
A

Model Checking Distributed Mandatory Access Control Policies

PERRY ALEXANDER, The University of Kansas
LEE PIKE, Galois, Inc.
PETER LOSCOCCO, National Security Agnency
GEORGE COKER, National Security Agency

This work examines the use of model checking techniques to verify system-level security properties of a
collection of interacting virtual machines. Specifically, we examine how local access control policies imple-
mented in individual virtual machines and a hypervisor can be shown to satisfy global access control con-
straints. The SAL model checker is used to model and verify a collection of stateful domains with protected
resources and local MAC policies attempting to access needed resources from other domains. The model
is described along with verification conditions. The need to control state-space explosion is motivated and
techniques for writing theorems and limiting domains explored. Finally, analysis results are examined along
with analysis complexity.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; D.4.6
[Operating Systems]: Security and Protection

General Terms: Security, Verification, Design

Additional Key Words and Phrases: Access control, model checking, virtualization

ACM Reference Format:
Perry Alexander, Lee Pike, Peter Loscocco, and George Coker, 2015. Model Checking Distributed Mandatory
Access Control Policies. ACM Trans. Info. Syst. Sec. V, N, Article A (January YYYY), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Access control is a classic example of a cross-cutting, system-level property that cannot
be implemented or evaluated in a single component. In modern distributed systems,
access control is implemented by multiple, communicating components that together
must satisfy system-level properties. Among the more common mechanisms for imple-
menting security is mandatory access control (MAC) where resource access is governed
by a collection of rules defining rights that processes have with respect to system re-
sources. When examining system-level security properties, it is essential to consider
access control holistically even when assured that individual components implement
access control correctly. While verifying access control policies for individual compo-
nents to reveal component level problems is essential, integrated analysis is still re-
quired to assure system-level security properties.

A common concept in virtualization is implementing virtual platforms as collections
of virtual machines (VMs). Each virtual machine provides services to the platform

This work is sponsored by the United States Department of Defense.
Author’s addresses: P. Alexander, Information and Telecommunication Technology Center and Department
of Electrical Engineering and Computer Science, The University of Kansas; L. Pike, Galois, Inc; P. Loscocco
and G. Coker, National Security Agency.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1094-9224/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 P. Alexander et al.

that range from device access to full operating systems. Although the promises of this
new technology are significant, virtualization introduces new challenges to develop-
ers when making assurances about their systems. Among these challenges is realizing
system-level security policies as a collection of services running on individual, decen-
tralized virtual machines.

In this work we consider mandatory access control in a decomposed Xen
Dom0 [Barham et al. 2003] designed to support measurement, remeasurement and
attestation [Haldar et al. 2004; Coker et al. 2008, 2011] using a Trusted Platform
Module (TPM) [Trusted Computing Group 2007] and Virtual TPM (vTPM) [Berger
et al. 2006] based infrastructure. In the Xen virtualization environment, the Dom0
domain delivers platform and operating system services to other domains. Dom0 runs
a monolithic Linux kernel that must operate in a maximally privileged mode. Recent
research examines the decomposition of Dom0 into smaller domains, each providing a
system service with least privilege [Cihula 2006; Coker 2007]. The system motivating
this work decomposes Dom0 into a collection of infrastructure and service providing
virtual machines. Each virtual machine operates with least privilege, implementing
their own access control policy.

The collection of virtual machines providing Dom0 services—called the Supervisor
Virtual Platform (SVP)—must exchange data and share resources via Xen hypervisor
provided Inter-VM Communication (IVC). SVP domains must interact to perform their
tasks and guest operating systems must have access to devices, data, and operating
system primitives. Yet, if the entire platform is to be trustworthy, access to data and
resources must be controlled holistically. Specifically:

— Secrets must be protected and held confidentially
— Keys protecting secrets must themselves be protected
— Virtualized services must be restricted to authorized parties

while still allowing the platform to boot and run as expected when properly configured.
To check collections of domains for these properties, our model defines and composes

models enforcing access control policies for the hypervisor and individual domains
providing services. The hypervisor policy governs communication between domains
while domain specific policies govern access to resources. The model implemented
in SAL [Bensalem et al. 2000] checks for successful boot and absence of disallowed
resource accesses. Successful boot of a domain occurs when the domain acquires all
needed resources while successful boot of the platform is successful boot of all its do-
mains. Policies, domains, and resources are easily modified to support the SVP design-
ers’ need to explore alternatives. As such the approach and model are easily applied to
a wide collection of similar problems.

2. SYSTEM ACCESS CONTROL ARCHITECTURE
Stated in the classical security vocabulary, principals in our system are Xen virtual
machines—called domains—while objects are resources—services and data—required
for boot and operation. For example, a virtual platform controller is a domain that
requires data from a store and virtual machine build services from a domain builder.
Each domain attempts to acquire resources it needs by sending messages to domains
it believes provide those resources. A domain is considered successfully booted if it
acquires all resources necessary for its operation. Access control decisions in scope
for our analysis govern: (i) when communication between domains is allowed; and (ii)
when a domain should have access to an object. These access control decisions are
made collectively among numerous virtual machines and the hypervisor. Further com-
plicating access control decisions is composability of resources. For example, a key and

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:3

encrypted data that are not separately problematic together result in clear data that
should remain confidential.

Access control is implemented in each virtual machine and the hypervisor using an
SELinux [Mayer et al. 2007] style Flask [Spencer et al. 1999] implementation. Each
domain has an associated Flask configuration file that reflects its associated access
control policy. As is standard practice, domains and resources are assigned types used
to encode access privileges. We assume that security types are assigned with integrity
when domains and resources become available. Specifically, when a new domain is
deployed, the build system is trusted to faithfully assign the correct security type to
the new domain.

The Xen hypervisor is a distinguished principal that provides and controls access to
IVC mechanisms. IVC provides a trustworthy medium for requesting resources and
delivering services and data. The hypervisor is unaware of communication content—it
is only aware that one domain wishes to communicate with another and provides a
mechanism if allowed. Once the communication mechanism is established, the hyper-
visor does not monitor message content. It is trusted to provide messaging services
with integrity and confidentiality among communicating domains. Specifically, it will
not tamper with messages nor will it leak messages to unauthorized domains.

The policy subset governing IVC communication between principals is referred to
here as Platform MAC. When one virtual machine attempts to communicate with an-
other, Platform MAC is used to determine whether an IVC channel should be estab-
lished. We view Platform MAC in our work abstractly as a single policy statement over
communication. We do not try to specify its implementation as would be required in
an actual SELinux policy file.

Each additional domain beyond the hypervisor is configured separately with its own
access control policy. This policy is referred to as Local MAC and governs access to local
resources. When a request arrives via IVC, local MAC is used to determine whether
that request will be fulfilled and how the principal is allowed to respond.

Both Platform MAC and Local MAC for individual domains may change during the
platform operation. For example, Platform MAC is always updated from a boot MAC
policy to a run time policy when the boot sequence completes. It may also be updated
when new domains are added to the virtual platform. Similarly, Local MAC may be
updated by domains based on system observations or a directive from an authorized
domain.

Figure 1 represents how Platform MAC and Local MAC both play a part in any
object request. If one domain wishes to request an object from another, the hypervisor’s
Platform MAC first determines if the request should be allowed. This decision is based
only on the security types of the communicating domains. If the requesting message
arrives at the domain potentially providing the object, that domain’s Local MAC policy
determines whether the request will be honored. Thus, all access control decisions are
distributed across the virtual platform.

The distributed and stateful nature of domains, resources and MAC policy compli-
cates analysis. Because system resources traditionally managed by Dom0 are now con-
trolled by a collection of virtual machines, it is necessary for access control to be dis-
tributed among those virtual machines and the hypervisor. As there is no central con-
trol, domains act independently without coordinated decision making. Furthermore,
during boot, shutdown and normal system operation, domains, resources, and MAC
policy may change state. To establish platform trustworthiness properties, the collec-
tion of distributed, dynamic policies must be analyzed at the system-level. Analyzing
individual policy components within the hypervisor or individual domains may estab-
lish trust in local properties but is insufficient for guaranteeing platform properties.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 P. Alexander et al.

d Hypervisor s

r?

if MACh(Td, Ts) then r? else ⊥

if MACTs(σs)(Td, Tr) then r else ⊥

if MACh(Td, Ts) ∧MACTs(σs)(Td, Tr) then r else ⊥

Fig. 1. Sequence diagram documenting d requesting r from s. Communication from d to r may be disallowed
by the hypervisor; access to r may be disallowed by s; or r may be provided. Note that r? denotes a request
for r and ⊥ denotes a failed request.

