
In the proceedings of Formal Methods in Computer Aided Design (FMCAD), 2007. Best Paper Award.

Modeling Time-Triggered Protocols and Verifying Their Real-Time Schedules

Lee Pike
Galois, Inc.

leepike@galois.com

Abstract

Time-triggered systems are distributed systems in which
the nodes are independently-clocked but maintain syn-
chrony with one another. Time-triggered protocols depend
on the synchrony assumption the underlying system pro-
vides, and the protocols are often formally verified in an
untimed or synchronous model based on this assumption.
An untimed model is simpler than a real-time model, but it
abstracts away timing assumptions that must hold for the
model to be valid. In the first part of this paper, we extend
previous work by Rushby [1] to prove, using mechanical
theorem-proving, that for an arbitrary time-triggered proto-
col, its real-time implementation satisfies its untimed speci-
fication. The second part of this paper shows how the com-
bination of a bounded model-checker and a satisfiability
modulo theories (SMT) solver can be used to prove that the
timing characteristics of a hardware realization of a proto-
col satisfy the assumptions of the time-triggered model. The
upshot is a formally-verified connection between the un-
timed specification and the hardware realization of a time-
triggered protocol with respect to its timing parameters.

1 Introduction

Digital control systems are being designed for use
in safety-critical contexts such as automobiles (“drive-
by-wire”) and commercial aircraft (“fly-by-wire”) [2, 3].
Safety-critical systems embedded in commercial aircraft
must have a failure rate probability no greater than 10−9

per hour of operation [4, 5]. A design error causing a sys-
tem to have a higher rate of failure—say a failure rate of
10−8 per hour—is unacceptable, yet it is infeasible to de-
termine whether a system has this reliability through testing
alone [6]. The inability to demonstrate correctness through
testing motivates us to prove these systems are correct.

The specific class of control systems considered in this
paper are time-triggered systems. Time-triggered systems
are implemented as distributed systems in which each node
in the system is independently-clocked, and under normal

operating conditions, synchronization mechanisms main-
tain tight synchronization among the local clocks [5]. When
the nodes are tightly synchronized, the temporal behavior of
the system can be abstracted as if the nodes execute in lock-
step. This sort of abstraction is characterized by the syn-
chronous model or untimed model. At the level of abstrac-
tion that the synchronous model provides, formal correct-
ness proofs of the protocols are difficult but feasible [7, 8].

The synchronous abstraction depends on a realization
(i.e., a concrete implementation—hardware and/or software
executing on hardware) satisfying key properties regarding
scheduling, message delays, clock skew, message-reception
windows, and so forth. A more fine-grained model that ad-
dresses these aspects for time-triggered systems is the time-
triggered model. The essential feature of this model, as
opposed to an asychronous model, is that while the local
clocks of individual nodes may not be perfectly synchro-
nized, their disharmony is bounded.

As demonstrated by Rushby, a subset of time-triggered
protocols can be systematically shown to implement their
synchronous specifications, provided certain timing con-
straints are met by the underlying system [1]. However,
Rushby’s work suffers two shortcomings. First, despite
his formal verification of the time-triggered model in the
PVS mechanical theorem-prover [9], three of the four sys-
tem assumptions (or formally, axioms) he postulates not
only fail to model the actual behavior of time-triggered sys-
tems, but are in fact inconsistent. In a recent note by this
author, these axioms were mended and their consistency
proved [10]; we use the mended axioms herein. Second,
the model is too constrained to model some actual real-
izations of time-triggered protocols. Therefore, we gen-
eralize the theory to accommodate time-triggered protocol
realizations (and their optimizations) that fall outside the
theory developed. Specifically, the theory is extended to
accommodate (1) event-triggered behavior, (2) communi-
cation delays, (3) reception windows, (4) non-static clock
skew, and (5) pipelined rounds (these generalizations are
explained and justified in Section 3). These extensions are
used to model, for example, the time-triggered protocol im-
plementations of NASA Langley’s SPIDER, an ultra fault-

1

tolerant fly-by-wire communications bus [11]. This gener-
alized time-triggered model, a proof of its consistency, and
a proof that an arbitrary time-triggered protocol implements
its synchronous model have been formulated in PVS (based
on Rushby’s original PVS specifications and proofs), and
those specifications and proofs are available online.1

In the second half of this paper, we demonstrate how to
formally verify that a protocol realized in hardware satis-
fies the scheduling constraints of the time-triggered model.
The verification is done using SRI’s SAL family of model-
checkers, which combines a bounded model-checker imple-
menting k-induction with SRI’s satisfiability modulo the-
ories (SMT) solver, Yices, to prove LTL safety properties
over infinite-state systems (our proofs essentially depend
on the theory of linear arithmetic and uninterpreted func-
tions) [12]. These specifications and proofs can also be
found on-line.1 Besides being a novel application of formal
verification in general, the approach showcases a particu-
larly successful application of recently-developed infinite-
state model-checking techniques.

Synchronous Model

Correctness
Requirements

Protocol A Protocol B

Implements
(proved in PVS)

Satisfies
(proved in PVS)

Time-Triggered Model

Time-Triggered
Timing Requirements

Protocol A Protocol B

Schedule
satisfies

(proved in SAL)

Figure 1. Time-Triggered Protocol Verifica-
tion Strategy

Taken together, we have a methodology for proving that
a hardware realization of a time-triggered protocol imple-
ments its synchronous specification, with respect to its tim-
ing parameters, as illustrated in Figure 1.

