
Appears in the proceedings of the IEEE 17th International Conference on Application of Concurrency to System Design
(ACSD), 2017.

Lock Optimization for Hoare Monitors in Real-Time
Systems

Georges-Axel Jaloyan
École normale supérieure

Computer Science Department
45 rue d’Ulm, f-75230 Paris cedex 05, France

Email: georges-axel.jaloyan@ens.fr

Lee Pike
Galois Inc.

421 SW 6th Avenue, Suite 300 Portland
Oregon 97204, United States
Email: leepike@galois.com

Abstract—Hoare monitors are a safe concurrency
abstraction built around a monitor with shared state
and methods that operate on the shared state. While
well-known, they have been little used as a concurrency
framework in real-time systems. We describe a Hoare
monitor framework called Tower developed for real-
time systems programming that targets multiple real-
time operating systems. Hoare monitors use coarse-
grained locking across all of the methods in a monitor.
In a real-time setting, this coarse-grained locking can
be too restrictive, but it is difficult and tedious for
a programmer to reason about which methods may
safely execute in parallel. Therefore, we present an
automated compiler optimization for refining locks in
Hoare monitors using partially-weighted MAXSAT.
We formalize Tower semantics using Petri nets and
show that safe concurrency is preserved under the
optimization. Finally, we present a number of empirical
benchmarks for our optimization as well as a case-study
of a real-time autopilot built and optimized with our
approach.

I. Introduction
Concurrency in embedded real-time systems is often

necessary to handle interrupts and deadline constraints,
but it can be notoriously difficult to implement correctly.
One famous example is the Mars Pathfinder concurrency
bug [16].

Monitors are a programming abstraction invented in
the 1970s by C. A. R. Hoare and Brinch Hasen for safe
concurrency [13], [4]. A Hoare monitor is a construct
that guarantees thread-safe accesses to shared resources.
A monitor contains a set of methods that share resources.
Only one method can execute at a time. Hoare monitors
make safe concurrency easier, since by construction, if the
implementation is correct, deadlocks are not possible.

But that safety comes at price: a method takes a lock
that is held while a thread is executing the method,
blocking all other methods in the monitor from being
executed. Indeed, if the lock is global, then no other thread
can execute until the lock is released.

While Hoare monitors have been implemented in a
variety of programming languages, they have rarely been
used in the context of embedded real-time systems and

real-time operating systems; we revisit the use of Hoare
monitors in this context. In particular, we have used a
Hoare-monitor based programming paradigm called Tower
to design and implement an autopilot for small unmanned
air vehicles. We introduce Hoare monitors and describe
our implementation of them for real-time systems in Sec-
tion II. Tower has backends that target FreeRTOS [2] and
eChronos (a formally verified RTOS) [7], POSIX, and the
formally verified seL4 microkernel [18] with recent real-
time support [20].
We propose three properties that should hold of a Hoare

monitor implementation: (1) absence of dataflow cycles
between methods, (2) absence of race conditions, and (3)
deadlock freedom. In Section III, we develop a Petri net
formalization of Tower and show the properties hold.
One benefit of Hoare monitors is that they provide a

convenient programmer abstraction of the system in which
the programming model is a dataflow model between
methods. Methods that are conceptually related (e.g., for
a device driver), belong to the same monitor, much in the
same way that conceptually related functions are placed
in the same module. By construction, the programmer
is guaranteed that there is no out-of-band shared state
between methods not in the same monitor.
While it is useful and convenient to place conceptually

related methods in the same monitor, it can overly con-
strain the system. For example, consider three methods,
m0, m1, and m2, in the same monitor, where m0 and m1
share state and m1 and m2 share another state. Then m0
and m2 can execute in parallel, despite being in the same
monitor, because they share no state.
We investigate how to automatically optimize concur-

rent Hoare-monitor programs in Section IV. Our approach
uses a partial weighted MaxSAT (PWMS) [21] encoding
of Hoare monitors to refine the number and assignment of
locks with monitors: a single global lock per monitor may
be replaced with multiple locks associated with subsets
of methods. This is necessarily a global optimization,
since on an embedded RTOS, there is generally a fixed
number of total locks available, which introduces a global

1

georges-axel.jaloyan@ens.fr
leepike@galois.com


constraint. We also prove in the Petri net model that under
optimization, the three safety properties mentioned earlier
continue to hold.

We present experimental results for our lock refinement
optimization in Section V, and then describe an extended
case-study of applying the optimization to an autopilot in
Section VI.

Related work and conclusions are described in Sec-
tions VII and VIII, respectively.

II. Hoare Monitors
Hoare monitors are thread-safe constructs, comparable

to modules, that enforce safe access to resources shared
at the monitor scope using a mutex. First implemented
by Hoare in Concurrent Pascal, they have since been
implemented in other languages, ranging from C++11 to
Python and Ruby.

A monitor is an enclosing structure that protects ac-
cesses to its shared resources (declared at the monitor
scope), by defining some accessors (or procedures, or
methods) that exclusively access those shared resources
in a thread-safe way. Hence, declaring a monitor is done
by providing some shared resources, and by defining the
procedures that use those resources.

Procedures are written in a way to enforces thread-
safety using a lock declared at the monitor level. All of
a procedure’s code is inside the locked environment, pre-
venting unlocked access to shared resources. In this way,
only one procedure in a given monitor can be executed at
a given time, resulting in the absence of race conditions
(all shared resources are protected by the monitor’s lock).
More specifically, each procedure of the monitor m is
run, as defined in [13], according to the following scheme:
take the monitor’s lock, wait for some specific condition
variable, execute the body, signal other procedures on a
condition variable, release the lock.

