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Abstract. We propose a structured rendering for higher-order logic
(HOL) to make specifications more readable. Furthermore, we present
a freely-available parser and pretty-printer that implements these ideas,
which we call BeautifHOL. We conclude by describing possible exten-
sions to our proposal and motivate the need for formatting standards for
formal specifications, generally.

1 Introduction

Three topics are sure to engender controversy: religion, politics, and this paper’s
subject, syntax. Despite this, my goal is to convince you that ASCII-like specifi-
cations of higher-order logic (HOL) specifications can be automatically rendered
in a style more readable than the ad-hoc formatting that verificationists typi-
cally employ. To begin, consider the following formula with the usual operator
precedence. The formula is written in an unstructured ASCII-like form using
parentheses to show precedence:

(forall a, b, c . a = b and (exists b, f. P(b, c)(f) or f(b) = a)) or not

not (forall a. exists b, d, Q . a = b and (Q(a, b) and (not (not Q(b, d))))

or P(a))

Now quick:

– What is the outermost operator in the formula?
– Is every existential quantifier within the scope of a universal quantifier?
– What is the last disjunct of the formula?

Alternatively, consider the formula in Figure 1, and using your intuition,
attempt to answer the same questions one more time. As you may have guessed,
the two formulas are the same. If you found it easier to answer the questions
about the latter formula, I invite you to continue reading.

1.1 Related Work

This paper pays homage to Leslie Lamport’s brief and under-appreciated note
entitled, “How to Write a Long Formula” [1]. Our paper emphasizes our fo-
cus on automatically rendering readable specifications (Lamport makes some



forall a, b, c.

a

= b

and exists b, f.

P( b, c )

( f )

or f( b )

= a

or not not forall a.

exists b, d, Q.

a

= b

and Q( a, b )

and not not Q( b, d )

or P( a )

Fig. 1. Rendered Formula

recommendations whereas we have implemented a pretty-printer). Additionally,
Lamport’s note primarily focuses on first-order logic with set theory whereas we
focus on HOL; we describe more additional differences in Section 2.5.

The major programming languages all have pretty-printers, also known as
code beautifiers. Large software projects have code layout standards develop-
ers are expected to follow; for example, the open-source projects FreeBSD and
GNU respectively have layout conventions [2, 3]. Indeed, pretty-printing has been
important enough to the programming language communities to research and de-
velop general-purpose pretty-printing libraries. In 1980, Oppen developed an effi-
cient imperative pretty-printing algorithm [4]. Later, Hughes describes a general-
purpose pretty-printing library in Haskell [5], which was subsequently improved
upon by Wadler [6].

In general, the same attention has not been paid to the layout of specifications
in the formal verification community. Most related work is in user interfaces.
Research in this area includes, for example, Jape, a proof assistant in which
great care is taken to make a pleasing user interface for proofs [7], and Proof
General, which is a popular generic interface to proof assistants [8]. ACL2s is
a plugin for the Eclipse developer environment to make using the ACL2 proof
assistant easier [9].

1.2 Desiderata and Contributions

Our goal is to render HOL specifications more readable by humans. We summa-
rize our specific desiderata as follows:

– Combine the intuition of infix notation with the clarity of prefix notation.



– Do not logically manipulate the formula—we are concerned with rendering,
not deduction. We do, however, depend on the associativity of conjunction
and disjunction to simplify their renderings.

– Do not depend on parentheses to clarify operator precedence (in our scheme,
we judiciously use line breaks and indentation). After just a few levels of
parentheses, formulas can become difficult to parse. Here we are inspired by
Haskell’s use of indentation to capture precedence [10].

– Provide an automated and intuitive subformula labeling scheme to ease the
reference to subformulas in substitutions and proofs.

– Achieve the above without relying on special mark-up (i.e., rendering should
not depend on coloration, special symbols, special fonts, etc.). Our motiva-
tion here is that we want a rendering that can be adapted for use in technical
papers, text editors, and theorem-prover interfaces. We do not want the user
to have to depend on special graphical interfaces.

This paper presents an approach and tool to satisfy these desiderata.
In satisfying these desiderata, the contributions in this paper include

– applying the ideas of rendering long formulas to HOL,
– publicly releasing1 a parser and pretty-printer called BeautifHOL to auto-

matically render HOL formulas in a style like in Figure 1,
– presenting a novel subformula labeling algorithm, and
– improving on Lamport’s proposed layout scheme.