The remainder of this paper proceeds as follows. The
synchronous model’s syntax and semantics is provided in
Section 2. In Section 3, the syntax and semantics of a gener-
alized time-triggered model are given, and a simulation the-
orem is stated. In Section 4, we demonstrate how to prove
the schedule for a protocol realization satisfies the schedul-
ing constraints of the time-triggered model using as a case-
study the SPIDER Distributed Diagnosis Protocol (proofs
for the SPIDER Clock Synchronization Protocol and sched-
ule optimizations are provided on-line1). Concluding re-

1Specification and proof files can be found at http://www.cs.
indiana.edu/∼lepike/pub pages/fmcad.html. To improve
the presentation in this paper, slight syntactic modifications are made from
the PVS specifications (e.g., some functions are uncurried).

marks are given in Section 5.

2 The Synchronous Model

The synchronous model presented is a variant of Lynch’s
formulation [13] subsequently adapted by Rushby for
the purposes of formulating it in a mechanical theorem-
prover [1]. Here, we make some slight modifications to
the language and also introduce a round-independence re-
lation, to be described shortly. In the synchronous model,
distributed protocols are specified as if the nodes in the dis-
tributed system execute in lock-step. A synchronous pro-
tocol proceeds in rounds. In a round, nodes synchronously
and instantaneously update their outbound channels (in the
communication phase) and then their local state (in the com-
putation phase), based on the incoming messages received
on their inbound channels [13].

2.1 Syntax

We begin by fixing a set of messages, mess . A distin-
guished element null represents the absence of a message
(it can also represent a “do not care” message). Let P be
a nonempty set of node identifiers. For each p ∈ P , the
following sets and total functions are defined:

• A set of node identifiers, out nbrsp, identifying the
outbound neighbors; i.e., the nodes to which p is con-
nected by outbound channels. A set of node identifiers,
in nbrsp, identifying the inbound neighbors, can be
defined from the outbound neighbors:

in nbrsp
df= {q ∈ P | p ∈ out nbrsq}

• A set of states, statesp. A distinguished component of
the state, r, keeps track of the current round. The state
init sp is the initial state.

• A message-generation function msgp : statesp ×
out nbrsp → mess that returns the message p sends
to each node to which it is connected by an outbound
channel; null is returned if no message is sent.

• A higher-order state-transition function transp :
statesp × (in nbrsp → mess) → statesp that returns
the new state of p based on the current state and inputs
generated by its inbound neighbors.

Sometimes we omit the node-identifier subscript from a set
or function to denote a global representation of the system.
For example, we define the global state to be the function
states df= λp. statesp.

Finally, we introduce a round-independence relation
independent over rounds that holds if messages to be sent

2

in r+1 do not depend on the computation that occurs during
round r. This relation is used to determine whether a mes-
sages for the subsequent round can be sent before compu-
tation in the current round is complete. We call this round-
based pipelining.

2.2 Semantics

The semantics of a synchronous specification can be
given by a transition system expressed as a recursive func-
tion. The communication phase is modeled by each node
applying its msg function, and the computation phase is
modeled by each node applying its trans function. The
function run takes the number of rounds of execution and
the global initial state and returns the final global state
(runp is p’s component of the global state returned by
run). Thus, for the initial round init rnd and the initial
state init s of a protocol, its behavior can be defined as
run(init rnd , init s), where

run(r, s) df=
if r = 0 then s
else λp. transp(runp(r − 1, s),

λq. msgq(runq(r − 1, s), p)),
where q ∈ in nbrsp

The protocols we model execute for only a finite number of
rounds. However, a protocol may be scheduled to execute
an infinite number of times.

The meaning of the round-independence relation is
captured by Axiom 1, which describes the behavior of
pipelined communication and computation phases by stat-
ing that if the relation holds at round r, then the messages
generated from the states in rounds r and r − 1 are equiv-
alent. The intuition is that if the computation phase of r
does not depend on the messages sent in the communica-
tion phase of r, then the computation phase may begin be-
fore the computation phase ends. We motivate the use of
the relation in pipelining optimizations in Section 3.

Semantic Axiom 1 (Pipelining)

¬independent(0)
and (independent(r)

implies (∀q ∈ out nbrsp :
msgp(runp(r, init s), q)

= msgp(runp(r − 1, init s), q)))

3 The Generalized Time-Triggered Model

We extend the synchronous model presented in the pre-
vious section to take into account the real-time behavior of
the protocols’ execution. Some of the syntax comes directly

from the original model Rushby developed [1]; the syntac-
tic extensions we introduce for the time-triggered model are
noted specifically. After the extensions, we describe the se-
mantics of the model and then present a simulation theorem
between an arbitrary protocol in the synchronous and time-
triggered models.

Here, we take a moment to motivate informally the gen-
eralizations to Rushby’s original time-triggered model. We
use these generalizations to model the NASA SPIDER pro-
tocols and their realizations. We do not know to what extent
these generalizations support current realizations of sim-
ilar time-triggered systems, such as SAFEbus, TTA, and
FlexRay [4], but the generalizations can be used to ex-
plore more aggressive timing characteristics for any time-
triggered system satisfying the model.

Recall the generalizations for which we make provi-
sions: (1) event-triggered behavior, (2) communication de-
lays, (3) reception windows, (4) non-static clock skew, and
(5) pipelined rounds; we motivate them in the same order.