3. SEMANTIC MODEL
Our underlying semantic model for MAC policy extends the model presented by Hicks
et al. [2007]. Distinctions include: MAC policy changing with domain state; the hyper-
visor MAC policy and domain MAC policy together governing all requests for resources
and services; and assessment must be performed over domains as a system rather than
over individual domains in isolation.

3.1. Two-Phase Access Control
Formally, let Ti be a type associated with resources and domains whose state is in-
variant. Let Ti(σ) be a similar type dependent on state σ. Intuitively, Ti(σ) represents
a principal whose state changes and impacts access control decisions made with re-
spect to it. Denote p as belonging to type Ti by p : Ti and similarly for p(σ) : Ti(σ).
Given a destination domain, d(σd) : Td(σd), making a request and a source domain,
s(σs) : Ts(σs), controlling the requested object, r : Tr, d in state σd is authorized to
access r if: (i) the hypervisor’s platform MAC policy allows communication between
domains of types Td and Ts; and (ii) local MAC policy associated with domains of type
Ts in state σs allows domains of type Td access to the object. This is expressed as a
relation, α:

α(d, s(σs), r) = MACh(Td, Ts) ∧MACTs(σs)(Td, Tr)

where MACh is the hypervisor’s MAC policy and MACTs(σs) is the MAC policy associated
with Ts(σs).
MACh specifies allowed communication among domain types. Given domain types

Td and Ts, MACh specifies whether a domain of type Td should be allowed to make
requests of a domain of type Ts independent of state. As the hypervisor is agnostic to
domain states and communication content, MACh depends only on domain type and
cannot depend on domain state. MACh is referred to as the Platform MAC.

MACTs(σs) specifies allowed access among resources and domain types. Given a re-
source of type Tr that a domain of type Ts in state σs controls, MACTs(σs) specifies access
types for a domain of type Td. For individual MAC access control decisions, MACTs(σs)

depends on the state σs which Ts is in. However, domain s cannot be aware of the state
of domain d and can depend only on its type. MACTs(σs) is referred to here as local
MAC.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:5

3.2. Domain State
The state of domains is expressed as a function σ : Tr → Tstatus where Tr is the object
type and Tstatus the status type. Given a resource r : Tr, its status in σ is σ(r). Tstatus
is defined as the enumerated type:

Tstatus = {needed, notNeeded, clear, encrypted, sealed}
where values indicate resource status.

The needed and notNeeded values express cases when the domain does not currently
have access to an object. If an object is needed, the domain will try to acquire it in a
clear state. If an object is notNeeded it will be ignored.

The clear, encrypted, and sealed status values express cases when the domain has
access to an object. The clear status value indicates a domain has access to the object
in the clear—the desired final state for a needed object required by the domain. The
encrypted and sealed values indicate that access to an object has been obtained, but
keys and/or encryption facilities are required to use it. The distinction between sealed
and encrypted is the resources required for obtaining clear data. sealed resources
require access to a TPM [Trusted Computing Group 2007] or vTPM [Berger et al.
2006] and a key for unsealing. encrypted resources require a key and may be decrypted
locally or using an external decryption resource.

Domains change state by attempting to acquire needed resources or composing ex-
isting resources. If an object is needed, the domain will attempt to obtain it by sending
requests to other domains it believes may provide it. Resources acquired in this man-
ner will change state to clear, encrypted or sealed based on how the remote domain
delivers the resource. If the object obtained is clear, then the acquisition process ends.
If an object is sealed or encrypted and the domain acquires keys and/or services to
unseal or decrypt it, the domain’s state changes to show the object as clear. If a do-
main is able to acquire the key for an encrypted or sealed object and a resource for
decryption or unsealing, the object’s status is changed to clear. Note that a domain
will not seek keys or cryptographic services unless they are specified as needed in its
state.

3.3. MAC Properties
Several properties must hold for all correct MACh and MACTs(σs) relations. We assume
that both MACh and MACTs(σs) are total. Specifically, MACh specifies a single access
control value for every Td and Ts pair. Similarly, MACTs(σs) specifies a set of allowed
access types for each Ts(σs) and Tr pair. When an access control decision is requested,
there will always be one and only one result.

Because the domain and range of MACh are equivalent, we may be able to say more
by examining reflexivity, symmetry, and transitivity properties. First, MACh is reflex-
ive. This is not a strong property as it asserts domains have access to their own re-
sources. Note that if an object is in an encrypted or sealed form, the object is treated as
available only in an encrypted or sealed form. The associated clear text object becomes
available following decryption or unsealing regardless of access control decisions. The
reflexive property does not imply that domains send requests to themselves for their
own resources. It simply captures the mathematical property that domains always
have access to their own resources.

Unfortunately, we can say much less about transitivity of MACh. Transitivity holds
among domains A, B, and C if when A is allowed to send requests to B and B to send
requests to C, then A is allowed to send requests to C. Formally:

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 P. Alexander et al.

MACh(TA, TB) ∧MACh(TB , TC)⇒ MACh(TA, TC)

There are clearly circumstances where A should not communicate with C because B
does – separation between A and C being one example. Thus, MACh cannot be assumed
transitive. Neither is MACh antitransitive as there are cases where legitimate commu-
nication should occur betweenA and C. Thus, any property related to transitivity must
be explicitly specified for each analysis.

Symmetry is similarly difficult to assert uniformly across all MACh instances. Sym-
metry among domains A and B holds if when A is allowed to send requests to B, then
B is allowed to send requests to A. Formally:

MACh(TA, TB)⇔ MACh(TB , TA)

Like transitivity, there are circumstances where symmetry simply cannot hold, but
neither can we assert asymmetry or antisymmetry must hold. Thus, no assumption is
made about symmetry of MACh. Any property related to symmetry must be explicitly
specified for each analysis.

Mathematical analysis of MACh and MACTs(σs) provides little in the way of desired
global properties that can be checked before analysis. However, it does provide guid-
ance for defining theorems to be verified about specific MACh and MACTs(σs). Specifi-
cally, antisymmetry and antitransitivity with respect to specific resources and resource
combinations prove to be important guides for setting specific analysis goals.

4. MODELING FRAMEWORK
We analyze our model using model checking techniques, specifically the SAL [Ben-
salem et al. 2000] model checking tool set. The base model defines a collection of do-
mains communicating via a common hypervisor that is faithful to the formal model.
Specifically: (i) the hypervisor accepts requests for resources and delivers those re-
quests as allowed by Hypervisor MAC policy; (ii) each domain honors requests received
as allowed by Local MAC policy; and (iii) each domain attempts to acquire resources it
requires and changes operational state when those resources are acquired. The state-
ful nature of domains and MAC policy mandates explicit modeling of state, motivating
our use of model checking techniques.

4.1. Hypervisor Model
The hypervisor model used to exchange messages among domains is shown abstractly
in figure 2(a) and concretely in figure 3. The model is parameterized over access?, a
relation that defines Platform MAC policy (MACh(Td, Ts)). Specifically, access? maps
pairs of domains to a Boolean value indicating whether communication is allowed.
Domains wishing to communicate do so by assigning a message to dataIn and setting
act to send when the hypervisor is in an empty state.

If the access? relation allows communication, the message is moved from dataIn to a
communications buffer to await receipt by the receiving domain. If the access? relation
does not allow communication, a nack message is placed in the communications buffer
indicating communication failure. The hypervisor state is then set to full allowing the
message recipient to retrieve the stored message.

When the hypervisor is in a full state, the receiving domain copies the communi-
cation buffer contents and sets act to read. The receiving domain then sends an ack
message back to the sender. Because Platform MAC is not symmetric, acknowledge-
ment messages are checked by inverting the access? relation.

Our rationale for modeling message passing explicitly is the stateful, distributed
nature of access control. Our experience analyzing other distributed systems [Frey

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:7

Empty Full

read

write and access granted
post ack for receiver

write and access refused
 post nack for sender

(a) Hypervisor model transition diagram.

idle

send
ACK/NACK

receive
ACK/NACK

update
resources

empty and needed(data)
send request(data)full and d=receiver

receive request(data)

receive ack or nack

access?(sender,data) and has?(data)
send ack or nack

(b) Domain model transition diagram.