1.3 Outline

In Section 2, we present by example a standard rendering for HOL as well as
make specific comparisons to Lamport’s proposal. We have implemented the
ideas presented in this paper in a tool called BeautifHOL, and this freely-available
program is briefly described in Section 3. Possible modifications and extensions
to our proposed scheme are described in Section 4, and we make concluding
remarks, including our motivation for this work, in Section 5.

2 HOL Renderings

Here we present HOL renderings by example. We begin by presenting the con-
nectives of propositional logic and then functions and relations. We then present
the quantifiers. We then describe a subformula labeling scheme and conclude
with specific comparisons with Lamport’s proposal.

We present our ideas using a specific concrete syntax for HOL that is inde-
pendent of any specific proof assistant. The inputs and outputs we present are
read in and generated by the pretty-printer described in Section 3. Although
we have chosen a specific concrete syntax for this presentation, both the input
1 Available at http://hackage.haskell.org/cgi-bin/hackage-scripts/package/

beautifHOL. Package details are available at \todo{TODO}.



syntax accepted and the rendered output are configurable to accommodate dif-
ferent input syntaxes and output renderings (see Section 3 for more details). In
the following, we show the input to our pretty-printer followed by its output in
the following form:

input

rendered output

Our parser ignores whitespace and line breaks in the input formula.
The renderings and the labeling scheme presented in Section 2.4 all hinge on

thinking of a sentence as a tree, such that operators, including quantifiers, are
nodes in the tree with one child (for negation and the quantifiers), two children
(for conjunction, disjunction, and implication), or three children (for if-then-else
sentences). The root node is the outermost operator of the sentence, and a node’s
children are its subformulas. Simple sentences (equality and relations) are at the
leaves.

2.1 Propositional Logic

We begin with the standard propositional operators: conjunction, disjunction,
and implication, and negation.

The Binary Operators Let us begin with conjunction. We indent the operands
to show they are within the scope of the operator.

P(a) and P(b)

P( a )

and P( b )

Notice that despite being infix notation, we get the clarity of prefix notation.
We can use this scheme for the binary operators disjunction and implication,
too. This rendering is applied recursively, so outermost operators are rendered
as leftmost operators. For example, consider the rendering of a formula in which
the first operator in the formula has precedence.

(P(a) or P(b)) implies P(c)

P( a )

or P( b )

implies P( c )

Now consider the rendering if the second operator has precedence. In both cases,
the formula is rendered infix and we do not require parentheses to show prece-
dence.



P(a) or (P(b) implies P(c))

P( a )

or P( b )

implies P( c )

Furthermore, like in Lamport’s scheme, if we are rendering a series of asso-
ciative operators, we can save space and improve readability by not indenting.
Consider the following conjunction:

P(a) and (P(b) or Q(b)) and P(f(3))

P( a )

and P( b )

or Q( b )

and P( f( 3 ) )

Unary Operators The scope of negation can also be shown by spacing and
indentation. For a unary operator like negation, there is no need to place the
single operand on a new line. Consider the following example:

not not P(3)

not not P( 3 )

Here is an example in which we negate a binary operator:

not (P(a) and not P(b))

not P( a )

and not P( b )

Other Expressions When specifying programs in HOL, if-then-else and let-
expressions are convenient. If-then-else expressions can be rendered like a three-
place operator. For example,

if P(a) then (P(b) and P(c)) else (P(b) or P(c))

if P( a )

then P( b )

and P( c )

else P( b )

or P( c )



We provide a conventional rendering for let-in sentences, similar to what one
finds in a programming language like Haskell [10].

let a = if P(y) then Q(f(y)) else P(y), b = Q(x) in R(a, b)

let a = if P( y )

then Q( f( y ) )

else P( y )

b = Q( x )

in R( a, b )

2.2 Functions and Relations

We have already seen some simple examples containing simple predicates above.
Functions can be hard to visually parse when they contain a lot of parameters,
their parameters have long names, or the parameters are functions, which con-
taining parameters themselves. In the implementation of BeautifHOL, if some
parameter exceeds some user-defined maximum number of characters, it auto-
matically places parameters on separate lines.

