the
work is devoted to developing the theory of efficiently
monitoring for state changes using time-triggered RV
for arbitrary programs, particularly for testing [18, 9].
On the other hand, the work does not address issues
such as distributed systems, fault-tolerance, or mon-
itor integration.

With respect to work outside of RV, other research
also addresses the use of eDSLs for generating em-
bedded code. Besides Atom [22], which we use as
a back-end, Feldspar is an eDSL for digitial signal
processing [5]. Copilot is similar in spirit to other
languages with stream-based semantics, notably rep-
resented by the Lustre family of languages [32]. Copi-
lot is a simpler language, particularly with respect to
Lustre’s clock calculus, focused on monitoring (as op-
posed to developing control systems). Copilot can be
seen as an generalization of the idea of Lustre’s “syn-
chronous observers” [20], which are Boolean-valued
streams used to track properties about Lustre pro-
grams. Whereas Lustre uses synchronous observers
to monitor Lustre programs, we apply the idea to
monitoring arbitrary periodically-scheduled real-time
systems. The main advantages of Copilot over Lus-
tre is that Copilot is implemented as an eDSL, with
the associated benefits; namely Haskell compiler and
library reuse the ability to define polymorphic func-
tions, like the majority macro in Section 4.7, that
get monomorphised at compile-time.

8 Conclusions and Remaining
Challenges

Ultra-critical systems need RV. Our primary goals in
this paper are to (1) motivate this need, (2) describe
one approach for RV in the ultra-critical domain, (3)
and present evidence for its feasibility.

The approach we have described in this report is
not without shortcomings, which present opportuni-
ties for future research.

eDSL efficiency. First, we have demonstrated
that the embedded DSL approach is powerful, turn-

ing regular programming on its head: while Copi-
lot is simple, its macro language is a higher-order
functional language! One disadvantage of this ap-
proach is that with a powerful macro language, it
is easy to build up large expressions—much larger
than would be built in a conventional programming
language. For example, the Boyer-Moore voting al-
gorithm described in Section 4.7 is compiled into a
single Copilot expression. The use of explicit shar-
ing (Section 4.6) reduces the cost of computation by
ensuring sub-expressions are not needlessly recom-
puted, but if the sub-expressions themselves are ex-
pensive to compute, the entire expression becomes
expensive. This is analogous to a standard compiler
inlining every function, which would result in infea-
sible code-size.

Techniques to improve the efficiency of evaluating
embedded domain-specific languages (eDSLs) and to
transfer “expression sharing” from the host language
to the DSL language are needed. Fortunately in our
domain, monitoring code is terse, in general.

Assurance The lightweight approach to monitor
assurance discussed in Section 5 is described in more
detail in [36]. The current framework for front-
end/back-end testing is built on Quickcheck and
model-checking, which does not provide coverage
testing capability. Given the criticality of the moni-
tors, DO-178 [37] would require that MC/DC testing
be performed on them if they were to be employed
in industrial avionics. Adding this capability to the
toolchain is a challenge for future work.

Scheduling monitors. In the experiments de-
scribed in Section 6, we use hardware interrupts to
ensure monitors run at fixed intervals. This technique
works in practice and obviates the need for an under-
lying operating system to handle scheduling. How-
ever, we must ensure that monitors execute quickly
(so that the monitored system does not miss other
interrupts), and we need to ensure that the monitor
has been given sufficient time to execute. With the
current set of code generators, worst-case execution
time is easier to compute, as there is just one control-
path through the code (that is, worst-case execution
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time is equal to nominal execution time).
Safety-Critical hard real-time systems typically

employ real-time operating systems (RTOS) to man-
age the schedule. Copilot has been ported to an AR-
INC 653 [2, 3] compliant RTOS and experiments are
being planned to test applications being monitored
by Copilot programs, where they are both scheduled
by the OS using algorithms such as rate-monotonic
scheduling.

The only model of time in Copilot monitors, like
other synchronous languages, is the tick. The tick
is an abstract model of time that gets mapped to a
real-time duration by the underlying hardware. The
duration of a tick matters when specifying monitors:
the property

The value of x must satisfy -0.5 <= x - x’

<= 0.5, where x’ is the value of x exactly
one second ago.

requires building a stream of values. If a tick is one
second long, then the specification

prop = (x - x’) <= 5 && (x - x’) <= (-5)

where

x = [0] ++ e0

x’ = drop 1 x

e0 = externI32 "x" Nothing

If a tick is a half-second, we must use drop 2 ...,
and so on. Thus, monitors may be hardware/sched-
uler dependent. It would help the specifier to lift the
abstraction level, so she can write properties in terms
of real-time.

Other language features. In analyzing protocol
streams, reconstructing values out of the payload of a
packet from incoming bytes is necessary. Copilot cur-
rently lacks casting operations to do this. Adding a
general set of casting functions that includes different
byte orders, bit orders and number representations
would help on monitoring protocols.

Steering. We have not addressed the steering
problem of how to address faults once they are de-
tected. Steering is critical at the application level;
for example, if an RV monitor detects that a con-
trol system has violated its permissible operational
envelope.

Faults. We have built a system to detect both
hardware and software (logical) faults. Stochastic
methods might be used to distinguish random hard-
ware faults from systematic faults, as the steering
strategy for responding to each differs [40].

Conclusions. Research developments in RV have
potential to improve the reliability of ultra-critical
systems. Research into runtime monitoring for
hard real-time distributed systems has been under-
represented in the community, but we hope a grow-
ing number of RV researchers address this application
domain.
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