Fig. 2. State transition diagrams for system models.

hypervisorD [access? : [[DOMAIN,DOMAIN] -> BOOLEAN]] : MODULE =
BEGIN

INPUT dataIn: MESSAGE, act: ACTION

OUTPUT hypervisorState : HYPERVISORSTATE, buffer: MESSAGE

INITIALIZATION
hypervisorState = hypervisorEmpty;
buffer = dataIn;

TRANSITION
[

act = send AND hypervisorState = hypervisorEmpty -->
buffer’ = IF (access?(dataIn.sender,dataIn.receiver)

AND NOT ack?(dataIn.payload))
OR
(access?(dataIn.receiver,dataIn.sender)
AND ack?(dataIn.payload))

THEN dataIn
ELSE (# payload := nackVal,

sender := dataIn.receiver,
receiver := dataIn.sender #)

ENDIF;
hypervisorState’ = hypervisorFull;

[]
act = receive AND hypervisorState = hypervisorFull -->

hypervisorState’ = hypervisorEmpty;
[]
ELSE -->

]
END;

Fig. 3. Complete model for hypervisor message exchange model.

et al. 2002; Kong and Alexander 2000; Dieckman et al. 1998] suggests that without
central coordination among domains and the hypervisor, it is not possible for us to
dismiss request ordering out-of-hand and the role of state change out-of-hand. The
devil is always in the details.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 P. Alexander et al.

4.2. Domain Model
The model used to specify communicating domains is shown abstractly in figure 2(b)
and concretely in figures 4 and 5. The model is parameterized over d, the domain’s
identity; localAccess?, a relation that defines the Local MAC policy (MACTs(σs)); init,
a relation that initializes resources; and updateState, a relation that defines how a
domain changes state. Domains wishing to communicate do so by assigning a message
to dataIn and setting act to send when the hypervisor is in an empty state. When
composed with the hypervisor model, the dataIn, act, and send variables are shared,
facilitating communication.

A domain’s state, σ, is defined by the has? array initialized by the init relation. The
has? array specifies the status of each object known to the system as one of clear,
encrypted, sealed, needed, or notNeeded as described in the formal model. The first
three values specify the encryption status of a held object. The final two values specify
whether the domain will attempt to acquire an object it does not have.
localAccess is a relation over domain IDs and resources indicating when a request

for a resource will be honored. When a request for a resource is received from a do-
main, evaluating localAccess indicates whether the request should be honored. It is
assumed that a domain always has access to its own resources, thus localAccess is
ignored when a domain accesses resources locally.

As a domain model changes state, it sends messages to acquire needed resources and
updates the local state of the object based on its success in doing so. How a domain
responds to data acquisition attempts is specified by updateState, a function from
domain state to domain state. updateState defines what new data can be inferred
from known data. When a new object is acquired, the has? array is updated directly
with the acquired object’s encryption status. updateState is then run to update the
system state given newly acquired data. updateState runs whenever state may have
changed—even due to a previous execution of updateState.

The updateState function works by examining every specified data status combina-
tion it is aware of. Effectively, it implements rules for inferring new state values as
a collection of simple conditionals. While requests to other domains gather resources,
updateState specifies what to do with them. Its only argument is a domain’s has? array
as the has? array captures the entire mutable state of a domain’s data.

For example, if a domain needs a data blob D that is encrypted with key k, it
will attempt to acquire both D and k by sending requests to other domains. As each
is acquired, the domain’s state is directly updated to reflect their individual status.
updateState is run each time a new resource is acquired. When k’s status is clear and
D’s status is encrypted, the updateState function will change the status of D from
encrypted to clear if the domain possesses or has access to a decryption capability.
Similarly, data that is in a sealed state is unsealed if its associated key is present and
its domain has access to TPM or vTPM services.

The model shown graphically in figure 2(b) is encoded by SAL transitions shown
in figure 5. The model state is initialized to an initial state, driverInit, where two
transitions are possible. If the hypervisor model is in a full state and the buffered
message is addressed to the domain, then the model processes the message. If the
hypervisor model is in an empty state and the domain needs an object, then the model
sends a message requesting the object. If there is no message for the domain and no
object is needed, the domain idles.

The first transition defines the case where a message is in the hypervisor buffer, is
addressed to the domain processing the message, and is not an ack. If this condition
holds, the domain’s object state, has?, is updated, and the hypervisor’s act input is set
to receive to allow further message processing. An acknowledgement is prepared by

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:9

domain [d:DOMAIN, localAccess?:[[DOMAIN,RESOURCES] -> BOOLEAN],
init:[RESOURCES -> DATASTATUS],
updateState: [DATASTATUSARRAY -> DATASTATUSARRAY]] : MODULE =
BEGIN

LOCAL driverState : DRIVERSTATE
LOCAL has? : DATASTATUSARRAY
LOCAL requested : PAYLOAD
GLOBAL dataIn: MESSAGE, act: ACTION
INPUT buffer: MESSAGE, hypervisorState: HYPERVISORSTATE

INITIALIZATION
driverState = driverInit;
has? IN p:DATASTATUSARRAY |

FORALL (i:RESOURCES) : p[i] = init(i);
dataIn = (# payload:=Z,sender:=domBuilder,receiver:=vtpmManager #);
act = idle;
requested=Z;

Fig. 4. Signature and initialization sections from the generic model instantiated to construct communicat-
ing domains.

observing the local MAC specification to determine if the message should be acknowl-
edged positively or negatively. The domain model moves to a state where it sends the
acknowledgement message and then returns to its initial state to await further mes-
sages.

The second transition defines the case where the domain needs access to an object it
does not have. A message is prepared requesting the needed object and is addressed to
a domain identified by the resourceLocator relation. This relation indicates where a
given object can be obtained and is included primarily to control state-space size. Ini-
tial models randomly selected domains to request resources from and quickly became
intractable. The requesting message is stored in the hypervisor input and processed
accordingly by setting act to send.

After sending the request, the domain enters a state where it waits for acknowledge-
ment. If a positive acknowledgement is received, the domain’s object array is updated
accordingly. If a negative acknowledgement is received, the object array is held invari-
ant over the state change. In both cases, the domain returns to its initial state and
restarts its message passing process.

4.3. Adversary Model
The adversary considered is a domain that participates in the system as: (i) a miscon-
figured, but otherwise benevolent actor; (ii) a hostile actor outside the system; or (iii)
a hostile actor masquerading as a legitimate domain. We follow principles established
by Dolev and Yao [1983] in that keys and hash values cannot be guessed by any agent
and must be obtained directly or by observing communication.

Each time a domain obtains a new resource, it attempts to change state by deriving
new information based on that resource. Given a key and data encrypted with that
key, an agent also possesses the unencrypted data. Similarly for sealed data, wrapped
keys, and hashes. A misconfigured or hostile domain accesses information it should not
by requesting it directly or requesting the pieces needed to create it. The same opera-
tions used by correctly configured domains to access data are used by misconfigured or
hostile domains.

The Platform MAC policy (MACh) prevents communication to or from a domain of
which it is not aware. If a domain is not specified in MACh, the hypervisor will not
allow communication with that domain. Thus, modeling a hostile outside domain is
useful only in conjunction with bad MACh configurations.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 P. Alexander et al.

TRANSITION
[

driverState = driverInit AND hypervisorState = hypervisorFull
AND d = buffer.receiver AND NOT ack?(buffer.payload) -->
has?’ = updateState(has?);
act’ = receive;
dataIn’ = (# payload:=

(IF localAccess?(buffer.sender,buffer.payload)
THEN IF has?[buffer.payload]=clear THEN ackVal

ELSIF has?[buffer.payload]=encrypted THEN ackEnc
ELSIF has?[buffer.payload]=sealed THEN ackSealed
ELSE nackVal
ENDIF

ELSE nackVal
ENDIF),

sender:=d,
receiver:=buffer.sender #);

driverState’ = driverTest2;
[]
(EXISTS (r:RESOURCES) : has?[r]=needed)

AND driverState = driverInit
AND hypervisorState = hypervisorEmpty -->

has?’ = updateState(has?);
act’ = send;
dataIn’ IN m:MESSAGE | has?’[m.payload]=needed

AND m.payload/=ackVal AND m.payload/=nackVal
AND m.payload/=ackEnc AND m.payload/=ackSealed
AND m.sender=d AND m.receiver/=d
AND m.receiver=resourceLocator(d)(m.payload)

;
driverState’ = driverTest1;
requested’ = dataIn’.payload;

[]
driverState = driverTest2 AND hypervisorState = hypervisorEmpty

AND d = buffer.receiver -->
act’ = send;
driverState’ = driverInit;

[]
driverState = driverTest1 AND hypervisorState = hypervisorFull

AND d = buffer.receiver -->
act’ = receive;
has?’[requested] = IF buffer.payload = ackVal THEN clear

ELSIF buffer.payload = ackEnc THEN encrypted
ELSIF buffer.payload = ackSealed THEN sealed
ELSE has?[requested]
ENDIF;

driverState’ = driverInit;
[]
ELSE -->

]
END;

Fig. 5. Transition section from the generic model instantiated to construct communicating domains.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:11

svp: MODULE =
(([] (id:PARTICIPANTS) :

domain[id,localMAC[id],initDomain[id],updateStateDomain[id]])
|| hypervisorD[platformMAC]);

Fig. 6. System model constructed from a hypervisor and several instantiated generic domain models.