Event-Triggered Behavior Some protocols, while
mostly time-triggered, occasionally manifest event-
triggered behavior—actions driven by the observance of
some event rather than reaching some pre-scheduled clock-
time. A typical example is a clock synchronization protocol
such as Davies and Wakerly’s protocol [14] or Srikanth
and Toueg’s protocol [15]. Some of the messages sent in
the protocols may be determined by the global schedule,
but others are event-triggered: when a node receives some
number of messages over its inbound channels, it sends a
synchronization (or echo) message.

Communication Delays Communication is not instanta-
neous; latency depends on both the distance a message trav-
els and the medium through which it travels. Latency must
be accounted for in tightly synchronized systems with large
differences in latency between nodes. Furthermore, for a
given distance and medium, there is a nominal latency, and
error bounds are also introduced to bound the greatest de-
viation from the nominal latency that is not regarded as a
faulty communication.

Reception Windows Based on the anticipated send time,
the expected latency, and the local clock-time, a receiving
node will open a reception window, which is the set of clock
ticks during which the node allows incoming messages in
a given round. Messages received outside the window are
marked as being faulty. We introduce reception windows
into the model to ensure that the windows in a realization
do not violate the synchrony assumption.

Non-Static Clock Skew Provisions for reasoning about
non-static clock skew have two benefits. First, they al-

3

low protocols that satisfy the assumptions of the time-
triggered model but nevertheless directly affect the sys-
tem’s timing characteristics (e.g. clock synchronization,
self-stabilization, and startup protocols [11]) to be speci-
fied in a time-triggered model rather than a more general
asynchronous model. Second, they allow for formal reason-
ing about schedule optimizations. Time-triggered system
schedules (also known as task-descriptor lists [5]) are usu-
ally designed with respect to the maximum possible clock
skew during the normal operation of the system. When
clocks are not resynchronized, the maximum possible clock
skew increases as a linear function of time. If the differ-
ence between the possible clock skew at different points in
the system’s execution is significant, then a schedule can be
tightened at those points that the clock skew is small.

Pipelining Rounds Embedded control systems often
have hard real-time deadlines that may require aggressive
schedules. It may be possible to pipeline the communica-
tion and computation rounds of a single protocol or of mul-
tiple protocols for better throughput; we call pipelining of
this sort round-based pipelining. For rounds of the schedule
satisfying Axiom 1, the computation phase can begin be-
fore the communication phase has completed. Section 4.0.6
mentions how to exploit this in schedules that interleave dis-
tinct protocols.

3.1 Syntax

We define real-time to be the set of real numbers R and
clock-time to be the set of integers Z. Real-time is mea-
sured in some arbitrary unit of time (e.g. milliseconds), and
clock-time is measured in ticks. By convention, real-time
variables and constants are lower-case and clock-time vari-
ables and constants are upper-case.

A time-triggered specification extends the syntax for a
synchronous specification as follows. (The syntax deals
with both the protocol specification and its time-triggered
implementation.)

Let P be a nonempty set of node identifiers. For each
p ∈ P , the following total functions are defined:

• An inverse clock function Cp : R → Z that takes a
real-time as an input and returns a clock-time.

• A schedule function schedp : N → Z from rounds to
clock-times. It parameterizes the communication and
computation phase schedules, defined as offsets from
the beginning of the round. To accommodate event-
triggered behavior, we take a more general view of
the schedule function than Rushby does: the schedule
function may determine the time at which some event
occurs, for a time-triggered action, or it may simply

denote the clock-time at which an event occurs, for an
event-triggered action.

• A relation sentp ⊆ out nbrsp ×mess ×R, the tuples
of which consist of a node q (that is an outbound neigh-
bor of p), a message m, and a real-time t and holds if
p sent message m to q at real-time t.

• A relation recvp ⊆ in nbrsp×mess×R, the tuples of
which consist of a node q (that is an inbound neighbor
of p), a message m, and a real-time t and holds if p
received message m from q at real-time t.

In addition, the following functions and constants, not pa-
rameterized by node identifiers, are also defined:

• A schedule discrepancy function Λ : N → Z from
rounds to clock-times denoting the maximum clock-
time discrepancy between the schedule functions for
that round. This function is added to Rushby’s model
since nodes may not share the same schedule (due to
event-triggered behavior).

• A communication offset function D : N → Z from
rounds to a clock-time offset. It determines the clock-
time at which nodes send messages in each round.

• A communication delay δnom > 0 is a real-time con-
stant that denotes the expected nominal delay between
when a message is sent and when it is received. The
small real-time constants el > 0 and eu > 0 denote
the maximum offsets from δnom at which a message
is received sooner (δnom − el) or later (δnom + eu)
than expected, respectively. We require el < δnom

and eu < δnom . These constants, added to Rushby’s
model, provide finer-grained reasoning on the real-
time bounds of latency-sensitive time-triggered proto-
cols (e.g., clock synchronization protocols).

• A computation offset function P : N → Z from
rounds to a clock-time offset. It determines the clock-
time at which nodes begin computation in each round.

• A maximum drift rate ρ ∈ R such that 0 < ρ < 1. This
is the maximum rate at which a clock may drift.

• A dynamic clock skew Σ(r) ≥ 0 function is intro-
duced to Rushby’s model, which denotes the greatest
clock-time skew occurring between a sender and re-
ceiver during the duration of round r.