P(reallyLongConstant, b, c)

P( reallyLongConstant,

b,

c )

In the following, the function f together with its parameters exceeds our user-
defined limit of characters:

P(g(a), b, f(a, b, c, d, e, f, g, h))

P( g( a ),

b,

f( a, b, c, d, e, f, g, h ) )

Noting these two examples, consider that in programs, we put delimiters before
parameters for ease of editing—for example, when specifying constructors in a
datatype. Here, we are concerned with reading them rather than editing them, so
we put delimiters afterwards, as is conventional in mathematics. We also prefer
to place a space between parentheses and the list of parameters.

In HOL, functions are often curried. We automatically place curried param-
eters on separate lines for ease of reading.

P(a, b)(1)(42)

P( a, b )

( 1 )

( 42 )



We treat equality as an infix binary operator, like conjunction. Thus, we place
its operands on separate lines and past the function identifier to show scope with
indentation. This style works especially well if the operands are themselves large.

f(a, b, c, d) = g(1, 2, 3) and h(42, a, b, c) = h(pi, a, b, c, d)

f( a, b, c, d )

= g( 1, 2, 3 )

and h( 42, a, b, c )

= h( pi, a, b, c, d )

Complex specifications of functions become easy to parse visually:

f(g(f(2, 3)(123456789, 1)(7, 8)))(1) =

functName(anotherfunctName(1, 2, 3, 4, 5, 6, 7),

foo(h()(1, 2, f(1, 2))(3)), bar()(1))

f( g( f( 2, 3 )

( 123456789, 1 )

( 7, 8 ) ) )

( 1 )

= functName( anotherfunctName( 1, 2, 3, 4, 5, 6, 7 ),

foo( h( )

( 1, 2, f( 1, 2 ) )

( 3 ) ),

bar( )

( 1 ) )

2.3 Quantifiers

We place the sentence that is quantified on a new line, indenting past the quan-
tifier.

forall b, P. P(b)

forall b, P.

P( b )

We place quantified sentences on a new line (rather than just indenting, like
with negation) for two reasons. First, it is not unusual to have deeply nested
quantifiers in HOL specifications, and indentation improves readability (deeply
nested negations are more rare, since negation elimination is often applied im-
mediately). Second, we describe a labeling scheme in Section 2.4 that assigns
labels to subformulas. One often wishes to refer to a sentence quantified over
(for example, when referring to a sentence with instantiated variables). By plac-
ing the quantified sentence on its own line, we can render labels on the same line
as the sentence. Here is an example of nested quantifiers:



forall F, b. exists a, c. F(a, b, c)

forall F, b.

exists a, c.

F( a, b, c )

For readability and to save space, we do not to indent the quantified sentence if
the quantifiers are the same (similar to conjunction and disjunction).

exists a, b. exists c. F(a, b, c)

exists a, b.

exists c.

F( a, b, c )

2.4 Labeling Subformulas

For large formulas, labeling subformulas allows one to easily refer to a portion
of a formula. Here, we present a novel but simple labeling algorithm that assigns
labels which describe the structure of the formula.

More specifically, our approach encodes the tree structure of a sentence that
was noted at the outset of Section 2, . From a node’s label, one can determine
the node’s depth in the tree, what operand is at its parent node, its grandparent
node, and so on, and which branches from its ancestor nodes are followed to reach
the subformula. We propose that labels with meaning can help one maintain
context more easily in long complex proofs.

The labeling algorithm we propose is as follows. We assign natural numbers to
the nodes according to the following rules. First, the root node is always labeled
1. Now suppose that a node A has label n and has one or more children. Then
the children of n are labeled as follows. First, if a child is a leaf, it is unlabeled.
Otherwise, if a child is not a leaf, it is labeled according to the following rules:

1. If A is a negated sentence, then its child is labeled 10n + 0.
2. If A is a conjunction, then

– the left child is labeled 10n + 1, and
– the right child is labeled 10n + 2.

3. If A is a disjunction or implication, then
– the left child is labeled 10n + 3, and
– the right child is labeled 10n + 4.

4. If A is an if-then-else sentence, then
– the first child is labeled 10n + 5,
– the second child is labeled 10n + 6, and
– the first child is labeled 10n + 7,

5. If A is a universally-quantified sentence, then its child is labeled 10n + 8.
6. If A is an existentially-quantified sentence, then its child is labeled 10n + 9.
7. Otherwise, its children inherit the label n.