Benevolent, misconfigured domains and hostile insiders are modeled by defining a
domain requesting resources it should not obtain. The simplest way to do this is sim-
ply define a domain that requests all resources. The trade-off is that including such
domains quickly causes state space explosion. As will be seen later, we are able to
model one or two such domains before encountering severe run time penalties.

4.4. Systems Models
Figure 6 is an example system model that instantiates a collection of domain models
with a single hypervisor model. SAL constructs an array of domain models using iden-
tifiers from the PARTICIPANTS type and composes those models asynchronously. It then
instantiates a single hypervisor model and composes that with the domain array.

In SAL, the notation ([] id:PARTICIPANTS) is a universal quantifier over the type
PARTICIPANTS where the asynchronous composition operator [] is used rather than
conjunction. What the specification in figure 6 defines is the asynchronous compo-
sition of one instance of domain for each member of type PARTICIPANTS instantiated
with initialization, transition, and access control functions. Specifically, localMAC[id]
is the local MAC policy, initDomain[id] is the local resource initialization function,
and updateStateDomain[id] is the state transformation function for domain id while
platformMAC is the hypervisor model’s platform MAC policy.

A significant benefit of this approach is the ease with which new system models
are defined. To add a new domain, one simply adds a new value to the PARTICIPANTS
type and updates the actual values instantiating localAccess?, init, and updateState
relations to model the new domain. These additions occur orthogonally to domains
that are previously defined. Additionally, the access? relation in the hypervisor must
be updated to allow communication with the newly added domain. Updating a do-
main is similar where each function is modified rather than new elements added to
PARTICIPANTS. This feature is critical for the consumers of our analysis results who
are continuously updating the analyzed design.

4.5. Theorems
Correctness conditions are classified as soundness and completeness conditions repre-
sented as safety and liveness properties respectively. Soundness conditions represent
properties that must be enforced by the access control policy. Such conditions include
restricting access to keys, domain’s local data, and services provided by domains. Com-
pleteness conditions represent properties that must be present in the system for cor-
rect function. Such conditions include domains obtaining data necessary for their func-
tion and that the system can reach a booted state in the presence of the access control
policy.

Soundness conditions are security properties specific to the goals of each access con-
trol policy. They specify that domains do not have access to resources they should not.
Such properties represent classical LTL safety properties of the form G(¬p) – “glob-
ally not p” – where p specifies a condition that must not hold. Such properties include
protection of data and keys; operation ordering; and integrity of hashes.

A concrete example of a soundness property is that ‘no domain other than the vTPM
Manager should have access to vTPM Manager data.’ vTPM data is initially encrypted

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 P. Alexander et al.

and should only be decrypted by its associated vTPM and never shared. The corre-
sponding LTL invariant is:

∀d : PARTICIPANTS ·G(d 6= vtpmManager⇒ σ(d, vtpmManData) 6= clear)

and its SAL representation is:

safeVtpmManData: THEOREM svp |- (FORALL (d:PARTICIPANTS) :
G(d/=vtpmManager => NOT has?[d][vtpmManData]=clear));

By extension, satisfying the theorem ensures the vTPM Manager does not redis-
tribute its data following decryption and no domain holds the encrypted vTPM Man-
ager data and its associated key. Because keys and the data they encrypt may always
transform into clear data, if any domain holds encrypted vTPM Manager data and
its key, it will hold vTPM Manager data in the next state. In effect, the theorem en-
sures the confidentiality of the vTPM Manager’s data in domains other than the vTPM
Manager.

The theorem safeVtpmManData and all such correctness conditions take the form of
an invariant or safety property over the subset of reachable system states. The an-
tecedent in the global condition d/=vtpmManager causes the invariant to be vacuously
true for the domain named vtpmManager. All other domains must satisfy the conse-
quent of the condition NOT has?[d][vtpmManData]=clear specifying that they do not
hold vtpmManData in the clear.

Completeness conditions define function correctness properties that must hold for
all access control policy instances. They specify that all domains reach states that
support normal operation. Such properties represent classical LTL liveness properties
of the form G(F (p))—“globally, eventually p”—where p specifies access to necessary
resources. Such properties include acquisition of needed resources; boot progress; and
presence of measurements. Completeness conditions ensure proper system function is
maintained in the presence of any access control policy.

A concrete example of a completeness property important in our model is that the
vTPM always, eventually has access to vTPM data. vTPM data is initially encrypted
and must be retrieved by the vTPM along with its key. The corresponding LTL theorem
is:

G(F (σ(vtpmManager, vtmpManData) = clear))

and its SAL representation is:
vtpmManagerStarts: THEOREM

svp |- G(F(has?[vtpmManager][vtpmManData]=clear));

Unfortunately, stating the theorem positively—along all paths the vTPM acquires
its data—results in a theorem that is computationally complex. In even simple models,
such theorems are frequently unprovable due to their computational complexity. For
this reason we approximate the liveness condition proof by searching for the negation
of the desired boot result. The negation of the LTL theorem is:

F (G(σ(vtpmManager, vtmpManData) 6= clear))

asserting that the vTPM eventually, always does not have access to vTPM data. Proving
this theorem shows that the vTPM never obtains its data, while disproving it provides
a witness to successful boot with respect to the vTPM in the form of a counterexample.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:13

We are ultimately interested in finding witnesses that can be further examined and
not successful proof of the theorem. All completeness theorems are stated in the same
manner by specifying the presence or absence of resources and services.

The new property is a safety property. We make one additional approximation drop-
ping the eventually quantifier resulting in the LTL theorem:

G(σ(vtpmManager, vtpmManData) 6= clear)

For the SAL property describing vTPM data above, the following safety property is
checked:

notVtpmManagerStarts: THEOREM
svp |- G(has?[vtpmManager][vtpmManData]/=clear);

As noted, notVtpmManagerStarts takes the form of an invariant or safety property
that is far easier to check. No state sequences need be explored implying each state is
visited only once and the model checker halts when a single counterexample is found.

The approximation can also be understood informally by looking at the structure of
boot. All successful boot sequences in the boot model enter a stuttering state exhibiting
desired properties of correct system boot. Technically, a successful boot sequence does
not terminate, but settles into a state that transitions only to itself. Thus the term
“stuttering”. If we can show this state is never entered, we show that boot is never
successful and our access control policy is in some way too strong. Conversely, if we
can show that state is entered, we show the system potentially boots.

The efficiency gained by approximating the liveness property with the failure of a
safety property is not without cost. First, the approximation is clearly not sound. SAL
will terminate as soon as the first counterexample is found, not all counterexamples as
implied by negating the original theorem. Remember that we are not verifying boot,
but verifying that boot can happen in the presence of the access control policy. Thus,
finding a case when boot occurs is sufficient for our purposes.

Second, if the counterexample found is a degenerate case, it represents a false-
positive. Each counterexample must be checked manually using the SAL simulator to
determine if it represents the stuttering state at the end of a state sequence consistent
with the original liveness theorem. The trace is examined to ensure that intermediate
states are entered and the resulting state is in fact the desired boot result. This is not
difficult, but must be done for each discovered counterexample to help ensure validity
of the boot path. Note that we encounter degenerate cases primarily due to errors in
the boot model during development and not due to bad access control policies.

4.6. Constructing Analysis Models
An access control policy is analyzed by defining and instantiating hypervisor and do-
main models with specific policies and resources and analyzing them with respect to
baseline theorems plus any platform specific theorems. As noted earlier, the Platform
and local MAC policies are specified by the access? and localAccess? functions re-
spectively. Resource initialization is specified by the init relation that provides initial
values for the internal has? function. Additionally, the resourceLocator function may
be updated to reflect misbehaving domains.

