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Abstract—I revisit the fault-tolerance of cyclic redundancy
checks (CRCs), expanding on the work of Driscoll et al [1].
I introduce the concepts of Schrodinger-Hamming weight and
Schrodinger-Hamming distance, and I argue that under a fault
model in which stuck-at-one-half or slightly-out-of-spec faults
dominate, current methods for computing the fault detection
of CRCs may be over-optimistic.
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I. INTRODUCTION

CRCs sometimes fail. The rate at which CRCs fail to
detect errors is usually computed assuming the probability
of bit errors is independent or that bit errors arrive in short
bursts. In some cases, this probability calculation may be
overly-optimistic. The purpose of this note is to motivate a
new way to measure the fault-tolerance of CRCs.

Some faults randomly “flip bits”—e.g., electromagnetic
disturbances. Other faults, however, tend to be correlated “in
the same direction” for a specific receiver, causing a receiver
to interpret 0-bits as 1-bits or vice versa. For example, in
a “stuck-at-%” fault, a transmitter with a weak driver may
fail to drive a signal sufficiently high while sending 1-bits or
fails to drive a signal sufficiently low while sending 0-bits.
Another example in the dimension of time is slightly-out-
of-spec faults in which a transmitter’s and receiver’s timing
are slightly off, and so the receiver samples the transmitter’s
signal either too early or too late. Slightly-out-of-spec faults
can have similar effects by causing a receiver to consistently
sample high-to-low or low-to-high signal transitions too
early or late.

Such faults can be particularly nefarious at the system
level when a single sender broadcasts to multiple receivers.
Such scenarios can lead to Byzantine (or asymmetric) faults,
which are often assumed to be impossible or highly improb-
able in system design [1], [2].

II. SCHRODINGER’S CRCS

Paulitsch ef al. describe circumstances in which CRCs
are not as effective at detecting faults as designers might
assume they are, particularly for ultra-dependable embedded
systems [2]. The faults mentioned in the previous section
are cited as cases in which the reliability afforded by
CRCs can be overestimated. The term “Schrédinger’s CRC”

was coined by Driscoll ef al. to describe cases resulting
from these sort of faults [1]. (The term is a tribute to the
“Schrodinger’s cat” thought experiment in quantum mechan-
ics.) The purpose of this note is to expand on Driscoll’s brief
treatment.

Let all bit errors be exclusively one of

¢ Os may randomly be flipped to 1s.
e 1s may randomly be flipped to Os.

Call these Schrodinger bit errors. Instances in which a CRC
fails to detect a fault due to Schrodinger bit errors are called
Schrodinger CRCs.

For example, consider the following frame-check se-
quences (FCSs) computed from the USB-5 polynomial
(x° + 22 + 1) for 11-bit words [3]:!

| 11-Bit Message | FCS
10110110011 | 01001
11110111011 11001

Original
Corrupted

Both FCSs are valid for their respective data-words. Notice
that only Os in the original message are interpreted as 1s—
no 1s are interpreted as O0s. One receiver might interpret
the original message correctly while the other interprets it
in the corrupted manner resulting in a Byzantine fault. (By
the way, other corruptions with valid FCSs are possible for
this message—e.g., computing the CRC of 11110111111
results in 01101).

Of course, if enough bit errors of any kind are present in
a message and its FCS, a CRC may erroneously pass. The
fault-tolerance of CRCs is usually measured by computing
their Hamming weights and Hamming distances. The Ham-
ming weight (HW) is a function on a data-word width w,
a CRC polynomial, and a fixed number of bit errors e, and
returns the total number of possible undetected corruptions
of the data-words of width w and their FCSs together
resulting from e bit errors. The Hamming distance (HD)
is smallest number of bit errors resulting in a non-zero HW.
Koopman and Chakravarty analyze the HWs and HDs of
common CRCs [3].

'T follow the convention of computing the CRC by first appending the
6-bit word (the length of the polynomial) ‘000000’ onto the lower-order of
the data-word and performing polynomial division (in Galois Field 2) over
the resultant 16-bit word and returning the remainder as the FCS.



While the concept of a HD might be appropriate for
measuring the resilience of a CRC to random bit errors,
is not be a good metric for calculating the probability of
Schrodinger’s CRCs. If the probability of faults like stuck-
at-% faults or slightly-out-of-spec faults dominate the prob-
ability of random bit errors, then a metric for Schrodinger’s
CRCs better measures the fault-tolerance of CRCs.