// Acquire this monitor ’s lock.
acquire ( lock_m );
// While the predicate we are waiting for is false .
while (!p) {

// Wait on the lock_m and condition variable cv.
wait(lock_m , cv);

}
// ... Critical section of code goes here ...
// Signal procedures on the condition variable cv2.
signal (cv2);
release ( lock_m ); // Release lock_m .

A. Tower: Hoare Monitors for Real-Time Systems
Tower is a domain-specific language for real-time Hoare-

monitor based programming. The methods of Tower are
called handlers. Channels communicate data used to signal
the handlers of a monitor. There are four types of chan-
nels in Tower: synchronous channels, periodic channels,
signal channels, and initialization channels. Synchronous
channels have an input and output endpoint. One or more
handlers listen on the output endpoint of the channel, and
multiple handlers can write to the input end of a channel.

A channel is first-in-first-out (FIFO) with a depth, which
is the number of messages it can hold. The default depth
is one.
The other channels have only an output endpoint; the

input implicitly comes from the system. A periodic channel
is declared for every periodic task rate, and the input im-
plicitly comes from the system clock. Assuming the system
is schedulable, a handler for an n microseconds periodic
channel receives a notification every n microseconds. A
signal channel’s input comes from a system interrupt and
drives interrupt service routines. Finally, an initialization
channel’s input comes from the scheduler and drives han-
dlers that run once, at system initialization.
Tower automatically creates RTOS threads associated

with each periodic, signal, and initialization channel. Ev-
ery handler that listens to one of these kind of channels
is executed in the associated thread. Handlers that listen
to synchronous channels are not scheduled as threads but
are library code called by scheduled threads.
In a Tower program, monitors are declared using the

monitor keyword. Each monitor takes a string that names
it as an argument, and contains a list of handler and
state (for shared resources) keywords. State can option-
ally be initialized using the stateInit keyword. Each
handler listens on a typed channel. A handler takes as
an argument a channel, a name (i.e., a string), then a
list of callbacks. Each callback contains the behavioral
component code to execute. A callback takes a single
argument, the value received over its enclosing handler’s
channel.
Callbacks are written in Ivory [9], a memory-safe sys-

tems language that shares a type system with Tower.
Callbacks are executed in the order they are declared. In
addition to performing arbitrary local computation and
reading and writing the state variables within its enclosing
monitor, a callback may write to one or more outbound
channels. It does so by executing an emit command that
takes a channel and a value as an argument.
As an example of a Tower program, consider Figure 1

and its graphical representation in Figure 2. The program
blinks two LEDs, led1 and led2. The program defines two
tasks, one running at 500 milliseconds and one running
at 10 milliseconds. The 500 milliseconds task drives two
handlers, flipflop and led1on. The flipflop handler
emits a Boolean on a channel and then stores the negation
of the value into a monitor-scope shared resource. The
led2ctrl handler reads the output of the channel the
flipflop handler emitted on. It takes the Boolean passed
on the channel; if it is true, then it turns led2 on; other-
wise it turns it off, by passing a state variable representing
led2 to the functions ledOn and ledOff, respectively (the
definitions of the functions are elided here for space).
The second 500ms handler (led1on) turns led1 on by

calling the ledon function and then stores into a monitor-
scope resource, led1lit, that led1 is lit.
Finally, the led1off task runs at 10ms and if the



p500 <- period (500 ms)
p10 <- period (10 ms)
(tx , rx) <- channel

monitor "go" do
stateInit " led2lit " false
handler p500 " flipflop " do

callback \_ -> do
emit tx led2lit
store led2lit (not led2lit )

monitor "led" do
stateInit " led1lit " false
state "led1"
state "led2"
handler p500 " led1on " do

callback \_ -> do
ledOn led1
store led1lit true

handler p10 " led1off " do
callback \_ -> do

if led1lit
( ledOff led1)

store led1lit false
handler rx " led2ctrl " do

callback \out -> do
if out

then ( ledOn led2)
else ( ledOff led2)

Figure 1: Tower example (with syntactic simplifications).

500ms

10ms

Threads

Code

flipflop

led2ctrl

led1on

led1off

go monitor

led monitor

Figure 2: Graphical representation of the Tower program
from Figure 1.

monitor-scope variable led1lit is true, then it turns led1
off.

Tower uses Haskell [24] syntax; we have elided a few
idiosyncrasies in the example in Figure 1. A few syntactic
explanations are still in order: the do keyword introduces a
sequence of instructions to be executed in order. Lambda
is denoted by \, and a lambda expression, \foo -> ...
denotes an anonymous function that takes foo as a formal
parameter and is used in the function’s body. If the
argument is unused in the body, then the formal parameter
is elided with an underscore (_).

B. Tower toolchain
Figure 3 shows the backend structure. Tower programs

are reified and transmitted to several backends including
POSIX, the FreeRTOS [2] and eChronos [7] RTOSes,
and the seL4 microkernel [18]. For the eChronos and

AADL

eChronosseL4

FreeRTOS POSIX

Tower + generated C code

Tower + Ivory

Ivory compila-
tion

backends

Figure 3: The Tower tool-chain.

〈monitor〉 ::= monitor name do (〈handler〉)∗

〈handler〉 ::= handler 〈channel〉 name (〈callback〉)∗

〈channel_id〉 ::= integer

〈channel〉 ::= 〈channel_id〉
| period time
| signal name deadline
| init

〈emitter〉 ::= emit 〈channel_id〉 value

〈callback〉 ::= callback value -> do (〈emitter〉)∗

Figure 4: Simplified Tower grammar, we abstracted out all
Ivory code, except emit commands.

seL4 backends, glue code is generated via an intermediate
Architecture Analysis and Design Language (AADL) [11]
specification that is generated from Tower. An AADL-
based tool developed by University of Minnesota generates
operating system bindings from AADL.1

III. A Petri Nets Semantics for Tower
We formalize Tower to prove safety properties of its

semantics, both before and after optimization. A simplified
grammar for Tower is given in Figure 4.