• A reception window function R : N → Z from
rounds to a reception window offset is also introduced
to Rushby’s model. It marks the clock-time at which a
node accepts inbound messages. In round r, the recep-
tion window closes at P (r).

4

3.2 System Assumptions and Schedule
Constraints

We constrain the interpretations that can be given to the
syntax when defining a time-triggered system with the fol-
lowing system assumptions and schedule constraints. The
system assumptions describe the assumed behavior of the
underlying system—most notably, the behavior of the lo-
cal clocks. The schedule constraints ensure the schedule of
time-triggered events, given the system assumptions, gives
rise to synchronous behavior.

3.2.1 System Assumptions

As in Rushby’s original model, we present four system as-
sumptions [1]; recalling that three of Rushby’s formulations
were inconsistent [10], we present mended and generalized
assumptions here. As usual, free variables are implicitly
universally-quantified.

Assumption 1 bounds the maximum drift of a clock in
terms of the maximum drift rate, ρ.

System Assumption 1 (Clock Drift Rate) Let t1 ≥ t2.
Then b(1 − ρ) · (t1 − t2)c ≤ Cp(t1) − Cp(t2) ≤ d(1 +
ρ) · (t1 − t2)e.

Lemma 1 shows that the clocks are monotonic.

Lemma 1 t1 < t2 implies Cp(t1) ≤ Cp(t2). proof By Sys-
tem Assumption 1, Cp(t2) ≥ Cp(t1) + b(1− ρ)(t2 − t1)c.

Assumption 2 ensures the skew between clocks is no
greater than the maximum clock skew so that if any clock
is in the communication phase of round r, then all of the
clocks are synchronized within the skew of that round.
Clock-time schedp(r) + D(r) is the clock-time at which
p sends its messages in round r, and schedp(r) + P (r) is
the clock-time at which it begins the computation phase of
round r.

System Assumption 2 (Clock Synchronization)

(max(Cp(t), Cq(t))
≥ min(schedp(r), schedq(r)) + D(r)

and min(Cp(t), Cq(t))
≤ max(schedp(r), schedq(r)) + P (r))

implies |Cq(t)− Cp(t)| ≤ Σ(r)

Assumption 3 ensures that messages are received within
the communication delay of when they are sent, modulo
error, and that messages received were not “spontaneously
generated.”

System Assumption 3 (Maximum Communication Delay)
There exists some real-time d, where δnom − el ≤ d ≤
δnom + eu , such that sentp(q, m, t) if and only if

recvq(p, m, t + d), and there exists some real-time
d′, where δnom − el ≤ d′ ≤ δnom + eu , such that
recvq(p, m, t) if and only if sentp(q, m, t− d′).

Assumption 4 constrains the maximum discrepancy per-
mitted between the schedule functions of two nodes for a
given round. For a particular implementation, whether this
constraint is met depends on the constraints for the event-
triggered behavior of the individual nodes.

System Assumption 4 0 ≤ |schedp(r)− schedq(r)| ≤
Λ(r).

3.2.2 Schedule Constraints

We present six schedule constraints to ensure the time-
triggered schedule implements a synchronous system. Con-
straints 1 - 3 generalize Rushby’s original constraints [1],
and constraints 4 - 6 are new constraints necessary to con-
strain pipelining and the scheduling of receivers’ reception
windows. The schedule constraints are what we later prove
hold of the time-triggered schedules in Section 4.

Constraint 1 ensures that the computation offset of round
r falls within round r.

Schedule Constraint 1 (Offset Constraint) 0 < P (r) <
sched(r + 1)− sched(r).

Schedule constraint 2 gives the minimum communica-
tion offset. Note that if the nominal delay is substan-
tially larger than the clock skew (as is the case in tightly-
synchronized systems), the skew has little bearing on when
messages can be sent.

Schedule Constraint 2 (Communication Constraint)
D(r) ≥ Σ(r) + Λ(r)− b(1− ρ) · (δnom − el)c.

Similarly, constraint 3 gives the minimum computation
offset. The offset must be greater than the latest time at
which a non-faulty message may arive, which is the sum
of the communication offset, the clock skew, the maximum
schedule discrepancy, and the maximum delay.

Schedule Constraint 3 (Computation Offset Constraint)
P (r) > D(r) + Σ(r) + Λ(r) + d(1 + ρ) · (δnom + eu)e.

Constraint 4 ensures that pipelining only occurs when
the messages to be sent do not depend on the computations
from the previous round, and constraint 5 restricts pipelin-
ing to consecutive rounds. The effect of pipelining is illus-
trated in Figure 2.

Schedule Constraint 4 ¬independent(r) implies
D(r) ≥ 0.

Schedule Constraint 5 r > 0 implies D(r) ≥ P (r− 1)−
sched(r) + sched(r − 1).

5

clock-time

P (r) P (r + 1)D(r + 1) schedp(r + 1)

communication phase (r + 1)

computation phase (r)

Figure 2. Pipelined Communication Phase
(Constraint 5)

clock-time

schedp(r) P (r)− 1D(r) R(r)− 1 R(r)

≤ b(1− ρ) · (δnom − el)c − Σ(r)− Λ(r) + 1

reception window

Figure 3. Reception Window (Schedule Con-
straint 6)

The final schedule constraint, Constraint 6, restricts
when the reception window is opened. The constraint is
illustrated in Figure 3. The reception window must be
opened soon enough so that non-faulty messages are re-
ceived within the window. The formula b(1− ρ) · (δnom −
el)c gives a lower bound on the minimum message delay.
We add D(r) to take into account the clock-time offset at
which the message is sent. The skew for the round, Σ(r), is
subtracted to account for the case where the receiver’s clock
is maximally faster than the sender’s. A one-tick constant
is added to the upper bound on R(r) because the recep-
tion window is opened on a clock edge, but messages arrive
asynchronously. A message that arrives strictly less than
one clock tick before the reception window is opened will
be latched on the clock edge when the window is opened.