Figures 7, 8, and 9 show representative local access control, platform access control,
and system state representations. Each is accompanied by its logical equivalent to pro-
vide some intuition for the simplicity of moving from logical formalism to the analysis
tool. To emphasize, these are representative examples only and can easily be modified
or replaced.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 P. Alexander et al.

nothingButVtpmManData(d:DOMAIN,data:RESOURCES): BOOLEAN =
(d=vtpmManager AND data=vtpmManData);

Fig. 7. Local access control policy fragment allowing the vTPM Manger to request its data.

platformMAC(s,r: DOMAIN): BOOLEAN =
(IF r=tpm THEN (s=vtpmManager OR s=domBuilder)
ELSIF r=domBuilder THEN (s=tpm OR s=controller)
ELSIF r=vtpmManager THEN (s=tpm OR s=vtpm)
ELSIF r=controller THEN (s=domBuilder OR s=store OR s=vtpm OR s=measurer OR s=attestation)
ELSIF r=store THEN (s=domBuilder OR s=controller OR s=vtpm)
ELSIF r=vtpm THEN (s=vtpmManager OR s=store OR s=measurer OR s=controller)
ELSIF r=measurer THEN (s=controller OR s=attestation)
ELSIF r=attestation THEN (s=controller OR s=measurer)
ELSIF r=nameServer THEN TRUE
ELSE TRUE
ENDIF);

Fig. 8. Example Platform MAC policy implemented in the hypervisor.

Figure 7 is a simple policy that allows the vTPM Manager to request its data. It
implements the semantics of MACs(σs) defined as:

∀σs ·MACs(σs)(d, r) ≡ (d = vtpmManData) ∧ (r = vtpmManager)

MACs(σs) defines the only condition when a request for vtpmManData will be honored
and is state invariant. Specifically, the snippet is true when the requesting domain is
vtpmManager and the requested resource is vtpmManData in any system state.

The following definition of MACh provides the semantics of the hypervisor access
control policy, implemented as platformMAC in Figure 8, governing communication be-
tween domains. Recall that MACh defines a relation between domains indicating al-
lowed communication. Both the semantics and implementation are relatively simple
relations making them both simple to write and simple to verify.

MACh(r, s) ≡ r = tpm ∧ s ∈ {vtpmManager, domBuilder} ∨
r = domBuilder ∧ s ∈ {tpm, controller} ∨
r = vtpmManager ∧ s ∈ {tpm, vtpm} ∨
r = controller ∧ s ∈ {domBuilder, store, vtpm, measurer, attestation} ∨
r = store ∧ s ∈ {domBuilder, controller, vtpm} ∨
r = vtpm ∧ s ∈ {vtpmManager, store, measurer, controller} ∨
r = measurer ∧ s ∈ {controller, attestation} ∨
r = attestation ∧ s ∈ {controller, measurer} ∨
r = nameServer

Figure 9 represents two snippets from the larger function initializing the has? struc-
ture representing domain state. This function is called to initialize state when a do-
main model is started and is included as an example of how a system state is repre-
sented. The first block represents initialization of the TPM state indicating that it has
access to several data elements (e.g. k2Val and hashK1) and services (e.g. crypto and
extendPCR) in the clear state that it may provide to other domains.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:15

initLocalSvpLine : [DOMAIN -> [RESOURCES -> DATASTATUS]] =
(LAMBDA (d:DOMAIN) :

(IF d=tpm THEN (LAMBDA (v:RESOURCES) :
%% TPM starts with services and NVRAM contents. Technically
%% k2 is not in the TPM, but the TPM will eventually provide it
IF v=k2Val OR v=crypto OR v=extendPCR OR v=hashK1 OR v=hashWK2
THEN clear
%% Everything has access to resources in memory
ELSIF v=k1Val OR v=schema THEN clear
ELSIF v=k2Val THEN sealed
ELSE notNeeded
ENDIF)

...
ELSIF d=domBuilder THEN (LAMBDA (v:RESOURCES) :

%% K1 is in memory, crypto services are needed and hashk1
%% is needed to verify k1
IF v=hashK1 OR v=crypto THEN needed
%% Everything has access to resources in memory
ELSIF v=k1Val OR v=schema THEN clear
ELSIF v=k2Val THEN sealed
ELSE notNeeded
ENDIF)

ELSIF
...
ENDIF)

Fig. 9. Example domain state representation. Note the use of nested lambdas taking advantage of SAL’s
curried functions.

The second block represents the Domain Builder indicating that it has data and
services, but also that it needs hashK1 and a crypto capability. The TPM is always
considered running as it has all its required data and services in the clear, the Domain
Builder will not be considered running until the state of hashK1 and crypto change to
clear. The Domain Builder model will seek to acquire these necessary resources from
domains known to provide them.

In both blocks, the default for any resource is notNeeded indicating that a domain
does not have or need the resource and will not try to seek it. In models with bad actors,
domain state will indicate that resources are needed that in actuality are not causing
the domain to misbehave and try to acquire those resources. Furthermore, several
resources are available that are not actually within the domain, but are available in
system memory. There is no distinction between such resources and those available in
the domain itself.

Each model investigated is constructed by instantiating the hypervisor model’s
access? parameter with a specific platform MAC policy and instantiating each do-
main’s localAccess?, init, and updateState parameters with local MAC, initial re-
source state, and state transition functions respectively. The ability to swap in new
functions to consider other models is a key contribution of this work and is critical to
supporting system designers in real-time.

5. MODEL CHECKING RESULTS
Analysis is performed by customizing the baseline system model and checking sound-
ness and completeness properties. Theorems remain invariant over all analysis ac-
tivities as they represent security properties that must hold. Some analyses include
additional theorems, but theorems described previously are checked for all models.
System models define an access control policy and the set of domains it governs. Such
sets of domains range from normative systems to those representing various threats

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 P. Alexander et al.

in the form of rogue domains. The intent is to show the access control model allows
normal system boot while preventing security problems in badly configured systems
or systems with bad parts.

5.1. Analysis Models Evaluated
Specific models examined for each access control policy set investigate: (i) boot failure;
(ii) operational failures; and (iii) rogue domains with respect to each access control
model and are listed in table II. Boot failure models determine if a system can boot.
Operational failure models determine if policy failure at run-time exposes secrets to
unauthorized domains. Finally, rogue domain models examine the impacts of a domain
within the system or a domain external to the system actively attempting to acquire
unauthorized resources.

A boot failure model examines both successful and failed boot by examining a mini-
mally constrained system with respect to completeness and soundness theorems. The
system will be allowed to attempt boot in every way possible, whether it leads to a
booted state or not. Successful completeness theorems for individual domains and the
complete system indicate that there is a successful boot sequence under the specified
access control policy. Recall that a successful completeness theorem actually results
in a counterexample showing the successful boot sequence. Counterexamples are used
directly to check boot, but are also useful for debugging and sanity checking.

Verified soundness theorems indicate that in both successful and failed boot se-
quences secrets are protected. Due to the distributed nature of domains, a single do-
main entering an unexpected state and failing to boot properly will not prevent other
domains around it from booting. Domains requiring access to the failed domain may
also enter unexpected states and fail to boot. Analyzing boot failure models with re-
spect to soundness theorems determines that all reachable system states are safe with
respect to critical resources regardless of final boot correctness.

Operational failure occurs when some aspect of the access control policy allows ob-
ject access that should be disallowed. Although we assume the implementation of the
access control enforcement mechanism is correct, it is possible for policies to be incor-
rect. Operational failure models specifically determine that an access control policy
allows system boot to a known good state and keeps the system in a safe state during
normal operation.

Rogue attacks occur when a domain inside or outside the system attempts to gain
access to resources it should not have access to. While operational failures are a result
of implementation errors, rogue attacks are intentional. We model a rogue domain by
initializing its state to cause it to need resources it should not have access to. Then,
use the same correctness conditions verified for operational failure to check to see if
unauthorized resources are obtained.

5.2. Baseline Theorems
Table I lists a collection of baseline theorems verified for all system models. Each en-
try lists a theorem’s name, type and basic semantics of the theorem. The details of
individual theorems are specific to the domain. To understand the approach, one need
only understand we are checking properties that must be enforced by access control
and that must be present in the system. Note also that the theorem named svp does
not represent a theorem expressed in LTL, but a deadlock check over the entire model
that is necessary for the validity of other theorems.

Two pairs of soundness theorems check to ensure data is held confidentially and
that resources are not available before they should be. Specifically, safeVtpmManData
is the theorem discussed earlier while noVtpmBeforeMan is a new theorem that checks
to ensure that vTPM services are not provided before the vTPM Manager is available.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:17

Table I. Example collection of core theorems verifying domain boot and protection of services
and data.

