
April 2005

NASA/TM-2005-213751

Real-Time System Verification by k-Induction

Lee Pike

Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the

advancement of aeronautics and space science. The

NASA Scientific and Technical Information (STI)

Program Office plays a key part in helping NASA

maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for NASA’s

scientific and technical information. The NASA STI

Program Office provides access to the NASA STI

Database, the largest collection of aeronautical and

space science STI in the world. The Program Office is

also NASA’s institutional mechanism for

disseminating the results of its research and

development activities. These results are published by

NASA in the NASA STI Report Series, which

includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase

of research that present the results of NASA

programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers, but having

less stringent limitations on manuscript length

and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of

specialized interest, e.g., quick release reports,

working papers, and bibliographies that contain

minimal annotation. Does not contain extensive

analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA

programs, projects, and missions, often

concerned with subjects having substantial

public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and

technical material pertinent to NASA’s mission.

Specialized services that complement the STI

Program Office’s diverse offerings include creating

custom thesauri, building customized databases,

organizing and publishing research results ... even

providing videos.

For more information about the NASA STI Program

Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk

 NASA Center for AeroSpace Information

 7121 Standard Drive

 Hanover, MD 21076-1320

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

April 2005

NASA/TM-2005-213751

Real-Time System Verification by k-Induction

Lee Pike

Langley Research Center, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)

7121 Standard Drive 5285 Port Royal Road

Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

Acknowledgments

This work was supported by NASA’s Vehicle Systems Program. The author thanks Wilfredo

Torres-Pomales for describing the reintegration protocol in detail and repeatedly to the author.

Other members of the SPIDER design team (Paul Miner, Alfons Geser, Jeffrey Maddalon, and

Mahyar Malekpour) provided helpful comments. Bruno Dutertre and Leonardo de Moura provided

helpful details concerning SAL and k-induction.

Real-Time System Verification by k-Induction

Lee Pike

NASA Langley Research Center

Abstract

We report the first formal verification of a reintegration protocol for a
safety-critical, fault-tolerant, real-time distributed embedded system. A
reintegration protocol increases system survivability by allowing a node
that has suffered a fault to regain state consistent with the operational
nodes. The protocol is verified in the Symbolic Analysis Laboratory
(SAL), where bounded model checking and decision procedures are used
to verify infinite-state systems by k-induction. The protocol and its en-
vironment are modeled as synchronizing timeout automata. Because k-
induction is exponential with respect to k, we optimize the formal model
to reduce the size of k. Also, the reintegrator’s event-triggered behavior is
conservatively modeled as time-triggered behavior to further reduce the
size of k and to make it invariant to the number of nodes modeled. A
corollary is that a clique avoidance property is satisfied.

1

Contents

1 Introduction 3

2 Symbolic Analysis Laboratory (SAL) and k-Induction 4

3 Timed Systems in SAL 6
3.1 Synchronizing Timeout Automata (STA) 7
3.2 STA Model of the Train-Gate-Controller 10
3.3 Clockless STA Semantics . 13

4 The Reintegration Protocol 14
4.1 System Assumptions . 15
4.2 Protocol Description . 16

4.2.1 State Description . 16
4.2.2 Protocol Behavior 17

5 Modeling the Protocol in SAL 19
5.1 Timeouts . 19
5.2 Monitored Nodes . 20

5.2.1 Operational Nodes 20
5.2.2 Faulty Nodes . 21

5.3 The Reintegrator . 23
5.3.1 Mode Control . 23
5.3.2 Base Modes . 24
5.3.3 Composing The Modules 27

6 Verifying the Protocol 28

7 Conclusion 31

References 32

A STA Model of the TGC in SAL 36

B STA Model of the TGC with Clockless Semantics in SAL 41

C STA Model of the Reintegration Protocol in SAL 46

2

1 Introduction

Digital control (i.e., “x-by-wire”) systems are being designed for use in
safety-critical environments such as automobiles, commercial aircraft, and
piloted space vehicles. In a single vehicle, many systems require re-
liable real-time intercommunication. Highly-reliable fault-tolerant vir-
tual busses are being designed for this purpose [Rus01].1 Some notable
examples of such busses include TTTech’s Time-Triggered Architecture
(TTA) [Kop94], Honeywell’s SAFEbus [HD92], FlexRay (being developed
by an automotive consortium) [LH02], and NASA Langley Research Cen-
ter’s SPIDER [MMT02, MGPM04, NAS04].