Schedule Constraint 6 (Reception Window Constraint)
0 ≤ R(r) ≤ D(r)+b(1−ρ)·(δnom−el)c−Σ(r)−Λ(r)+1.

3.3 Semantics

The semantics for the time-triggered model is a transi-
tion system in which states are pairs of the form 〈s, t〉,
where s is a global state of the system together with the
current real-time, t. The transitions between states are con-
strained by the axioms given in this section as well as Ax-
iom 1, from the synchronous model.

The axioms are defined over the following uninterpreted

functions. We give the type signatures of the functions, as
well as their intended interpretations:

• A function sendtimep : N → R from rounds to real-
times denoting the real-time that p broadcasts mes-
sages in each round.

• A time-triggered system state function ttssp : states×
Z → statesp that takes a global state s, a clock-time T ,
and returns p’s state after executing for T clock ticks
from s.

• A time-triggered inbound messages function ttinp :
Z × in nbrsp → mess that maps a clock-time T and
an inbound neighbor q to the message p receives from
q at T .

• A time-slice function gs : N → R from rounds to real-
times. Its purpose is to provide real-times at which the
system state of the time-triggered model of a protocol
is the same as the untimed model of the protocol, for
each round.

Axiom 2 constrains the sendtimep function by ensuring
that at the real-time that p broadcasts its message in round r,
its clock-time is at the communication offset into that round.

Semantic Axiom 2 Cp(sendtimep(r)) = schedp(r) +
D(r).

Axioms 3 and 4 constrain the behavior of the sentp

function by first stating the sufficient conditions for it to
hold and then the necessary conditions for it to hold. Ax-
iom 3 ensures that the message p sends to q at the real-time
sendtimep(r) is the message generated by its message-
generation function using its time-triggered state at the be-
ginning of round r. Axiom 4 ensures that if the sendtimep

relation is satisfied, then it is satisfied by a message gener-
ated by the message-generation function in some round and
by the real-time at the communication delay into the round.

Semantic Axiom 3 sentp(q, msgp(ttssp(s, schedp(r) +
D(r)), q), sendtimep(r)), where q ∈ out nbrsp.

Semantic Axiom 4 sentp(q, m, t) implies there ex-
ists a round r such that t = sendtimep(r) and
m = msgp(ttssp(s, schedp(r) + D(r)), q), where
q ∈ out nbrsp.

Before stating the next axiom, we define the relation
recv win openp, which takes a real-time t and a round r
and is true if the real-time falls within p’s reception win-
dow for round r. Messages may arrive strictly less than one
clock tick before R(r) is reached, but these messags are
latched at R(r). Therefore, recv win openp(t, r) holds for
any real-time t that is mapped to a clock-time strictly greater
than Rp(r) − 1 (and strictly less than the beginning of the
computation phase).

6

Definition 1 (Reception Window Open)

recv win openp(t, r) df=
schedp(r) + Rp(r)− 1 ≤ Cp(t) < schedp(r) + P (r)

Axiom 5 constrains the behavior of the ttinp function by
ensuring that for any clock-time T in the computation phase
of round r, ttinp(T, q) is the message p receives from q
in the reception window of round r (ε is Hilbert’s choice
operator).

Semantic Axiom 5 schedp(r) + P (r) ≤ T < schedp(r +
1) implies ttinp(T, q) =

ε

({
m ∈ mess | ∃t ∈ R. recv win openp(t, r)

and recvp(q, m, t)

})
Axioms 6 and 7 constrain the ttssp function. Ax-

iom 6 determines p’s time-triggered state at the clock-time
sched(r), for each round r, to be the current state if r = 0,
or the state computed in the computation phase of the pre-
vious round.

Semantic Axiom 6

ttssp(s, schedp(r)) =
if r = 0 then sp

else transp(ttssp(s, T), λq. ttinp(T, q))
where q ∈ in nbrsp and

T = schedp(r − 1) + P (r − 1)

Axiom 7 ensures that outside of the computation phase, p’s
time-triggered state does not spontaneously change.

Semantic Axiom 7 For all clock-times T , schedp(r) ≤
T ≤ schedp(r) + P (r) implies ttssp(s, T) =
ttssp(s, schedp(r)).

Finally, Axiom 8 constrains the real-time gs(r) to be the
real-time at which the process with the slowest clock has
reached sched(r).

Semantic Axiom 8 For all nodes l,

∀q : Cq(gs(r)) ≥ sched l(r))
and ∃p : Cp(gs(r)) = sched l(r))

Finally, Axiom 9 ensures that while a node is in its com-
putation phase, its state is either the state it has before apply-
ing its state-transition function in that round or the updated
state resulting from its application (in this model, the state
is updated at some nondeterministic time during the compu-
tation phase, but the entire state is updated instantaneously).

Semantic Axiom 9 For all clock-times T , schedp(r) +
P (r) ≤ T < schedp(r + 1) implies either ttssp(s, T) =
ttssp(s, schedp(r)), or ttss(s, T) = ttss(s, schedp(r +
1)).