A. Petri Nets
Petri nets are a classic formal model for concurrent sys-

tems [23]. We briefly introduce enough Petri net machinery
to carry out a formalism of Tower.
A Petri net is a tuple (S, T, F,M0) where S is the set of

states, T the set of transitions, F the arcs (F ⊂ (S×T )∪
(T × S)), M0 : S → N the initial marking. A Petri net is
intuitively a bipartite graph enriched with some labeling
for nodes and edges. Note that it is also possible to enrich
those Petri nets with capacities on each node and weights
on arcs, which we do not need in the simplified Tower
presented here.

1https://github.com/smaccm/smaccm

https://github.com/smaccm/smaccm


A marking is a an assignment of tokens to states. A
transition t is enabled if each state s such that there is an
arc s→ t has a token. An enabled transition t in a marking
M is fired when we modifyM intoM ′ such that each input
state of the transition t loses one token, and each output
state is given one token. A marking M is reachable from a
marking M0 if we can sequentially fire transitions t0, ..., tn
from M0 such that the final marking obtained is equal to
M . We say that a state s is safe if any marking in which s
has two tokens is not reachable from the initial marking.
A simple Petri net example is provided Figure 5.

S1
• T1 S2 T2

S3
•

Figure 5: Example of a Petri net with three states (S1,
S2, S3) and two transitions (T1, T2). The transition T1
is enabled in the initial marking M0, (M0 gives one token
to S1 and one to S3).

Assuming that there are no contradictory data
regarding initial markings, we define the union of two
Petri nets as the component-wise union of the nets. This
allows us to build Petri nets in a modular way. More
formally: (S, T, F,M0) ∪ (S′, T ′, F ′,M ′0) =

(S ∪ S′, T ∪ T ′, F ∪ F ′,M0 ∪M ′0)
B. Denotational Semantics of Tower
We formalize a Tower program as a Petri net, and then

prove safe concurrency properties, defined in Section III-C,
both before and after optimization. We operate by in-
duction on the syntax (Figure 4), and construct small
Petri subnets and then connect them together using the
previously defined union operator on Petri nets. The result
consists in a denotational Petri net semantics of the Tower
framework, consisting in one function for each type of
Tower construct: monitors (M), handlers (H), channels
(L), emitters (E).

(a) The initial net. (b) petri(syncchan : 1)

(c) petri(period : 10000) (d) petri (signal: testsignal)

Figure 6: Illustration for the init net and and petri
function.

As a convenience, we first define subnets to build up
Tower channel semantics, as illustrated in Figure 6. In
the init net, the init channel fires only once at the
beginning of the execution of the program. The petri
nets are parameterized by the channel. For periodic and
signal channels, we have an enabled transition that can
fire an unlimited number of times and will distribute
one token to each handler listening on this channel. For
synchronous channels, the transition can fire only when
the incoming state received a token from an other handler.

petri(syncchan : id) =
states : {chan_id}
transition : {distribute_chan_id}
arcs : {chan_id→ distribute_chan_id}
initial marking : {0}


petri(period : time) =

states : {per_time}
transition : {distribute_per_time}
arcs : {per_time→ distribute_per_time,

distribute_per_time→ per_time}
initial marking : {1}


petri(signal : sig) =

states : {sig_sig}
transitions : {distribute_sig_sig}
arcs : {sig_sig → distribute_sig_sig,

distribute_sig_sig → sig_sig}
initial marking : {1}


init =

states : {init0}
transitions : {distribute_init0}
arcs : {init0→ distribute_init0}
initial marking : {1}


We use these definitions now in encoding the semantics.

Emitters are encoded as an arc from a handler to a chan-
nel. Channels are encoded with a state and a transition
that fires each time a message has to be distributed (giving
one token to each handler listening on that channel). Han-
dlers are encoded as a succession of states and transitions,
showing the locking and unlocking procedure, plus a state
handler’s callback computation. We leave nondeterministic
the order in which callbacks are called.

MJmonitor : name, 〈handler〉iK =
(
⋃
i

HJ〈handler〉iKname)
⋃


states : {name}
transitions : ∅
arcs : ∅
initial marking : {1}


HJhandler : 〈channel〉, name, 〈emitter〉iKmonitor =

(
⋃
i

EJ〈emitter〉iKname)
⋃
LJ〈channel〉Kname

⋃


states : {name, compute_name}
transitions : {lock_name, release_name}
arcs : {name→ lock_name,

monitor → lock_name,
lock_name→ compute_name,
compute_name→ release_name,
release_name→ monitor}

initial marking : {0, 0}





LJsyncchan : idKhandler = petri(syncchan : id)
⋃

states : ∅
transitions : ∅
arcs : {distribute_chan_id→ handler}
initial marking : ∅


LJperiod : timeKhandler = petri(period : time)

⋃
states : ∅
transitions : ∅
arcs : {distribute_per_time→ handler}
initial marking : ∅


LJsignal : sigKhandler = petri(signal : sig)

⋃
states : ∅
transitions : ∅
arcs : {distribute_sig_sig → handler}
initial marking : ∅


LJinitKhandler = init

⋃
states : ∅
transitions : ∅
arcs : {distribute_init0→ handler}
initial marking : ∅


EJemit : idKhandler =

states : ∅
transitions : ∅
arcs : {release_handler → chan_id}
initial marking : ∅


C. Safety Properties
There are three safety properties Tower programs should

guarantee and that must be invariant under the optimiza-
tion described in Section IV: the absence of channel cycles,
the absence of race conditions, and deadlock freedom. We
define these properties in terms of the Petri net semantics
here.
1) Absence of Channel Cycles: Extract a graph from a

Tower program by letting the nodes be handlers and the
edges be channels between handlers. Intuitively, a channel
cycle is a closed walk in the graph. A channel cycle is
a special case of a deadlock caused by a circular data
dependency among handlers. In Petri net formulation, a
channel cycle is a finite sequence of nodes n1,m1, n2, ...
such that:
• Each ni is a state, each mi is a transition.
• There exist arcs between each following nodes of the

sequence.
• Each transition inside a period or a signal construct

is unique (that means that we do not rearm a signal
or loop on a period).