Consider some examples of formulas rendered and labeled by BeautifHOL.2

(P(a) and P(b)) or (Q(a, b) and Q(b, c))

| P( a )

13| and P( b )

1 | or Q( a, b )

14| and Q( b, c )

The outermost node is labeled 1. Because it is a disjunction, its left child ((P(a)
and P(b))) is labeled 10× 1 + 3 = 13, and its right child ((Q(a, b) and Q(b,
c))) is labeled 10 × 1 + 4 = 14. The other subformulas are not labeled, since
they are leaves. From a label alone, one can deduce the context. For example,
in the above sentence, from the label 13, one can deduce that the formula P(a)
and P(b) is the left operand, and disjunction is the outermost operator of the
formula.

In the next formula, notice that the label for the if-then-else sentence is
“distributed” across the formula. So from the label 16, we know the subformula
1 = f(a, b) is in the context of the then branch.

if P(a) then 1 = f(a, b) else P(c) and Q(b)

1 | if P( a )

1 | then 1

16| = f( a, b )

1 | else P( c )

17| and Q( b )

Sometimes printing two labels will lead to multiple labels clashing on the
same line. For example, consider the following labeled formula:

not (forall a. P(a) and Q(a))

1 | not forall a.

| P( a )

108| and Q( a )

We do not print the label for the subformula forall a. ... (with label 10) since
it would clash with the label 1 for the full formula. However, the subformula
P(a) and Q(a) is labeled 108, showing that it is the subformula of negated
universally-quantified sentence. If there is a conflict in labels, we show the label
associated with the outermost operator in conflict. Only negated subformulas
and quantified subformulas have potentially conflicted labels.

2 Subformulas are labeled by default in BeautifHOL, but they can be suppressed using
the flag --nolabels.



2.5 Comparison to Lamport’s Proposal

As we mentioned in the outset, much of our proposal is inspired by Lamport’s
original proposal for rendering first-order logic. Here we briefly look at some key
differences.

First, regarding binary operators, Lamport proposes to place each conjunct
on a new line and prefix each conjunct with the operator [1]:

and P( a )

and P( b )

and P( c )

However, doing so is both unnecessary and not strictly infix. Our proposal breaks
operands across lines, but keeps infix notation. In particular, regarding the im-
plication operator, Lamport writes, “I have not found a good general method
of writing A ⇒ B when A and B are long formulas” [1]. The problem is that
Lamport’s scheme would have us prefix each operand with an implication op-
erator, which does not work for non-associative operators, as he himself points
out. That is, if we treated implication like conjunction or disjunction under
Lamport’s scheme, for (P(a) implies P(b)) implies P(c), we would write
something like the following:

implies P(a)

implies P(b)

implies P(c)

However, without parentheses, this could be interpreted either as P(a) implies
(P(b) implies P(c)) or (P(a) implies (P(b)) implies P(c). Consequently,
Lamport suggests writing implication like

and P(a)

and P(b)

implies P(c)

which only reads well if the antecedent is small, as Lamport himself also notes.
Our choice to render implication infix and indent the antecedent just like the
consequent solves these problems. Still, with a large antecedent, Lamport be-
lieves our choice still does not read well.3 We believe the issue turns on whether
one takes the perspective of viewing a rendered formula primarily as a tree, the
root of which is on the left and the leaves are on the right, or as a formula to
be read from top to bottom. For example, recall Figure 1: for the outermost
operator (disjunction), do you begin by reading the operator (or) or its first
operand (forall a, b, c. ...)? With the first of these perspectives (the one
we take), the size of the antecedent is irrelevant.

3 Private correspondence (January 2009).



Finally, regarding our labeling mechanism, Lamport proposes a different ap-
proach [1]. Lamport focuses on labeling conjuncts and disjuncts (other subfor-
mulas are not labeled). He assigns numbers to conjuncts and letters to dis-
juncts. Furthermore, he allows variable substitution in universally-quantified or
existentially-quantified formulas to be part of the label. So, for example, 1.c(q).2
might represent the subformula in the second conjunct of the second disjunct,
where we have substituted in q in the quantified formula, in the first conjunct.
For the language of TLA+2, Lamport extends his original scheme [11].