An interpreted transition relation is one that satisfies ax-
ioms 1 through 9. The axiomatization ensures a simulation
relation exists between a synchronous protocol and its time-
triggered implementation, as stated in Theorem 1.

Theorem 1 ttssp(s, Cp(gs(r))) = runp(r, init s). proof
By induction on the rounds of the protocol; see [16] for a
proof sketch of the proof formulated in PVS.1

4 Schedule Verification

The schedule of a time-triggered protocol’s realization
are the clock-times at which events are scheduled to oc-
cur. Assuming that an architecture is fixed and satisfies the
system assumptions, we wish to prove the schedule devel-
oped for a protocol’s realization satisfies the six schedule
constraints, Constraint 1 through Constraint 6, from Sec-
tion 3.2.2.

This verification is carried out in SRI’s SAL family of
model-checkers, which contains an infinite-state bounded
model checker that combines the Yices SMT solver with the
k-induction model-checking algorithm to make bounded
model-checking complete for safety properties [12]. Be-
cause the languages of PVS and SAL are similar, the sched-
ule constraints have nearly identical formulations in the re-
spective languages.

The verification technique is demonstrated by verify-
ing the schedule constraints for two SPIDER time-triggered
protocols. The schedules verified are taken from the VHDL
coded by Wilfredo Torres-Pomales and Mahyar Malekpour
of the NASA Langley Research Center, the implementors of
the latest prototype [11]. The schedules were generated us-
ing Matlab R© according to the by-hand analysis of the tim-
ing requirements [11]. The verification technique provides a
formal mapping from the synchronous specification of these
protocols to the time-triggered implementation. Below, we
overview the verification of the SPIDER Distributed Diag-
nosis Protocol (SPIDER DD Protocol) schedule. The ver-
ification of the constraints for a more complex protocol,
the SPIDER Clock-Synchronization Protocol, as well as a
demonstration of how to use this technique to optimize the
throughput of SPIDER protocols, are available on-line.1

Briefly, the SPIDER DD Protocol ensures nodes main-
tain a consistent assignment of the faultiness of the other
nodes [11]. Nodes may individually accuse one another of
being faulty, based on accumulated evidence. During the
protocol, if enough nodes accuse a node, the accusations
are promoted to an agreed-upon conviction. When a node
has been convicted, the other non-faulty nodes ignore the
convicted node until it proves itself to be non-faulty. (The
mechanism for doing so involves executing the SPIDER
Reintegration Protocol [17].)

The verification of this protocol’s schedule is straightfor-
ward. The protocol has four rounds. The schedule offsets

7

D, P , and R do not vary from round to round. We verify the
protocol with respect to the maximum possible skew for the
duration of the protocol. Furthermore, none of the rounds
are pipelined, and there are no event-triggered actions.

4.0.1 Type and Constant Declarations

The type and constant declarations are straightforward in
SAL. All system constants are interpreted to be concrete
values taken from the system parameters for the targeted
prototype. The SAL specification of the declarations are
given in Figure 4. The schedule constraints require taking
the floor and ceiling of the minimum and maximum com-
munication delay, respectively; we do this by hand (The
Yices SMT solver cannot handle non-linear arithmetic) and
set them equal to constants.

REALTIME : TYPE = REAL;
CLOCKTIME : TYPE = INTEGER;
OFFSET : TYPE = {T: CLOCKTIME | T >= 0};
RND : TYPE = NATURAL;
rho : REALTIME = 1/10000;
d_nom : {t: REALTIME | t >= 0} = 5;
ERROR : TYPE = {t: REALTIME |

t >= 0 AND t < d_nom};
e_l : ERROR = 5/10000;
e_u : ERROR = 5/10000;
% floor((1 - rho) * (d_nom - e_l))
fl_d_min : CLOCKTIME = 4;
% ceiling((1 + rho) * (d_nom + e_u))
cd_d_max : CLOCKTIME = 6;

Figure 4. Type and Constant Declarations

4.0.2 Variables

In SAL, we build a state-machine to model-check. The
state-machine transitions follow the order of the schedule’s
rounds and update state variables accordingly. Therefore,
in the SAL model, we replace some of the mathematical
functions from the time-triggered system model presented
in Section 3 with corresponding state variables ranging over
rounds. Thus, the set of state variables include sched , D,
P , R, Λ, Σ, independent , and R. The state variables may
be nondeterministically updated in the state-machine transi-
tions depending on the specifics of the schedule being veri-
fied. In the schedule verified for the SPIDER DD Protocol,
the values of D, P , R, and Σ are constant over the rounds
for this protocol’s schedule; only sched is updated from
round to round. The other protocol schedule verifications
are more complex; see 4.0.6.