• There exist i and j such that i 6= j, mi and mj are
channel transitions (i.e. defined by either the initial
net or the petri function), and mi = mj .

This can be reformulated into the fact that there does
not exist a non-trivial strongly connected component that
contains a distribute_chan_x node.
2) Absence of Race Conditions: A race condition occurs

when there is a concurrent access to some resource not
protected by any lock. However, the only way to access
those resources are through the callbacks within a handler,
which can only be executed after a locking procedure that
will guarantee that no other handler that has access to
this resource could run simultaneously (indeed, shared
resources are at a monitor scope).

Hence, the locking procedure for a handler in the
monitor moni is translated into the transition called
lock_moni, which, when fired, gives a token to the state
compute_moni. This state symbolizes the callback com-
putation: there is no access to shared resources outside
this state.

As described, there are no nested locks in Tower. In
the following sections, we will release this constraint by
showing that we keep safety if for each handler, the set of
resources that are being accessed is a subset of the set of
resources protected by the locks acquired by this handler.
3) Deadlock Freedom: We define deadlock in a monitor

to be a situation in which there exist handlers H1, ...,Hn

(n >= 2), which have acquired locks for X1, ...Xn,
and are requesting locks for Y1, ..., Yn where we have
Yi ∩ Xi+1 6= ∅ (we consider that all indices are modulo
n). This definition is consistent with the one given by
Chandrasekaran et al. [5]. Moreover, we can define for each
i, yi ∈ Yi ∩ Xi+1, and suppose without loss of generality
that each handler Hi is blocked on the atomic instruction
take_lock(yi).
The absence of deadlocks in a monitor moni can be

interpreted as the following: for each subset of handlers
H1, ...,Hn of the monitor moni, there is no reachable
marking M in the Petri subnet P ′ from the marking M0
(as defined in Section III-B) such that M has no enabled
transition, where P ′ is obtained from P by deleting all
other monitors, period, channel, init constructs, deleting
the incoming arcs of each handler, adding a token to each
handler (hence a handler will be executed without any
external condition), and delete the handlers that are not
part of the chosen subset. This reachability problem in a
Petri net is known to be EXPSPACE−hard [19]. However,
given the fact that a handler cannot acquire the same lock
twice, each state is therefore safe. The problem of detecting
a deadlock in monitors therefore lies in co-NP (we have to
guess a schedule of polynomial length that will deadlock).

IV. Lock Refinement
One solution to improve parallelism is to release the

locking constraints on the handlers, by allowing paral-
lel execution of handlers that do not access common
shared resources. One approach is to create a lock per
resource and require at the beginning of each handler it
acquires all locks necessary before any callbacks are called.
Unfortunately, embedded real-time operating systems do
not provide an arbitrary number of available locks, and
there may be many more shared state variables than
locks. Furthermore, such fine-grained locking can cause
the overhead of acquiring and releasing locks to be too
high, such as in tight control loops. Having fewer locks
than shared resources requires efficiently allocating shared
resources to a fixed number of locks.

Before refining locks, we must discover which handlers
use shared resources. Besides shared state variables de-
clared at the monitor scope, handlers may also access



hardware resources directly (e.g., reading and writing to
registers). In a general purpose language with pointers, a
precise static analysis to determine all accesses to shared
resources is not generally possible. As noted above, the
callbacks within handlers in Tower are written in Ivory, a
memory-safe embedded programming language [9]. Ivory
references are statically guaranteed non-null pointers. Ref-
erence arithmetic or reference aliasing is not possible
except through function calls. Registers are named and
are accessed through an interface. These characteristics
make a static analysis of handlers to discover the uses of
shared resources straightforward and is done as an Ivory
compiler pass. In particular, our analysis does not require
an inter-procedural analysis, given that a shared resource
can be passed to a function only as an argument. Looking
at the arguments in top-level function calls in handlers is
sufficient to over-approximate safely the shared resources
used.

A. Lock Optimization
To begin, consider a matrix representation of the inputs,

made of an n×m boolean matrix H, where n represents
the number of handlers, m the number of resources, and
Hi,j ≡ true if and only if the handler i uses the resource
j. We also specify a maximum number of locks l to assign.
Hence in this matrix representation, we can define rows
in the form Hi, and thus define the scalar product of two
rows as:

Hi •Hj ≡
m∨
k=1

Hi,k ∧Hj,k (1)

to compute whether two handlers share any resources.
Similarly, the output is in the form of an l ×m Boolean
matrix A, called an attribution, where Ai,j ≡ true if and
only if the resource j is attributed to the lock i. Note
that stating that handlers i and j do not share any lock
means exactly (At×Hi)• (At×Hj) ≡ false. Consider the
following invariant of matrix A, stating that a resource is
attributed to exactly one lock:

∀j ∈ {1, ...,m},∃!i ∈ {1, ..., l}, Ai,j ≡ true (2)

The goal of the formulation is to find an attribution
that increases parallelism in multicore configurations (we
define precisely a metric on parallelism in Section V) while
satisfying Property 2, and that rewards attributions that
increase parallelism.