Fix a data-word width w, a CRC polynomial, and a num-
ber of bit errors e. Then the Schrodinger-Hamming weight
(SHW) is the total number of possible undetected corrup-
tions of data-words of width w and their FCSs together
resulting from e Schrodinger bit errors. The Schrodinger-
Hamming distance (SHD) is smallest number of Schrédinger
bit errors resulting in a non-zero SHW. For our example of
USB-5 on 11-bit words, the HD is three (from Koopman
and Chakravarty [3]) and our example shows the SHD is
three, too.

SHWs and SHDs are bound below by their respective
HWs and HDs, since there are strictly fewer combinations of
Schodinger bit errors possible than arbitrary errors. However,
it appears to be an open question whether for any data-word
size and polynomial, the SHD is strictly greater than the
HD.

It is possible to detect all Schrodinger bit errors by
encoding a 0 as a 01 bit pattern and a 1 as a 10 bit pattern—a
Manchester encoding [4].> The ability to detect Schrodinger
bit errors further supports the use of Manchester physical-
layer encodings, known to have superior fault-detection
capabilities, in ultra-critical systems. On the other hand,
Schrodinger CRCs must be dealt with if the encoding used
is a less-tolerant (but possibly more efficient—Manchester
encodings double the message length) encoding in legacy
systems. More generally, the interplay between physical-
layer encoding and CRCs has not be fully explored, as noted
by Paulitsch et al. [2].

III. SCHRODINGER CRC PROBABILITY CALCULATIONS

Let us informally calculate the probability of a
Schrodinger CRC for a particular data-word width and
polynomial under a concrete fault model. These calculations
are not meant to be a definitive analysis but to provide an
intuition about how Schrodinger bit errors can affect the
system-level fault-tolerance.

First, a small simulation is used.® Each simulation ran-
domly generates a data-word and computes its FCS. Then
without loss of generality, it randomly flips from O to 7 of the
0-bits to 1-bits, where ¢ is the total number of Os in the data-
word and FCS together. The simulator counts the percentage
of runs in which the Schrodinger bit errors are not caught
by the CRC—i.e., a Schrodinger CRC occurs. Carrying out

2 As pointed out to this author by Twan van Laarhoven (private commu-
nication, February, 2010).

3The simulation code is available at http:/leepike.wordpress.com/
source-code/crc-hs/.

this simulation for the USB-5 polynomial mentioned earlier
on 11-bit data-words [3], we get approximately 1.65% of
one million generated runs resulting in Schrodinger CRCs.

Suppose that once a component fails, it causes any number
of Schrodinger bit errors with equal probability, as in our
simulation. This assumption contrasts with the usual bit-
error rate assumption of uncorrelated bit errors, or correlated
errors over short bursts [2]. However, the assumption is not
unreasonable for persistent stuck-at—% or slightly-out-of-spec
faults.

If the throughput is a modest 48 bits/second, then that’s
10, 800 16-bit messages/hour, so the cumulative probability
(applying the cumulative distribution function) of at least
one Schrodinger CRC per hour given a 1.65% probability
from the simulation is approximately one (i.e., greater than
1 — 1e—78). So the probability of consistently observing
Schrodinger CRCs provided a component fails in a manner
resulting in Schrodinger bit errors is nearly one: as noted by
Paulitsch et al., “The probability of a Schrédinger’s CRC is
hard to evaluate. A worst-case estimate of its occurrence due
to a single device is the device failure rate” [2].

This probability is in addition to the probability of ob-
serving undetected bit errors from statistically-independent
transient bit errors. For example, assuming the bit-error
probability is 1e—5, then the cumulative probability of at
least three bit errors in a 16-bit message (recall that three is
the HD for USB-5) is just less than 5.6 e—13. And 5.6 e—13
is a gross upper-bound on the probability of an undetected
CRC per message, as the vast majority of the bit errors
would still be caught with three or more bit errors. So the
cumulative probability of an undetected message corruption
is just over 6 e—9/hour assuming 10, 800 messages/hour.

If the component failure-rate causing stuck-at-% or
slightly-out-of-spec faults is significantly greater than
6 e—9/hour, then the probability of consistently observing
Schrodinger CRCs dominates the probability of rarely ob-
serving uncaught bit errors due to transient faults.
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