4.0.3 Schedule Constraint Specification

The schedule constraints stated in Section 3.2.2 are stated in
SAL as shown in Figure 5. Some of these constraints com-
pare the schedule between successive rounds (e.g., Con-
straint 1). Because we have transcribed the functions over
the rounds to variables that are updated in the state machine
at each round, these relations may take as arguments the
values of these variables in a round and compare them to
the values in the next round (e.g., constraint1 takes
pre_sched and sched as arguments, denoting the val-
ues for sched(r − 1) and sched(r), respectively). The SPI-
DER DD Protocol contains no event-triggered behaviors;
therefore, for all rounds, the schedule skew Λ is zero. We
therefore omit it from the constraints.

constraint1(P: OFFSET, pre_sched: CLOCKTIME,
sched: CLOCKTIME): BOOLEAN =

0 < P AND P < sched - pre_sched;

constraint2(D: CLOCKTIME, S: OFFSET): BOOLEAN =
D >= S - fl_d_min;

constraint3(P: OFFSET, D: CLOCKTIME, S: OFFSET):
BOOLEAN = P > D + S + cd_d_max;

constraint4(r: RND, D: CLOCKTIME): BOOLEAN =
(NOT independent?(r)) => D >= 0;

constraint5(pre_P: OFFSET, D: CLOCKTIME,
pre_sched: CLOCKTIME, sched: CLOCKTIME):

BOOLEAN = D >= pre_P - sched + pre_sched;

constraint6(D: CLOCKTIME, R: CLOCKTIME, S: OFFSET):
BOOLEAN = R - 1 <= D + fl_d_min - S;

Figure 5. SAL Specification of the General-
ized System Assumptions

4.0.4 Specifying a Round-Based Schedule

We create a state-machine representation of how the sched-
ule constraints evolve through the rounds of execution.
In addition to schedule variables, for each constraint, a
boolean variable is declared. The value of the variable is
determined by whether its associated schedule constraint is
satisfied in the present round. The state machine includes a
counter r that records the current round in the synchronous
abstraction of the protocol. In each initial state, this counter
is set to 0. Each transition from a state in round r is to a state
in round r+1. In general, we check the schedule constraints
for the next-state values of the variables. For constraints that
compare the values between rounds, the current-state vari-
able values and the next-state variable values are compared

8

in the constraint. Because there are no previous state assign-
ments in round 0, those state variables associated with con-
straints that compare values between rounds are declared to
be true upon initialization.

Not every state variable needs to be updated in each tran-
sition. If a state variable is not reassigned in a guarded tran-
sition, its value remains the same in the next state.

4.0.5 Verification

The property stating that in all reachable states, each con-
straint holds can then be specified by the following LTL
state invariant.

constraints: LEMMA SYSTEM |-
G(c1 AND c2 AND c3 AND c4 AND c5 AND c6);

The property is verified by executing SAL’s infinite-state
bounded model checker. The lemma constraints is
verified by the k-induction solver, for k = 2. The proof is
fully automatic and requires no supporting invariants.

4.0.6 Other Verifications

We have also used this proof technique to verify the SPI-
DER Clock Synchronization Protocol schedule. The pur-
pose of the clock synchronization protocol is to resynchro-
nize the local clocks, in the presence of faults, after they
have possibly drifted apart [11]. Consequently, the sched-
ule of the clock synchronization protocol is more complex,
as the skew is a function of the round of the protocol.

Similarly, we have also verified a schedule interleav-
ing distinct SPIDER protocols. In these schedules, we can
take advantage of the round-based pipelining optimizations.
Both of these verifications are available on-line.1

5 Discussion

Faults are not dealt with explicitly in the models pre-
sented; we discuss them below. Concluding remarks follow.

5.1 Faults

Neither the synchronous nor time-triggered model pre-
sented explicitly model faulty behavior. Nevertheless, be-
cause many time-triggered protocols are fault-tolerant, we
ultimately wish to prove that the protocols behave correctly
in the presence of faults. Before discussing faults specif-
ically, recall that the state-transition function trans and
the message-generation function msg are left uninterpreted,
and the same functions appear in both the synchronous and
time-triggered models. Thus, the simulation theorem holds
regardless of their instantiations; in particular, the functions

can be partially-interpreted and under-specify a protocol,
and the theorem still holds.

Keeping this in mind, faults can be modeled, as Rushby
notes, by partially-interpreting trans and msg , allowing
them to return arbitrary values, nondeterministically, if a
node or channel is faulty [1]. In fact, all faulty behavior can
be modeled, with no loss of fidelity, by partially-interpreting
the message-generation function only [18].

In the synchronous model, the correctness of a protocol
can be verified under a maximum fault assumption (MFA),
which constrains the kinds of faults, and the number of each
kind, under which the protocol is hypothesized to behave
correctly [1]. If the effects of faults are captured by the
message-generation function msg , then the MFA can be
thought of as a constraint on the function’s nondetermin-
ism. Thus, one purpose of the time-triggered model is to
define the timing behaviors that are non-faulty. That is, if
the timing characteristics of the system satisfy the system
assumptions and schedule constraints of the time-triggered
model, then no faults will result if these characteristics hold
in a realization (timing and value faults may still arise from
environment factors).

5.2 Concluding Remarks

The approach presented herein and illustrated in Figure 1
is one portion of an end-to-end verification methodology—
from the distributed protocols to the hardware implemen-
tations of the nodes—in a time-triggered system. As an
anonymous reviewer notes, the results presented herein can
be combined with recent work in physical-layer protocol
verification [19] and gate-level I/O device verification [20]
to further the goal of an end-to-end verification of time-
triggered systems.

6 Acknowledgments

This paper is a revised portion of a recent disserta-
tion [16]. We thank Steve Johnson (who advised the dis-
sertation), Paul Miner, Geoffrey Brown, Larry Moss, Wil-
fredo Torres-Pomales, and our anonymous reviewers for
their ideas and comments. Finally, this paper owes a large
debt to John Rushby’s original work on the topic.