The reward function is defined as the product of the
number of resources (written nbResources) of each han-
dler and the frequency (written Freq) at which the han-
dlers are called (i.e., the reward will be bigger if the
pair uses a lot of resources and/or is run frequently).
The intuition is that since we are dealing with real-time
systems, greater weight should be given to threads that
run frequently, modulo the number of resources they have.
Because a handler may be called from multiple threads,
we define an ordering on threads based on frequency,

and assign the frequency of handlers to be the frequency
of the maximal thread that calls it. The ordering is as
follows, defined over the channels from the Tower grammar
(Figure 4):

init < c for all channels c s.t. c 6= init

periodt0 < periodt1 iff t0 > t1

c < signal n d for all c s.t. c 6= signal n d

signal n0 d0 = signal n1 d1

Intuitively, initialization threads run once, so have the
lowest frequency. A periodic thread has a higher frequency
if its period is smaller. And signal threads, which can
be driven by interrupts, are assumed to have highest
frequency. Furthermore, we do not distinguish signals with
different deadlines. The reward function appears to be
simple to compute—it relies on a simple graph analysis
from the Tower compiler—and to work well in practice.

We operate over pairs of handlers that do not share
resources, as determined by our static analysis, adding a
reward each time the resources of the first handler are not
attributed to the same lock as the resources of the second
handler.

(In the following, the Kronecker delta, δ, is defined as
being one if its two arguments are equal, zero otherwise.)

maximize:
∑
i<j

δ((At ×Hi) • (At ×Hj), false) W (i, j)

over: (Ai,j)i∈{1,...,l},j∈{1,...,m}
subject to: A satisfies the property (2)

where: W (i, j) = Freq(Hi)× Freq(Hj)×
nbResources(Hi)× nbResources(Hj)

We solve the optimization problem using a Partial
Weighted MAXSAT formulation to ensure an upper bound
on the number of locks used. MAXSAT is the problem
of determining the maximum number of clauses in a
conjunctive normal formula that can be satisfied. This is
a variant of SAT which consists only in determining if
all the clauses can be satisfied or not. Partial Weighted
MAXSAT (PWMS) is a variant of MAXSAT in which
we introduce weights to each clause, and segregate the
clauses between hard clauses, which must be satisfied,
and soft clauses, which may be satisfied. Many solvers for
MAXSAT instances exist, and in this work we used open-
wbo[21], an open-source solver with Glucose 3.0 as the
underlying SAT solver[1], [8].

We solve the optimization problem using Partial
Weighted Max Sat (PWMS) on variables Ai,j to have a
Boolean matrix that satisfies the property written in (2)
and encodes the PWMS problem as follows. Variables are
the assignments of resources to locks; the hard clauses
ensure that every resource is attributed to exactly one
lock; and soft clauses state that for every pair of handlers



(i, j) that share no resources, and for every resource α
that i uses and every resource β that j uses, respectively,
minimize the assignments of α and β to the same lock,
weighted by the frequency of the handlers’ usage (weights
are written as a subscript in the soft clauses).

variables: (Ai,j)i∈{1,...,l},j∈{1,...,m}

hard clauses:
m∧
j=1

(
l∨

i=1
Ai,j)

∧
(

∧
1≤i<k≤l

¬Ai,j ∨ ¬Ak,j)

soft clauses:
∧

1≤i<j≤n
Hi•Hj≡false

∧
1<α<m
Hi,α≡true

∧
1<β<m
Hj,β≡true

l∧
k=1

(¬Aα,k ∨ ¬Aβ,k)Freq(Hi)×Freq(Hj)
Finally, as a post-processing step to improve efficiency, we
define HLi , the set of handlers that have to take the lock
Li. We define a partial order v on locks such that Li v Lj
if and only if HLi

⊆ HLj
. We finally apply some basic

optimizations that reduce the final number of locks:
• Monitors with no resource do not generate any lock.
• Locks Li and Lj for which Li v Lj are merged

together (more precisely, Li is merged into Lj).

B. New semantics
Two modifications of the semantics given in Section III

have to be made to address the new locking system.
The first generalizes it to allow creating several locks
per monitor. This is done by adding several more states
initialized with one token, each of them representing one
mutex that will lose its token when taken.
MJmonitor : name, 〈handler〉i, locksiK =

(
⋃
i

HJ〈handler〉iKname)
⋃


states : {(name_lock)i}
transitions : ∅
arcs : ∅
initial marking : {(1)i}


The second modification changes for each handler the
locking procedure, by creating one transition per lock to
acquire (we release all the locks at the same time, given
that the unlocking order does not influence the safety
properties).

HJhandler : 〈c〉, name, 〈e〉i, locksiKmonitor =
(
⋃
i

EJ〈e〉iKname)
⋃
LJ〈c〉Kname

⋃


states : {name, compute_name,
(locked_i_name)i6=max(i)}

tr. : {(lock_i_name)i, release_name}
arcs : {name→ lock_min(i)_name,

(monitor_locki → lock_i_name)i,
(lock_i_name→ locked_i_name)i6=(max(i)),
lock_max(i)_name→ compute_name,
compute_name→ release_name,
(release_name→ monitor_locki)i}

i.m. : {0, 0, (0)i6=max(i)}



C. Proofs of Safety
Let us reconsider our three safety properties with re-

spect to the optimization we have described.
First, lock refinement does not affect the message pass-

ing (modifications only happen inside the monitors); hence
the absence of channel cycles is preserved in the new Petri
net model.