3 Implementation

Proof
Assistant
Concrete
Syntax

beautifHOL

ASCII

LaTeX

Other 
Formats

Fig. 2. Pretty-Printer Framework

Our pretty-printer BeautifHOL takes in a HOL formula and pretty-prints it
as described above. In the current implementation, the concrete syntax of our
input and output formulas corresponds to the input and output formulas shown
in this paper (the parser ignores whitespace and line breaks in input formulas).
However, the concrete syntax of the input formulas accepted by BeautifHOL
can be modified by changing a labeled Backus Normal Form (BNF) file, yielding
a family of pretty-printers. Additionally, there is a configuration file to modify
the concrete syntax of the output to yield various representations, including
representations in ASCII, LATEXsource, and so on. We illustrate this in Figure 2.

Individual formulas can be input at the command line, or files containing
formulas can be read in. Options include suppressing output (i.e., just signaling
whether parsing is successful), suppressing the parse tree, outputting the input
formula together with its rendering (for debugging), and suppressing subformula
labeling.

The lexer, parser, and language specification for our pretty-printer is gener-
ated from BNF Converter, authored by Björn Bringert, Markus Forsberg, and



Aarne Ranta.4 BeautifHOL is implemented in Haskell (as is BNF Converter),
and is released under a BSD3 license. The source code is available on Hackage.1

The pretty-printer is alpha-level software, the purpose of which is to demonstrate
the ideas presented in this paper. Contributions are welcomed!

4 Extensions and Future Work

Here we describe possible extensions to the BeautifHOL pretty-printer and future
work for rendering HOL specifications.

Operator Delimiters Inspired by the Programatica graphical user interface in
which delimiters are used to show the scope of a definition [12], Magnus Carlsson
suggests5 the use of delimiters to show the scope of binary operators, such as
the following hypothesized rendering:

(P(a) and (not Q(b, b) implies (P(c) or Q(a, b)))) or (P(c) implies

(Q(a, c) and (P(b) or Q(b, a))))

|P( a )

|and | |not Q( b, b )

| |implies | |P( c )

| |or |Q( a, b )

or | |P( c )

|implies | |Q( a, c )

|and | |P( b )

|or |Q( b, a )

Delimiters are particularly beneficial when operands are large.

“Best Fit” for Relations and Functions Another extension would be to auto-
matically decompose specifications by introducing local definitions (i.e., let-in
expressions) as needed to make a formula more readable, particularly if a for-
mula requires line wrapping to be displayed. For example, suppose the line width
is 80 characters, and a formula is the following:

...

and ... f ( a, b, ... c )

...

such that the length of the line containing the function f, exceeds 80 characters.
The pretty-printer could introduce a local definition to reduce the lines length:

4 The tool, released under a GPL license, and documentation can be downloaded at
http://www.cs.chalmers.se/Cs/Research/Language-technology/BNFC/.

5 Via personal communication (September, 2008).



let f’ = f ( a, b, ... c )

in ...

and ... f’

...

Let expressions can be introduced iteratively until the formula does not require
line wrapping.

Another extension would be to have more control over how functions are
rendered. Depending on user constraints on a formula’s length and width, a
formula might be rendered differently depending on its context within a formula.
For example, the following rendering minimizes the length (e.g., number of lines)
of a relation:

P( a, b, f( c, d, e ), g( f, h( a, b, c, d, e ) ), j, k )

To minimize the width (e.g., number of characters in a line) of the same relation,
we choose a different rendering:

P( a,

b,

f( c, d, e ),

g( f,

h( a,

b,

c,

d,

e ) ),

j,

k )

The following is a compromise between the two:

P( a, b,

f( c, d, e ),

g( f, h( a, b, c, d, e ) ),

j, k )

Pretty-printer combinators developed by Hughes are designed specifically to ad-
dress these layout problems [5].

Additional Syntax The simplest modification is to add new syntax. For example,
binary operators from algebra (e.g., ≤, +, etc.) as well as set-theoretic operators
(e.g., ∈, ⊆, ∪, etc.) are both often found in HOL specifications. In general,
these infix binary operators can be rendered like we render equality. As needed,
syntax for records, arrays, and lists can be added. Adding new syntax requires
modifying the labeled BNF grammar for input formulas as well as proving a new
pretty-printing rule for the construct, if no rule is reused.