References

[1] J. Rushby, “Systematic formal verification for fault-
tolerant time-triggered algorithms,” IEEE Transac-
tions on Software Engineering, vol. 25, no. 5, pp. 651–
660, September 1999.

9

[2] P. Koopman, Ed., Critical Embedded Automotive Net-
works, ser. IEEE Micro, vol. 22–4. IEEE Computer
Society, July/August 2002.

[3] P. Traverse, I. Lacaze, and J. Souyris, “Airbus fly-
by-wire - a total approach to dependability,” in IFIP
Congress Topical Sessions, 2004, pp. 191–212.

[4] J. Rushby, “Bus architectures for safety-critical em-
bedded systems,” in EMSOFT 2001: Proceedings
of the First Workshop on Embedded Software, ser.
Lecture Notes in Computer Science, T. Henzinger
and C. Kirsch, Eds., vol. 2211. Lake Tahoe, CA:
Springer-Verlag, Oct. 2001, pp. 306–323.

[5] H. Kopetz, Real-Time Systems. Kluwer Academic
Publishers, 1997.

[6] R. W. Butler and G. B. Finelli, “The infeasibility
of quantifying the reliability of life-critical real-time
software,” Software Engineering, vol. 19, no. 1, pp.
3–12, 1993, available at http://citeseer.nj.nec.com/
butler93infeasibility.html.

[7] P. Miner, A. Geser, L. Pike, and J. Maddalon, “A
unified fault-tolerance protocol,” in Formal Tech-
niques, Modeling and Analysis of Timed and Fault-
Tolerant Systems (FORMATS-FTRTFT), ser. LNCS,
Y. Lakhnech and S. Yovine, Eds., vol. 3253. Springer,
2004, pp. 167–182, available at http://www.cs.indiana.
edu/∼lepike/pub pages/unified.html.

[8] H. Pfeifer, “Formal analysis of fault-tolerant algo-
rithms in the time-triggered architecture,” Ph.D.
dissertation, Universität Ulm, 2003, available
at http://www.informatik.uni-ulm.de/ki/Papers/
pfeifer-phd.html.

[9] S. Owre, J. Rusby, N. Shankar, and F. von Henke,
“Formal verification for fault-tolerant architectures:
Prolegomena to the design of PVS,” IEEE Transac-
tions on Software Engineering, vol. 21, no. 2, pp. 107–
125, February 1995.

[10] L. Pike, “A note on inconsistent axioms in rushby’s
”systematic formal verification for fault-tolerant time-
triggered algorithms”,” IEEE Transactions on Soft-
ware Engineering, vol. 32, no. 5, pp. 347–348, May
2006, available at http://www.cs.indiana.edu/∼lepike/
pub pages/time triggered.html.

[11] W. Torres-Pomales, M. R. Malekpour, and P. Miner,
“ROBUS-2: A fault-tolerant broadcast communica-
tion system,” NASA Langley Research Center, Tech.
Rep. NASA/TM-2005-213540, 2005.

[12] L. de Moura, S. Owre, H. Rueß, J. Rushby,
N. Shankar, M. Sorea, and A. Tiwari, “SAL 2,” in
Computer-Aided Verification, CAV 2004, ser. Lecture
Notes in Computer Science, R. Alur and D. Peled,
Eds., vol. 3114. Boston, MA: Springer-Verlag, July
2004, pp. 496–500.

[13] N. A. Lynch, Distributed Algorithms. Morgan Kauf-
mann, 1996.

[14] D. Davies and J. F. Wakerly, “Synchronization and
matching in redundant systems,” IEEE Transactions
on Computers, vol. 27, no. 6, pp. 531–539, June 1978.

[15] T. K. Srikanth and S. Toueg, “Optimal clock synchro-
nization,” Journal of the ACM, vol. 34, no. 3, pp. 626–
645, July 1987.

[16] L. Pike, “Formal verification of time-triggered sys-
tems,” Ph.D. dissertation, Indiana University, 2006,
available at http://www.cs.indiana.edu/∼lepike/phd.
html.

[17] L. Pike and S. D. Johnson, “The formal verification of
a reintegration protocol,” in EMSOFT ’05: Proceed-
ings of the 5th ACM international conference on Em-
bedded software. New York, NY, USA: ACM Press,
2005, pp. 286–289, available at http://www.cs.indiana.
edu/∼lepike/pub pages/emsoft.html.

[18] L. Pike, J. Maddalon, P. Miner, and A. Geser, “Ab-
stractions for fault-tolerant distributed system verifi-
cation,” in Theorem Proving in Higher Order Log-
ics (TPHOLs), ser. LNCS, K. Slind, A. Bunker, and
G. Gopalakrishnan, Eds., vol. 3223. Springer, 2004,
pp. 257–270, available at http://www.cs.indiana.edu/
∼lepike/pub pages/abstractions.html.

[19] G. M. Brown and L. Pike, “Easy parameterized ver-
ification of biphase mark and 8N1 protocols,” in
The Proceedings of the 12th International Confer-
ence on Tools and the Construction of Algorithms
(TACAS’06), 2006, pp. 58–72, available at http://
www.cs.indiana.edu/∼lepike/pub pages/bmp.html.

[20] S. Knapp and W. Paul, “Realistic worst case execution
time analysis in the context of pervasive system verifi-
cation,” in Program Analysis and Compilation, Theory
and Practice: Essays Dedicated to Reinhard Wilhelm,
ser. LNCS volume 4444. Springer, 2006, pp. 53–81.

10