Proof. More rigorously, let us consider a channel cycle
n1,m1, n2, ..., np (such that the sequence respects the
properties expressed in III-C1) in the original program
before lock refinement: then we construct a new channel
cycle in the Petri net after lock refinement by keep-
ing all nodes and transitions, except that name →
lock_name → compute_name is replaced by name →
lock_min(i)_name → locked_min(i)_name → ... →
lock_max(i)_name → compute_name. We check eas-
ily that the new sequence indeed verifies the properties
expressed in the definition of channel cycle: the length
of the cycle is still finite, we alternate between states
and transitions following arcs, we keep the uniqueness of
transitions inside channel constructs and we still have mi

and mj from the channel cycle before optimization that
are present in the new sequence of nodes, except that
their indexes increased while still being different from one
another. The converse is trivially true by just remarking
that the construct done above is reversible (more precisely,
the previous construction gives an isomorphism between
the channel cycles of the Petri nets before and after lock
refinement).

Second, race conditions can only happen after lock
refinement if there are resources of global scope that get
accessed outside any lock. The system is safe if for each
handler, the set of resources that are being accessed is
a subset of the set of resources protected by the locks
acquired by this handler, which is equivalent to the sound-
ness of the static analysis done previously. To check this
property in terms of Petri nets, we extended the Petri nets
by adding an extra labeling to handler states that indicates
the resources used by the handler, and for each lock state,
the resources that the lock protects. Those changes in
the semantics are not presented here, for simplicity and
readability purposes. At compile time, we check that the
resources used by each handler are indeed a subset of the
union of the resources protected by the locks taken by the
handler.
Third, deadlock freedom is the least obvious of the three

properties.

Proof. Define an ordering relation ≤ over locks, and en-
force by convention that each handler will have to take
the locks following the same order (this is enforced in
the semantics by the transitions lock_min(i)_name →
locked_min(i)_name → ... → lock_max(i)_name).
Suppose handlers H1, ...,Hn are deadlocked. Then by
using the definition of deadlock given in section III-C3,



we can define for each Hi, Xi the set of locks acquired
and Yi the set of locks that are still to be acquired, and
we have that ∃yi ∈ Yi ∩ Xi+1. Without loss of general-
ity, we can say that for each handler Hi, the transition
lock_y(i)_name is not enabled. By using the fact that we
have an ordering relation on locks, we can say that y1 ≤ y2
given that y1 ∈ X2 and y2 ∈ Y2. The same can be applied
circularly, which gives yi ≤ yi+1. Hence by antisymmetry
and transitivity we can conclude that y1 = ... = yn, giving
deadlock freedom by contradiction.

V. Experimental Results

In this section, our benchmarking shows how well the
problem formulation scales using PWMS. In particular,
given the complexity of the problem, we run PWMS for a
fixed period of time, at which a solution is returned that
may not be optimal.

We first define a metric based on comparing the result-
ing parallelism to the theoretical maximum. We do so by
defining two graphs in which the nodes are the handlers,
and then compare their densities. The first graph has its
edges defined by the relation Hi • Hj = false (i.e., the
handlers Hi and Hj can run simultaneously in theory) and
the second by the relation (Hi × At) • (Hj × At) = false
(ie the handlers Hi and Hj will run simultaneously in
executing the optimization). After computing the graph
density of the first graph (and discarding the ones in
which there is no parallelism possible (the density equal
to zero), we apply our optimization and compute the
density of the second graph and compute the relative
error (∆ = theoretical−experimental

theoretical ) which will be our
benchmarking main value.

In the benchmarking, we generate random Tower pro-
grams, run the lock refinement optimization on them,
then record the relative error of the results. The essential
question addressed in the benchmarking is how small a
relative error can be achieved using PWMS. open-wbo
supports setting a timeout. When the timeout is reached, if
the hard clauses are satisfied, then the best result reached
with respect to the weighted soft clauses is returned.
We can only hope to obtain an approximation on large
instances since lock optimization is NP-complete [10].

Each test case with R resources is generated by drawing
a number of resources per handler P between one and R
uniformly, and then for each handler draw P resources out
of R (in particular, for each test case, all handlers have
the same number of resources). To compare two concrete
data points, we allocate either 60 or 900 seconds to each
test case, the solver returning the best solution at the end
of this timeout (or the final result if the solver returns
before timeout). The results are shown in Figure 7. As
can be seen, the optimization scales well with the number
of resources, but not well with locks. Furthermore, in
most cases tested, more time does not improve the results,
suggesting that if a good optimization is not found quickly,

(a) 60 seconds.

(b) 900 seconds.

(c) 900s compared to 60s (differential image).

Figure 7: Comparison of the time spent on each test
case for a same test set. Each test case is defined by
its coordinates (number of handlers, total number of re-
sources, number of locks allocated). The ranges chosen are:
handlers ∈ {2, ..., 5}, resources ∈ {2, ..., 64} and locks ∈
{2, ..., 32}. Figures (a), (b): we show the relative error as
computed before (black: perfect computation, white: the
optimization failed and no parallelism is found). Figure
(c): we show the delta between (a) and (b). The grey color
indicates no change, the black means we improved the
results whereas the white shows that the result become
worse.



it is likely not to be found even with substantially more
time.2
The raw data can be found at https://github.com/

GaloisInc/pwms-instances.
VI. Case-Study: The SMACCMPilot Autopilot
To demonstrate the scalability of our approach on a

large code-base, we apply the optimization approach to
the SMACCPilot autopilot. The UAV (Unmanned aerial
vehicle) airframe is a quadcopter (3DR IRIS+), with two
primary flight controllers, a core flight controller and a
mission controller. The autopilot is open source.3

A. Autopilot Architecture
The flight computer hardware is the PX4 Pixhawk [25],

the main processor for which is a 168Mhz STM32F427
ARM-v7M Cortex-M4 CPU. The flight computer manages
sensor polling, sensor fusion, inner loop control, motor
control, and direct pilot input (from a 2.4GHz radio). The
flight computer software is written using Tower and there
are backends to generate code for both the eChronos [7]
and FreeRTOS [2] RTOSes.