These busses are implemented as distributed systems to increase their
fault-tolerance. A node in the distributed system may suffer a transient
fault causing it to lose its volatile state but suffer no permanent damage.
Although such a node may be fault-free, its state no longer is coordinated
with that of the operational clique, the set of fault-free nodes with co-
ordinating states allowing them to provide the requested services of the
system.2 Nodes in the operational clique are called operational nodes.

If too many nodes become uncoordinated with the operational clique,
the system degrades and becomes more susceptible to new faults. Too
many simultaneous faults will lead the system to violate its maximum
fault assumption (MFA), the maximum kind and number of faults the
system is designed to withstand yet maintain correct operation. If the
MFA is violated, no guarantees can be made about the system’s behavior.

The extremely high reliability requirements for these busses coupled
with the potential for a high number of transient faults in the environ-
ments in which they may operate have led to the development of reinte-
gration mechanisms for these systems. For a transiently-faulty node to
regain correct state, it may execute a reintegration protocol. In a synchro-
nized fault-tolerant distributed system, the reintegrating node (called the
reintegrator) executes the protocol to resynchronize its local clock with
those of the nodes in the operational clique. As well, it may need to
regain diagnostic data consistent with the operational clique. A node’s
diagnostic data are its view of which other nodes are faulty (messages
from faulty nodes should be ignored). Other state may also be regained
via the protocol; for example, if the system supports dynamic scheduling,
this needs to be obtained, too.

To the author’s knowledge, we present the first formal verification of
a reintegration protocol. In [Rus02], Rushby describes the formal verifi-
cation of TTA, one of the most mature and fully formally-verified busses
in development, and therein states that the formal analysis of reintegra-
tion remains important future work. The work presented here should be
extensible to other fault-tolerant systems that employ reintegration pro-
tocols, especially given that our verification is architecture-independent

1Rushby notes that the term ‘bus’ “understates their complexity, sophistication, and crit-
icality,” [Rus01].

2The operational clique and the set of non-faulty nodes are not necessarily equivalent: for
example, a reintegrator is a non-faulty node not in the operational clique. This distinction
can be subtle and in fact, a misunderstanding of it was partially responsible for a subtle error
in the previous design of another SPIDER protocol [PMT04].

3

(see Sec. 7).
This work extends results in using bounded model checking and de-

cision procedures to verify infinite-state systems using k-induction (also
known as temporal induction), a generalization of induction over transi-
tion systems. In particular, we build on Dutertre and Sorea’s work in
which they develop a timeout automata model for specifying and veri-
fying real-time systems [DS04b, DS04a]. The formalism is particularly
well-suited for k-induction proofs over transition systems, and it does not
require specialized algorithms for model checking (as opposed to, e.g.,
timed automata [Alu99]).

Our focus is to make the k-induction technique feasible for large sys-
tems; this amounts to reducing the size of k required for k-induction ver-
ification. We follow two approaches to do so. First, we extend the timed
automata model so that real-time systems containing both synchronous
and asynchronous components can be described more easily. We call these
Synchronizing Timeout Automata (STA). Introducing synchrony often re-
duces the size of k required. Second, we optimize the semantics so that
the constructed transition system includes no time transitions; all transi-
tions are ones in which discrete state is updated. This can greatly reduce
the depth at which k-induction must be applied to prove a given safety
property. We also describe a means by which to model conservatively
event-triggered physical behavior as in a time-triggered behavior. Such a
model may contain significantly fewer state transitions than the physical
system contains. Both kinds of optimizations are necessary to complete
the verification of the reintegration protocol.

Organization In Sect. 2, we describe the SAL toolset and the k-
induction proof technique in SAL. In 3, we describe Dutertre and Sorea’s
timeout automata. We then define synchronizing timeout automata (STA)
and we present a STA model of the train-gate-controller, a canonical ex-
ample of a real-time system. We describe the SPIDER Reintegration
Protocol in Sect. 4, and in Sect. 5, we describe how the protocol is mod-
eled as a timeout automaton in SAL. Additionally, we describe how we
modeled event-triggered behavior as time-triggered behavior to ease the
verification. In Sect. 6, we describe the verification of the protocol, and
concluding remarks are given in Sect. 7.

2 Symbolic Analysis Laboratory (SAL)
and k-Induction

This protocol was specified and verified in the Symbolic Analysis Labo-
ratory (SAL) [BGL+00, SRI04], developed by SRI, International. SAL
is a verification environment that includes explicit-state, symbolic, and
bounded model checkers, an interactive simulator, as well as other tools. A
single language serves as the input to the verification tools. The language
includes a type system, quantification over finite domains, uninterpreted
constants and functions, and synchronous and asynchronous composition

4

operators. SAL may be downloaded at [SRI04], free of charge, for non-
commercial use.