Theorem Name Type Property Checked
safeVtpmManData Soundness Confidentiality of vTPM Manager data
safeVtpmData Soundness Confidentiality of vTPM data
noVtpmBeforeMan Soundness No vTPM running before the manager
noVtpmSvcBeforeData Soundness No vTPM services before data acquired
noVtpmWithoutMan Soundness No vTPM running without the manager
notDomBuilderStarts Completeness Domain Builder starts
notVtpmManStarts Completeness vTPM Manager starts
notVtpmStarts Completeness vTPM starts
notControllerStarts Completeness Controller starts
notStoreStarts Completeness Host Storage starts
notMeasurerStarts Completeness Measurer starts
notNameServerStarts Completeness Name Server Starts
svp Deadlock check No deadlocks

Note: Type indicates whether it is a soundness or completeness theorem and Property
Checked indicates property semantics. svp refers to calling the deadlock checker on the
svp model and does not name an actual theorem.

Table II. Models evaluated against theorems from table I.

System # of Domains Boot Single Rogue Double Rogue
SINIT Line - Measured by SINIT 5 855 Complete Complete
SVP Line - Supervisor VP up 7 1,238 Complete Partial
UVP Line - Supervisor VP plus drivers 15 7,625 Complete Partial
UVP - Supervisor VP through user VP 19 30,889 Partial None

Note: Numeric Boot value indicates worst case run-time for theorems checked in seconds. Complete,
Partial, and None indicate completeness of the analysis. Each domain is aware of 13 resources that it
may possess or attempt to acquire.

Similar theorems are checked for an individual vTPM instance. All completeness theo-
rems check to ensure that critical domains can boot into good states and have the form
of notVtpmManagerStarts previously.

Theorems listed in table I form the core collection of verification conditions that all
models are evaluated against. Additional theorems are added for specific cases and to
extend correctness conditions to other aspects of the model. A typical model requires
verification of roughly 40 theorems.

6. EVALUATION
The SAL [Bensalem et al. 2000] BDD-based finite state model checker, deadlock
checker, and bounded state model checker were used to check theorems over multi-
ple access control policies in the context of normal operation, boot failure and rogue
attacks. As SAL provides only a well-formedness checker and not a complete type
checker, the PVS [Owre et al. 1992] prover was used to verify type safety of all speci-
fications. The SAL BDD-based simulator was used extensively during debugging and
checking counterexamples.

6.1. Complexity Issues
In our initial naive verification studies we defined a collection of domains that ag-
gressively attempted to acquire all resources from all other domains. Specifically, each
domain examined its state and non-deterministically requested an object it did not
have from another, arbitrary domain. Thus, every analysis considered all possible re-
quests by all possible domains in all possible orders. This approach established the
total correctness of access control policies. However, state space complexity became
overwhelming after including only five domains with eight total resources.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 P. Alexander et al.

 notStoreStarts notVtpmStarts notVtpmBeforeMan notControllerStarts saveVtpmManData

2000

0

200

400

600

800

1000

1200

1400

1600

1800

Theorem Analyzed

An
al

ys
is

 T
im

e
 (s

ec
on

ds
)

notVtpmManStarts notMeasurerStarts safeVtpmDatanotVtpmSvcBeforeData noVtpmWithoutMan

2 Principals

1 Principal

Baseline

Fig. 10. Impact of allowing domains to request needed resources from arbitrary sources. Circles indicate a
baseline with no principals making arbitrary requests. Triangles and squares indicate time complexity of
one and two principals making arbitrary requests respectively.

Our first approximation limits the domains each resource can be requested from. The
system analyzed uses a name server indicating where domains may find resources. In
effect, this approximation implements that name server function. Figure 10 shows the
impact of including the name service capability. Five domains are configured to request
resources from only a limited set of sources providing a baseline for comparison. Then
two additional experiments allowed one and two domains to make arbitrary requests
respectively. As shown in Figure 10, allowing one domain to seek its resources from any
other domain results in a significant complexity increase of roughly 150%. Allowing
two domains to seek their resources from any other domain results in an additional
complexity increase, but of lower magnitude.

Our second approximation allows domains to request only resources that they need.
The same five principal model where all domains request only needed resources is
run as a baseline and two additional experiments allow one then two domains to seek
arbitrary resources whether needed or not. As shown in Figure 11, allowing one do-
main to seek all resources results in a substantial increase in complexity. Allowing
two domains to see all resources results in a complexity increase of nearly two orders
of magnitude.

The conclusion of these early studies is that a brute force analysis of access control
policies allowing all domains to attempt access to all resources is not feasible. The
two mechanisms discussed are implemented as the resourceLocator relation used to
target requests and the needed and notNeeded object status values respectively. The
resourceLocator relation limits where a domain will look for an object and corre-
sponds to a name service in the modeled system. The previously discussed needed
and notNeeded status values indicate whether a domain should seek an object. Thus,
a domain will only attempt to access an object if it is needed and will send requests
to domains specified by the resourceLocator relation. By limiting a domain to specific
object requests from specific domains, the state space becomes quite manageable for
systems involving nearly 20 communicating domains.

6.2. Model Checking Results
With approximations in place to control state space explosion, analysis of actual sys-
tem models begins. We examined four systems that included 5, 7, 15, and 19 domains
each with knowledge of 13 resources. The size of each system model corresponds with a
configuration representing an important boot or run-time subsystem identified by sys-
tem designers. Analysis of all theorems was performed with the SAL deadlock checker
(sal-deadlock-checker) and the SAL symbolic model checker (sal-smc) with slicing

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:19

 notStoreStarts notVtpmStarts notVtpmBeforeMan notControllerStarts saveVtpmManData

0

5000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

Theorem Analyzed

An
al

ys
is

 T
im

e
(s

ec
on

ds
)

notVtpmManStarts notMeasurerStarts safeVtpmData

2 Principals

1 Principal

notVtpmSvcBeforeData noVtpmWithoutMan

Fig. 11. Impact of allowing a single domain to attempt acquisition of all resources on analysis time. Circles
indicate a baseline with no principals requesting all resources. Triangles and squares indicate run times of
one and two principals requesting all resources.

195 6 7 8 9 10 11 12 13 14 15 16 17 18

35,000

0

5000

10,000

15,000

20,000

25,000

30,000

Number of Principles

An
al

ys
is

 T
im

e
(s

ec
on

ds
)

Invariant

Complex Counterexample
Simple Counterexample

Fig. 12. Run times for models generating counterexamples of increasing complexity.

enabled. The execution platform for each theorem was a dual-core 2.7Ghz Linux work-
station.

Figure 12 shows the run times of three typical theorems over models of size 5, 7,
15 and 19 domains. The three theorems represent finding a simple counterexample, a
complex counterexample, and fully verifying an invariant. Both counterexamples are
approximations of liveness conditions as discussed previously. The simple counterex-
ample case occurs when the model checker finds a counterexample relatively early in
the state space search. This specific example is checking to see if a domain obtains boot
resources. For this simple case the domain obtains its resources after sending a single
message. As expected, search times increase moderately from 10 to 194 CPU seconds.

The complex counterexample is similar to the simple counterexample, except that
the domain being checked must obtain numerous resources that are not all immedi-
ately available early in boot. Again, a predicate asserting that it does obtain resources
is negated and a counterexample is discovered. Note that for the complex counterexam-
ple, analysis times increase from 27 to 2034 CPU seconds as the number of principals
increases from 7 to 15 and to almost 8500 CPU seconds when analyzing 19 principals.

Finally, the invariant checks a safety property that requires checking all system
states. In this case the property is checking to determine that an encrypted object and
its key are never held by the same domain other than the owner of the object. As to be

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 P. Alexander et al.

 notStoreStarts notVtpmStarts notVtpmBeforeMan

35,000

 0

5000

10,000

15,000

20,000

25,000

30,000

Theorem Analyzed

An
al

ys
is

 T
im

e
(s

ec
on

ds
)

19 Principals

15 Principals

7 Principals

notVtpmManStarts notMeasurerStarts notVtpmSvcBeforeData
notControllerStarts

noVtpmWithoutMan
saveVtpmManData

safeVtpmData

Fig. 13. Time required for verifying all theorems in systems with 7 principals (circles), 15 principals (trian-
gles) and 19 principals (squares).

expected, the increase in resources from 78 to just over 30,000 seconds is significant.
However not as significant as one might assume. The invariant takes approximately 3
times as long as the complex counterexample in the model with 5 nodes. The invariant
takes approximately 3 times as long for 15 nodes as well—both increasing by two
orders of magnitude. The sharp inflection at 15 as the number of principals increases
is due to thrashing caused by increasing data structure size.

For completeness, figure 13 shows complexity results for all theorems that are
checked in models of size 7, 15 and 19. These results again show complexity increasing
with search depth as expected.