The mission controller hardware is an Odroid-XU board
with a custom IO board. The board runs the formally-
verified seL4 microkernel [18]. The mission computer han-
dles higher-level processing and outer-loop control. For
example, it has a camera, WiFi, and an encrypted data
link over a 915MHz radio to the ground control station.
The mission computer and flight computer communicate
over a CAN bus.
B. Optimizing SMACCMPilot

The autopilot flight controller module has 157 monitors,
of which 32 have no shared resources (30 of them have
only one handler), and 41 monitors have handlers that
can run in parallel (i.e. the graph density is not null,
as defined in section V). The total lines of software are
just under 100K lines of code, not counting comments
or empty lines. After running our optimization (allowing
60 seconds to the PWMS solver for each monitor), in 39
monitors out of 41, we achieved a perfect result, having
a relative error of zero (as defined in section V). Of
the two remaining monitors, in the monitor managing
communication to a I/O coprocessor over high-speed serial
via a direct memory-access controller (px4io_driver), we
have a relative error of 0.17 (density of 0.68 instead of
0.82 in theory), and in the monitor managing inner loop
control (control), the optimization did not manage to
improve parallelism, yielding a relative error of 1. Those
results can be explained by the huge instances generated
for the last two monitors, as shown in the Figure 8.4

2Some additional noise was introduced into the benchmarks due
to PWMS non-deterministically entering a sleep state and having
to be killed off manually, which shows an abrupt degradation or
improvement in the results for some specific instances.

3http://smaccmpilot.org/
4The PWMS instances can be found at https://github.com/

GaloisInc/pwms-instances.

These results suggest that on a real code base developed
using a Hoare-monitor style, many locks are not necessary,
and there are generally significant optimization opportu-
nities. In our case, much of the shared state is relatively
localized to a small number of monitors.

Figure 8: Representation of the 41 monitors. Each monitor
is defined by its coordinates (number of handlers on a
logarithmic scale, total number of resources, number of
locks allocated). We show the relative error as computed
before (black = 0, perfect computation, white = 1, the
optimization failed and no parallelism is found) The empty
square on top right corresponds to the control monitor.
Its position shows the inability to solve the PWMS in-
stance for it within 60 seconds.

VII. Related work
Our work can be placed within the context of the lock

granularity debate in multicore processing [3]. Hoare mon-
itors introduce very coarse-grained—but safe—locking for
user applications. The benefit of fine-grained locking is
that it can be more efficient, but it can also subtly
introduce bugs. We refine locks automatically, up to a
fixed number of locks, allowing programmers to combine
the simplicity and elegance of Hoare monitors with more
efficient concurrency in an embedded real-time setting.
Others [10], [6], [12] have addressed the problem of

lock allocation for atomic sections [22]— a , with similar
goals to us. Most related is the work by Emmi et al.
in which the authors automatically allocate locks for
atomic regions [10]. Their work considers general-purpose
C programs, so they have a more sophisticated pointer
analysis to ensure safety. They encode the problem using
SAT; we arguably have a more natural encoding into the
more expressive PWMS. While our analysis is arguably
more coarse-grained, our SMACCMPilot case-study is
100k lines of code; theirs are over programs that are 2k
or fewer lines with no more than 11 atomic regions.
While somewhat rare in the real-time literature, Jeffay

uses a Hoare-monitor based solution in providing optimal-
ity results for scheduling preemptive sporadic tasks [14].

https://github.com/GaloisInc/pwms-instances
https://github.com/GaloisInc/pwms-instances
http://smaccmpilot.org/
https://github.com/GaloisInc/pwms-instances
https://github.com/GaloisInc/pwms-instances


A large body of literature exists on formal models of
concurrent systems [26], and we are agnostic regarding
other models, such as Kahn process networks [17]. Our
work is largely agnostic regarding the particular formal-
ism, although we want a language expressive and precise
enough to reason about the safety properties described in
Section III-C. While not pursued in this work, a formal
semantics paves the way to model-checking user-supplied
assertions about concurrent embedded programs [15].

VIII. Conclusion
We have described and formalized Tower, a framework

for specifying real-time Hoare monitors, as well as a
systematic optimization technique intended to improve
runtime efficiency. We have proved that this technique
maintains key safety properties, which has been experi-
mentally confirmed by tests on real hardware.

There are a variety of avenues for additional research.
One way to improve the results would consist in investigat-
ing other reward functions. We used a naive approximation
for the frequency of handler calls. There is a practical
trade-off: a more refined reward function might improve
performance in practice, while a simple reward function
might make PWMS solving simpler. Finally, we believe
Hoare-monitor based concurrency is interesting in its own
right and deserves more experimentation.

Acknowledgments
This work is supported by DARPA under contract no.

FA8750-12-9-0169. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

We thank Jason Dagit (Galois), Adam Foltzer (Galois),
Iavor Diatchki (Galois), Marc Pouzet (ENS), Pat Hickey
(Helium), Dumitru Potop-Butucaru (INRIA), Simon Win-
wood (Galois), and Eddy Westbrook (Galois) for their
advice. Pat Hickey is the primary original author of Tower.

References
[1] G. Audemard and L. Simon, “Predicting learnt clauses quality in

modern SAT solvers,” in Proceedings of the 21st International
Jont Conference on Artifical Intelligence (IJCAI). Morgan
Kaufmann, 2009.