5 Conclusion

While I was a member of the NASA Langley Research Center Formal Methods
Group, I worked on the SPIDER project.6 The portion of the project I was
involved in was the formal analysis of fault-tolerant communication protocols,
mainly carried out in a mechanical theorem-prover. Our team consisted of about
four individuals, plus intermittent visitors, concurrently developing specifications
and proofs. Even among this small team, I was surprised to see a broad range
of specification styles. Furthermore, I found myself spending precious time sim-
ply parsing large formulas—even ones I wrote—particular in the midst of deep
proofs. I was thinking about how to parse formulas instead of how to finish
proofs!

I believe the difficulties associated with readable specifications are even more
problematic for the formal verification community than the programming com-
munity for three reasons. First, programming projects are often larger—orders-
of-magnitude larger—than formal specification and verification projects. The
size of programming communities compels project leaders to institute code for-
matting standards. I am not aware of any formal project in which specifica-
tion standards are explicitly issued and enforced (i.e., repository commits are
not accepted unless the standard is adhered to). Second, because of the size of
these communities, programmer tools are more mature: most major program-
ming languages have pretty-printers available for them, making adherence to the
standards easier. Third, specifications are not only written but formally reasoned
about. Rewriting formulas in proofs can dramatically increase their size and syn-
tactic complexity beyond the original syntactic complexity of the specification.
These rewrite expansions do not normally occur in programming (perhaps with
the exception of macros output). Pretty-printing research may seem mundane or
irrelevant. Nevertheless, user-centric issues like pretty-printing are important as
formal specifications become more central to the software development process
and have users and reviewers from outside the community.

My goal in this paper has been to make present a proposal for rendering HOL
specifications and provide a tool for doing so. Syntax, of course, is a matter of
taste, and I expect additional modifications and improvements will be made to
the proposals I have made. More generally, I wished to (re)introduce Lamport’s
original paper to the formal verification community. The problem of rendering
formal specifications to be more readable is an important one, and good solutions
will hasten the adoption formal methods amongst the wider Computer Science
community.

6

Comment: Get website



Acknowledgments

In addition to the comments Leslie Lamport provided to this author, noted
throughout the paper, Lamport reviewed a preliminary draft of this work and
caught a small bug in my rendering of negation (communicated in private corre-
spondence). I received numerous constructive comments at the Galois Technical
Seminar, particularly from Iavor Diatchki, Joe Hurd, and John Matthews. Alwyn
Goodloe commented on an early draft. In particular, Magnus Carlsson provided
enormously detailed and helpful comments.

References

1. Lamport, L.: How to write a long formula (short communication). Formal Aspects
of Computing 6(5) (1994) 580–584

2. Free Software Foundation: style – kernel source file style guide. FreeBSD Kernel
Developer’s Manual Retreived Dec. 2008. Available at http://www.freebsd.org/
cgi/man.cgi?query=style&sektion=9.

3. Free Software Foundation: GNU coding standards. Webpage Retreived Dec. 2008.
Available at http://www.gnu.org/prep/standards/.

4. Oppen, D.C.: Prettyprinting. ACM Transactions on Programming Languages and
Systems 2(4) (1980) 465–483

5. Hughes, J.: The design of a pretty-printing library. In: Advanced Functional
Programming, Springer Verlag (1995) 53–96

6. Wadler, P.: A prettier printer. In: Journal of Functional Programming. (1998)
223–244

7. Bornat, R., Sufrin, B.: A minimal graphical user interface for the jape proof
calculator. Formal Aspects of Computing 11(3) (1999) 244–271

8. Aspinall, D.: Proof general: A generic tool for proof development. In: TACAS
’00: Proceedings of the 6th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, Springer-Verlag (2000) 38–42

9. Dillinger, P.C., Manolios, P., Vroon, D., Moore, J.S.: Acl2s: ”the acl2 sedan”. In:
ICSE COMPANION ’07: Companion to the proceedings of the 29th International
Conference on Software Engineering, IEEE Computer Society (2007) 59–60

10. Jones, S.P.: Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press (May 2003)

11. Lamport, L.: TLA+2, A Preliminary Guide. (April 2008) Available at http://

research.microsoft.com/en-us/um/people/lamport/tla/tla2-guide.pdf.
12. Hallgren, T.: Haskell tools from the programatica project. In: Haskell ’03: Pro-

ceedings of the 2003 ACM SIGPLAN workshop on Haskell, ACM (2003) 103–106
Available at http://ogi.altocumulus.org/∼hallgren/Programatica/HW2003/.