For each of our system models and access control policy sets, we performed 4 analy-
ses with respect to baseline theorems from table I plus specialized theorems for each
model. First we configured the system correctly and evaluated all allowed boot cases to
determine the minimal correctness of the policies and establish our systems will reach
booted states. We then repeated each analysis allowing each domain to individually
seek all resources emulating the behavior of a rogue domain. Next we repeated the
rogue domain analysis allowing bad domains to seek resources wherever they chose
to. Finally, we repeated the analysis allowing pairs of domains to see all resources,
emulating the behavior of pairs of rogue domains. For our 19 principal model, some
models ran for as long as two days during the last analysis.

We were able to discover several minor errors in the access control policies tested.
Interestingly, these issues were almost all discovered in the smaller models and not the
larger models. We believe this is due to the nature of the system examined where core
domains are the most complex in terms of their resource needs. Our larger models
are consistently supersets of smaller models confirming an incremental approach to
development and analysis taken over the course of the project.

The rationale behind analyzing models with multiple rogue domains is that two
domains together can acquire resources and services that one alone cannot. As an ex-
ample, consider a domain that can acquire a key and another that can acquire data
encrypted with that key. If both are rogue domains, they can access unencrypted data
together while it is impossible separately. Interestingly, our analysis revealed no such
problems in the policies we analyzed as long as the hypervisor’s policy remains sound
limiting communication among principles. While we were able to simulate such prob-
lems by weakening the hypervisor policy, we did not see such problems in the pres-
ence of the good hypervisor policy. This was a surprising result suggesting that the
two tiered approach modeled—hypervisor policy with domain policies—has significant
benefit.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:21

6.3. PVS Type Checking
One advantage to SAL is its implementation of a rich dependent type system in its
specification language. Because the SAL type system is dependent and allows pred-
icate subtypes—the ability to specify types as subsets of other types—the SAL type
system is not decidable. Using predicate subtypes it is quite possible to define types
that are empty and then declare a construct to be of that type. The result is an incon-
sistency that potentially invalidates an entire model.

Because the SAL well-formedness checker that performs rudimentary type checking
does not have a theorem proving capability, it cannot check type judgments generated
by its dependent type system. As a specific example, SAL cannot detect when a pred-
icate subtype is uninhabited. Even if it did implement a theorem prover, the process
cannot be fully automated. The SAL type system shares a semantics with PVS, also
developed by SRI. The PVS type system includes dependent types implemented using
predicate subtypes in the same manner as SAL. SAL users are thus encouraged to
move type declarations into PVS for semi-automated checking.

To perform type checking, declaration sections from SAL models are manually trans-
formed into a PVS theory with little modification—only array declarations require
changes due to small, syntactic differences. PVS is then used to perform type checking.
Any type check conditions (TCCs) that cannot be automatically discharged may then
be verified with the PVS prover. In all our example cases, TCCs generated by PVS are
discharged with the single, built-in PVS proof tactic.

7. RELATED WORK
Jaeger et al. [2003] state that access control policy analysis is a relatively new area
of investigation. Since then, a number of researchers have developed techniques for
specifying, analyzing and synthesizing access control policies. As Flask-style manda-
tory access control policy [Spencer et al. 1999] is used exclusively in this work, we focus
on related work with similar goals.

Researchers at MITRE [Guttman et al. 2004] provide a semantics and formal system
for checking SELinux configuration files using nuSMV [Cimatti et al. 2002]. By provid-
ing a denotation from Flask configuration primitives to logical representations, MITRE
is able to directly analyze Flask policies. Although we utilize a similar semantics for
understanding Flask policies, we abstract away the specifics of Flask implementation.
It is far easier for an engineer to specify their access control goals abstractly than using
the Flask language directly. The trade-off is the translation between Flask configura-
tion files and our models must be verified when moving Platform MAC into a Flask
form. Flask policies have not be implemented for the system we examine, further sup-
porting the use of abstract policy descriptions.

Margrave [Nelson et al. 2010; Fisler et al. 2005; Dougherty et al. 2006] uses BDD
analysis originally and subsequently Alloy to verify dynamic access control policies
specified using XACML [Moses 2003]. In addition to automatically transforming poli-
cies into BDD representations, Margrave provides a unique capability for comparing
two policies. A designer may design and maintain policies incrementally, understand-
ing the immediate impacts of a design decision. XACML differs from the abstrac-
tion used here in that XACML is an access control specification language implying
that Margrave analyzes actually policies rather than models. However, examination of
Margrave’s working examples reveals a similar approach ensuring both sufficient and
complete conditions for policies. We do not provide an automated transformation from
policies to SAL models, opting instead to provide a reusable, parameterized model for
policy exploration.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 P. Alexander et al.

Guttman et al. [2004], Margrave [Fisler et al. 2005; Dougherty et al. 2006], and our
work all use a BDD-based model checker to verify policy properties. Some notable dif-
ferences remain. While Margrave uses a custom translation to an underlying checker,
Guttman et al. and our work use off-the-shelf model checking systems with their own
high-level specification languages. Both Margrave and Guttman et al. work directly on
XACML and Flask configuration files while our work focuses on higher-level abstrac-
tions. Given the abstraction differences between models analyzed in these systems, it
is difficult to make significant comparisons among results.

Archer et al. [2003] describe using TAME [Archer 2000] to analyze SELinux security
policies like those analyzed in this work. TAME is a customization of PVS [Owre et al.
1992] that checks properties of IO automaton [Lynch and Tuttle 1989]. Like MITRE’s
work, TAME analysis is performed at the abstraction level of the Flask configuration
file. The TAME work differs substantially from our work as well as the MITRE and
Margrave work in that it uses a proof checker (PVS) rather than a model checker for
system analysis. By avoiding state-space explosion issues, TAME has the potential to
explore larger policies than state-space exploration techniques. The trade-off is the
lack of full automation during analysis. Although we use PVS in the work reported
here, it is only used to verify static type properties of specifications.

We noted earlier our adaptation of semantics defined by Hicks et al. [2007] to define
access control policies. Although we are not using Flask configuration files, policies we
analyze must be implemented as Flask rules making this semantics appropriate for
our use. Note that work by Hicks et al. [2007] is part of a larger effort verifying access
control policies in virtualized systems similar to ours [Hicks et al. 2007; Rueda et al.
2009].

Jaeger et al. [2003] present an early example of Flask policy analysis targeting in-
tegrity protection. They developed a custom analysis tool, Goyko, that identifies con-
flicts between a collection of integrity goals and an SELinux policy. This work is note-
worthy as it analyzes the example policy for SELinux, a significant real policy. Fur-
thermore, their focus on integrity properties is similar to our exploration of soundness
conditions, but does not capture completeness conditions.

Narain et al. [2008] present ConfigAssure, a general purpose tool for generating sys-
tem configurations from formal specifications. In related work, they propose automat-
ically synthesizing component configurations from first-order logic constraints using
a combination of Alloy [Jackson 2011] and SAT solving techniques. Specifications for
access control constraints along with sets of components to be configured are used to
generate and solve a SAT problem. Similarly, Schaad and Moffett [2002] use Alloy
for analyzing role-based access control configurations. While their target is role-based
access control rather than mandatory access control, this distinction is minor. Specifi-
cally, Schaad and Moffett use Alloy to specify the RBAC96 model, defining separation
properties and using Alloy to analyze for conflicts.

Zhang et al. [2005]; Guelev et al. [2004] have developed support for automatically
verifying RW specifications using a model checking approach then automatically syn-
thesizing XACML specifications from the same specifications [Zhang et al. 2004]. Us-
ing this work flow engineers write RW specifications defining read and write permis-
sions on resources, verify their models, and translate them into XACML. This work
flow is substantially similar to ours, except we use native SAL relations for represent-
ing MAC policies and do not automatically synthesize Flask configuration files. Given
that our target is a system under design, it is not useful to synthesize Flask at this
time.

Zanin and Mancini [2004] present a formal model, SELAC, for analyzing security
policy configuration files specifically for SELinux. The SELAC model formally defines
a model similar to that described earlier from Hicks et al. [2007]. They formally de-

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:23

fine specification constructs used in SELinux policy files and operations over those
constructs to make accessibility determinations. They show how users define accessi-
bility for an example system, but do not demonstrate automated analysis capabilities
present in other systems described here.