[2] R. Barry, “FreeRTOS,” Website, http://www.freertos.org/.
[3] B. B. Brandenburg, “Scheduling and locking in multiprocessor

real-time operating systems,” Ph.D. dissertation, The Univer-
sity of North Carolina at Chapel Hill, 2011.

[4] P. Brinch Hansen, Class Concept. Prentice Hall, 1973,
ch. 7.2. [Online]. Available: http://brinch-hansen.net/papers/
1973b.pdf

[5] P. Chandrasekaran, S. K. K. B, R. L. Minz, D. D’Souza,
and L. Meshram, “A multi-core version of FreeRTOS verified
for datarace and deadlock freedom,” in Proceedings of Formal
Methods and Models for Codesign (MEMOCODE), Oct 2014,
pp. 62–71.

[6] S. Cherem, T. Chilimbi, and S. Gulwani, “Inferring locks for
atomic sections,” in Proceedings of the Conference on Program-
ming Language Design and Implementation (PLDI). ACM,
2008, pp. 304–315.

[7] Data61, “eChronos,” Website, 2016, https://ts.data61.csiro.au/
projects/TS/echronos/.

[8] N. Eén and N. Sörensson, An Extensible SAT-solver. Springer,
2004.

[9] T. Elliott, L. Pike, S. Winwood, P. Hickey, J. Bielman, J. Sharp,
E. Seidel, and J. Launchbury, “Guilt free ivory,” in Proceedings
of the ACM Symposium on Haskell. ACM, 2015.

[10] M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar, “Lock
allocation,” in Proceedings of the Symposium on Principles of
Programming Languages (POPL). ACM, 2007, pp. 291–296.

[11] P. Feiler, D. Gluch, and J. Hudak, “The architecture
analysis and design language (aadl): An introduction,”
Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, Tech. Rep. CMU/SEI-2006-TN-011,
2006. [Online]. Available: http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=7879

[12] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv,
Reasoning about Lock Placements. Springer, 2012, pp. 336–
356.

[13] C. A. R. Hoare, “Monitors: An operating system structuring
concept,” Communications of the ACM, vol. 17, no. 10, Oct.
1974.

[14] K. Jeffay, “Analysis of a synchronization and scheduling dis-
cipline for real-time tasks with preemption constraints,” in
Proceedings of the Real Time Systems Symposium, 1989, pp.
295–305.

[15] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri nets
and cpn tools for modelling and validation of concurrent sys-
tems,” International Journal on Software Tools for Technology
Transfer, vol. 9, pp. 213–254, 2007.

[16] M. Jones, “What really happened on Mars?” Website (posted
email), December 1997, http://research.microsoft.com/en-us/
um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html.

[17] G. Kahn, “The semantics of a simple language for parallel
programming,” in Information processing, J. L. Rosenfeld, Ed.
North Holland, Amsterdam, Aug 1974, pp. 471–475.

[18] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “sel4: Formal verification
of an os kernel,” in Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, ser. SOSP ’09.
New York, NY, USA: ACM, 2009, pp. 207–220. [Online].
Available: http://doi.acm.org/10.1145/1629575.1629596

[19] R. Lipton, The Reachability Problem Requires Exponential
Space. Yale University, 1976.

[20] A. Lyons and G. Heiser, “It’s time: OS mechanisms for enforcing
asymmetric temporal integrity,” CoRR, vol. abs/1606.00111,
2016. [Online]. Available: http://arxiv.org/abs/1606.00111

[21] R. Martins, V. Manquinho, and I. Lynce, Open-WBO: A Mod-
ular MaxSAT Solver,. Springer, 2014.

[22] B. McCloskey, F. Zhou, D. Gay, and E. Brewer, “Autolocker:
Synchronization inference for atomic sections,” in Proceedings
of the 33rd ACM Symposium on Principles of Programming
Languages (POPL). ACM, 2006, pp. 346–358.

[23] C. A. Petri, Grundsätzliches zur Beschreibung Diskreter
Prozesse. Basel: Birkhäuser Basel, 1967, pp. 121–140. [Online].
Available: http://dx.doi.org/10.1007/978-3-0348-5879-3_10

[24] S. Peyton Jones et al., “The Haskell 98 language and li-
braries: The revised report,” Journal of Functional Program-
ming, vol. 13, no. 1, pp. 0–255, Jan 2003.

[25] Pixhawk. (2016) Lorenz meier. Https://pixhawk.org/.
[26] G. Winskel and M. Nielsen, “Models for concurrency,” in Hand-

book of Logic in Computer Science (Vol. 4), S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, Eds. Oxford University Press,
1995, pp. 1–148.

http://www.freertos.org/
http://brinch-hansen.net/papers/1973b.pdf
http://brinch-hansen.net/papers/1973b.pdf
https://ts.data61.csiro.au/projects/TS/echronos/
https://ts.data61.csiro.au/projects/TS/echronos/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://doi.acm.org/10.1145/1629575.1629596
http://arxiv.org/abs/1606.00111
http://dx.doi.org/10.1007/978-3-0348-5879-3_10

	Introduction
	Hoare Monitors
	Tower: Hoare Monitors for Real-Time Systems
	Tower toolchain

	A Petri Nets Semantics for Tower
	Petri Nets
	Denotational Semantics of Tower
	Safety Properties
	Absence of Channel Cycles
	Absence of Race Conditions
	Deadlock Freedom


	Lock Refinement
	Lock Optimization
	New semantics
	Proofs of Safety

	Experimental Results
	Case-Study: The SMACCMPilot Autopilot
	Autopilot Architecture
	Optimizing SMACCMPilot

	Related work
	Conclusion
	References