The verification tools used here were SAL’s bounded model checker in
conjunction with the Integrated Canonizer and Solver (ICS), a decision
procedure for a quantifier-free, first-order theory of equality, the terms of
which include uniterpreted functions, linear arithmetic, products, arrays,
fixed-sized vectors, etc. [dMOR+04]. Although ICS is the default decision
procedure in SAL, other decision procedures such as UCLID, CVC, and
SVC may be used [dMOR+04].

Together, these tools can be used to prove state invariants hold in
infinite transition systems. The invariants do not need to be strictly in-
ductive; SAL supports k-induction, also known as temporal induction,
a generalization of the ordinary induction principle (over transition sys-
tems) [SSS00, ES03]. Let 〈S, S0, →〉 be an unlabeled transition system
where S is a set of states, S0 ⊆ S is a nonempty set of initial states, and
→⊆ S × S is a transition relation. A 0-trajectory (over the transition
system) is a state s. For k ∈ N0<, a k-trajectory is a sequence of states,
s0, s1, . . . , sk, such that for 0 ≤ i < k, si → si+1. Then the k-induction
principle is as follows.

Definition 1 (k-Induction Principle). Let k ∈ N0<, and let P : S →
bool be some predicate defined over states of S.

• Base Case: For all 0 ≤ j < k, show that for each j-trajectory
s0, s1, . . . , sj such that s0 ∈ S0, P (sj) holds.

• Induction Step: Show that if s0, s1, . . . , sk−1 is a (k−1)-trajectory,
and for all 0 ≤ j < k, P (sj) holds, then for all sk ∈ S such that
sk−1 → sk, P (sk) holds.

Property P is a k-inductive property with respect to 〈S, S0, →〉 if there
exists some k ∈ N0< such that P satisfies the k-induction principle. The
ordinary induction principle is the special case when k = 1. The benefit
of k-induction is that as k increases, weaker invariants may be provable.
The problem of discovering sufficiently strong inductive invariants can be
exceedingly difficult, and more often than not, a desired invariant is too
weak to be proved with the ordinary induction principle. Discovering
sufficiently strong inductive invariants is an active area of research [HS96,
Rus00].

Furthermore, SAL allows state invariants to be used as lemmas to
support k-induction. An invariant has the effect of strengthening the an-
tecedents in the base case and induction step so that only states satisfying
the invariant are considered. That is, if Q is an invariant over states, then
the principle is as stated in Def. 2.

Definition 2 (k-Induction Principle with Inductive Invariants).

• Base Case: For all 0 ≤ j < k, show that for each j-trajectory
s0, s1, . . . , sj such that s0 ∈ S0 holds and for each 0 ≤ i < k, Q(si)
holds, P (sj) holds.

• Induction Step: Show that if s0, s1, . . . , sk−1 is a (k−1)-trajectory,
and for all 0 ≤ j < k, Q(sj) and P (sj) hold, then for all sk ∈ S such
that sk−1 → sk and Q(sk), P (sk) holds.

5

Multiple invariants may be simultaneously used by taking their con-
junction to be the invariant.

Other systems such as NuSMV [CCO+04] implement k-induction (its
implementors call it “een-sorensson”) via bounded model checking. How-
ever, the author knows of no other tools that integrate k-induction with
decision procedures to verify infinite-state systems.

3 Timed Systems in SAL

Dutertre and Sorea explore the verification of infinite-state timed transi-
tion systems via k-induction in SAL [DS04b]. They first consider speci-
fying these systems as timed automata [Alu99], one of the most promi-
nent formalisms for the specification and verification of real-time systems.
automata are a well-known Although they demonstrate that it is possi-
ble to specify timed automata in SAL via a shallow embedding (i.e., a
timed automata is manually transcribed into a semantically-equivalent
SAL specification), it proves to be unwieldy [DS04b]. The SAL language
is rich, but it is a general-purpose tool for specifying composed state ma-
chines; neither the syntax nor the semantics of the language match those
of timed automata particularly well. In particular, the clock variables in
timed automata may be updated in arbitrarily small increments leading
to infinite trajectories in which the discrete state idles. This makes proof
by k-induction difficult and sometimes impossible.

This motivated their development of another theoretical model in
which to represent timed transition systems that is more amenable to
general-purpose verification environments in which composed state ma-
chines can be specified, particularly for verification by k-induction. A
timeout automaton is another means by which to specify timed transi-
tion systems.3 Timeout automata were motived by the model of system
execution used in discrete-event simulation [BI84].