8. CONCLUSIONS
We have described a scenario where formal analysis of distributed access control poli-
cies informed the design of a virtualized platform. Specifically, we defined a semantics
for access control policies, defined policies for a specific experimental system, and ex-
amined their system-wide behavior to be implemented in Xen domains and the Xen
hypervisor. To achieve this, we defined soundness and completeness properties de-
scribing confidentiality and run-time resource access requirements respectively. We
used SAL to implement and analyze three classes of models representing boot failures,
nominal operational behavior, and rogue attacks with respect to properties describing
soundness and completeness properties. The results of our analysis supported system
designers by providing evidence of trustworthiness claims used to inform design deci-
sions. By developing a highly reconfigurable model and a modest computing cluster we
were able to provide feedback in a timely manner as needed by design engineers. Both
the approach and the specific models proved scalable and reusable across numerous
design alternatives.

The models continue to be expanded to include more operational detail. Specifically,
we are currently extending the model to include examination of locality in the vTPM
implementation and access control implemented over system measurement functions.
Both require additional access control policies and finer grained representation. While
this work is ongoing, we can safely say the original models continue to be useful and
are scaling to these new domains.

The MAC policies that we check are evolving models resulting from an ongoing de-
sign process. They are not MAC implementations and represent policies at a much
higher abstraction level. Although we could model MAC policy implementations, even
small policies would overwhelm SAL. Should we choose to address MAC policy imple-
mentation, the best approach would be synthesis of implementations from our high-
level policies.

We have not attempted application to problems outside MAC analysis or using other
access control mechanisms. An obvious next step would be extending the approach
to discretionary access control where principals can delegate permissions. Because
policies are specified as first-class in the model, it is possible to model delegation by
changing policies during execution. Specifying when delegation occurs would require
additional work, but could be done. Property-based access control models would prove
more difficult due to a need to check parameterized properties. We feel this could be
achieved, but not without significant work.

REFERENCES

M. Archer. TAME: Using PVS Strategies for Special Purpose Theorem Proving. Annals
of Mathematics and Artificial Intelligence, 29(1–4):139–181, 2000.

M. Archer, E. Leonard, and M. Pradella. Modeling Security-Enhanced Linux Policy
Specifications for Analysis. In Proceedings of the DARPA Information Survivability
Conferences and Exhibition (DISCEX’00), 2003.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pragg,
and A. Warfield. Xen and the art of virtualization. In Proceedings of the ACM Sympo-
sium on Operating Systems Principles (SOSP’03), Boldon Landing, NY, USA, 2003.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 P. Alexander et al.

S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueb, J. Rushby, V. Rusu,
H. Saidi, N. Shankar, E. Singerman, and A. Tiwari. An Overview of SAL. In C. M.
Holloway, editor, Fifth NASA Langley Formal Methods Workshop, Williamsburg, VA,
June 2000.

S. Berger, R. Caceres, K. Goldman, R. Perez, R. Sailer, and L. van Doorn. vTPM: Virtu-
alizing the Trusted Platform Module. IBM T. J. Watson Research Center, Hawthorne,
NY 10532 USA, 2006. URL http://www.kiskeya.net/ramon/work/pubs/security06.
pdf.

J. Cihula. Intel’s Xen Security Update. Presentation at Xen Summit, January 17-18
2006. URL http://www.xen.org/files/xs0106 intel xen security.pdf.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic model checking.
In Proceedings of the 14th International Conference on Computer-Aided Verification
(CAV’02), 2002.

G. Coker. Xen security modules (XSM). Presentation at Xen Summit, April 2007. URL
http://www.xen.org/files/xensummit 4/xsm-summit-041707 Coker.pdf.

G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell,
A. Segall, J. Sheehy, and B. Sniffen. Principles of Remote Attestation. International
Journal of Information Security, 10(2):63–81, June 2011.

G. S. Coker, J. D. Guttman, P. A. Loscocco, J. Sheehy, and B. T. Sniffen. Attestation:
Evidence and trust. In Proceedings of the International Conference on Information
and Communications Security, volume LNCS 5308, 2008.

D. Dieckman, P. Alexander, and P. A. Wilsey. ActiveSPEC: A Framework for the Spec-
ification and Verification of Active Network Services and Security Policies. In Pro-
ceedings of Formal Methods in Security Protocols, Indianapolis, IN, June 1998.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198 – 208, March 1983. ISSN 0018-9448. .

D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying and Reasoning about Dy-
namic Access Control Policies. In Proceedings of The International Joint Conference
on Automated Reasoning (IJCAR’06), August 2006.

K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and
Change-Impact Analysis of Access-Control Policies. In Proceedings of The Interna-
tional Conference on Software Engineering (ICSE’05), May 2005.

P. Frey, R. Radhakrishnan, H. Carter, P. Wilsey, and P. Alexander. A Formal Specifi-
cation and Verification Framework for Time Warp-Based Parallel Simulation. IEEE
Transactions on Software Engineering, 28(1):58–78, January 2002.

D. P. Guelev, M. D. Ryan, and P.-Y. Schobbens. Model-checking Access Control Policies.
In Proceedings of the 7th Information Security Conference (ISC’04), Lecture Notes in
Computer Science. Springer–Verlag, 2004.

J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Skorupka. Verifying information
flow goals in security-enhanced Linux. Journal of Computer Security, 13:2005, 2004.

V. Haldar, D. Chandra, and M. Franz. Semantic Remote Attestation – A Virtual Ma-
chine directed approach to Trusted Computing. In Proceedings of the Third Virtual
Machine Research and Technology Symposium, San Jose, CA, May 2004.

B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel. A logical specification
and analysis for SELinux MLS policy. In Proceedings of the 12th ACM symposium
on Access control models and technologies, SACMAT ’07, pages 91–100, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-745-2. . URL http://doi.acm.org/10.1145/
1266840.1266854.

D. Jackson. Software Abstractions: Logic, Language and Analysis. MIT Press, 2011.
T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity protection in the SELinux ex-

ample policy. In Proceedings of the 12th conference on USENIX Security Symposium

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

Model Checking Distributed Mandatory Access Control Policies A:25

- Volume 12, SSYM’03, pages 5–5, Berkeley, CA, USA, 2003. USENIX Association.
C. Kong and P. Alexander. Formal Modeling of Active Network Nodes using PVS.

In Proceedings of Formal Methods in Software Practice (FMSP’00), Portland, OR,
October 2000.

N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Automaton. CWI
Quarterly, 2(3):219–246, September 1989.

F. Mayer, K. MacMillan, and D. Caplan. SELinux by Example. Prentice Hall, 2007.
T. Moses. eXtensible Access Control Markup Language version 1.0. Technical report,

OASIS, February 2003.
S. Narain, G. Levin, S. Malik, and V. Kaul. Declarative Infrastructure Configuration

Synthesis and Debugging. Journal of Network and Systems Managment, 16(3):235–
258, Sept. 2008. ISSN 1064-7570. .

T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi. The Margrave
Tool for Firewall Analysis. In Proceedings of Large Installation System Administra-
tion, 2010.

S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System. In D. Ka-
pur, editor, Proc. of 11th International Conference on Automated Deduction, volume
607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, June
1992. Springer–Verlag.

S. Rueda, H. Vijayakumar, and T. Jaeger. Analysis of Virtual Machine System Poli-
cies. In Proceedings of the Symposium on Access Control Models and Technologies
(SACMAT’09), Stresa, Italy, June 2009.

A. Schaad and D. Moffett, Jonathan. A lightweight approach to specification and anal-
ysis of role-based access control extensions. In SACMAT ’02: Proceedings of the sev-
enth ACM symposium on Access control models and technologies, pages 13–22, New
York, NY, USA, 2002. ACM. ISBN 1-58113-496-7. .

R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The Flask
Security Architecture: System Support for Diverse Security Policies. In Proceedings
of the Eighth USENIX Security Symposium, pages 123–139, August 1999.

Trusted Computing Group. TCG TPM Specification. Trusted Computing Group, 3885
SW 153rd Drive, Beaverton, OR 97006, version 1.2 revision 103 edition, July 2007.
URL https://www.trustedcomputinggroup.org/resources/tpm main specification/.

G. Zanin and L. V. Mancini. Towards a formal model for security policies specification
and validation in the selinux system. In Proceedings of the ninth ACM symposium on
Access control models and technologies, SACMAT ’04, pages 136–145, New York, NY,
USA, 2004. ACM. ISBN 1-58113-872-5. . URL http://doi.acm.org/10.1145/990036.
990059.

N. Zhang, M. Ryan, and D. P. Guelev. Synthesising verified access control systems in
XACML. In Proceedings of the 2004 ACM workshop on Formal methods in security
engineering, pages 56–65. ACM, 2004.

N. Zhang, M. D. Ryan, and D. P. Guelev. Evaluating Access Control Policies Through
Model Checking. In Proceedings of the 8th Information Security Conference (ISC’05),
Lecture Notes in Computer Science. Springer–Verlag, 2005.

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.