In [DS04b, DS04a], Dutertre and Sorea provide the semantics of a
timeout automaton in terms of a transition system. Fix a set of state
variables V . An additional variable t, ranging over the nonnegative reals,
records the current time. There is also a set of timeout variables T , ranging
over the nonnegative reals. A state in the transition is a function mapping
each variable to some value from the set over which it ranges. For any
initial state ρ, ρ(t) ≤ ρ(x) for all x ∈ T . Like in in the definition of
timed automata, there are two sorts of transitions. The two kinds of
transitions are time progress transitions and discrete transitions. A time
progress transition is enabled in a state if and only if for all x ∈ T ,
ρ(t) < ρ(x). In this case, the state changes by updating ρ(t) to the least-
valued timeout (there may be multiple timeouts that are least-valued).
Discrete transitions are enabled in a state if and only if there exists some
timeout x such that ρ(t) = ρ(x). Furthermore, the following conditions
must hold for a discrete transition from state ρ to ρ′:

• ρ′(t) = ρ(t) ;

• for all x ∈ T , ρ′(x) ≥ ρ(t) ;

3We use ‘automata’ to refer to syntax, distinct from the semantics for automata.

6

• there exists y ∈ T such that ρ(y) = t and ρ′(y) > ρ(t) .

The third condition prevents infinite zero-delay state transitions. If mul-
tiple discrete transitions are enabled in a state, exactly one is nondeter-
ministically applied. Note, too, that discrete transitions are instantaneous
(i.e., the current time is not updated during their application).

An important distinction between timeout automata and formalisms
like timed automata is that in a timed automaton, clocks measure how
much time has elapsed since their last reset, whereas timeouts measure
how much time will elapse until the next state transition. Very loosely
speaking, timeout automata and timed automata are dual with respect to
their perspective of time.

Although timeout automata were initially motivated by the desire
specify and verify real-time systems in SAL for k-induction verification,
they are of significant interest in their own right. Results obtained by
Dutertre and Sorea in specifying and verifying the startup algorithm for
the Time-Triggered Architecture (TTA) using timeout automata in SAL
suggest timeout automata specifications in SAL may be superior to those
attainable in Uppaal, a timed automata model checker [LPY97], although
a direct comparison is not made [DS04b].4 By some measures, a timeout
automaton has a simpler semantics than does a timed automaton and
may allow for a convenient simple embedding of real-time system models
in other general-purpose model checkers. In any event, timeout automata
are another formalism by which to specify real-time systems that has
proved useful in the verification of non-trivial protocols via k-induction.
Theoretical comparisons between timeout automata and other real-time
formalisms is important future work but not our present goal.

3.1 Synchronizing Timeout Automata (STA)

The following definitions build upon the timeout automata semantics de-
veloped in [DS04b, DS04a] and described above. We define a syntax,
semantics and composition as follows. We call this the Synchronizing
Timeout Automata (STA) model. The STA model is motivated by the de-
sire to provide a succinct specification and efficient semantics for systems
that synchronize both with respect to events (e.g., message passing) and
with respect to time (e.g., time-triggered [Rus99, Kop97] behavior). For
example, the train-gate-controller (TGC), is a canonical example of such
a real-time system [Alu99]. In [DS04b], it is modeled as the asynchronous
composition of timeout automata in which synchronous communication is
modeled by the sequential application of edges with the same label. We
arguably provide a timeout automata model with a semantics that more
closely resembles its intended semantics.

As noted, timeout automata were motivated by Dutertre and Sorea’s
desire to specify timed systems amenable to k-induction, particularly in
SAL. We found their development of timeout automata to be a break-
through in this respect. Nevertheless, k-induction proofs have a complex-

4A meaningful comparison of the formalisms might be difficult given that different tools
and formalisms are also used, and indeed, k-induction is not implemented in many other
systems.

7

ity that is exponential with respect to k (by solving the equivalent boolean
satisfaction problem). The initial timeout automata models of the SPI-
DER Reintegration Protocol required k-induction at infeasible depths.
Due to the size of the model, k-induction proofs for k > 4 were often
infeasible for even a small number of modeled nodes. By allowing both
synchronous and asynchronous composition, we can markedly reduce the
depth required for proofs by k-induction since in a synchronous composi-
tion, multiple edges may be applied simultaneously.

We use the train-gate-controller (TGC) to illustrate this. In [DS04b],
a simple safety property is proved using k-induction, for k = 14 when the
TGC is modeled with the (asynchronous) timeout automata semantics
described in Sec. 2. In Sec. 3.2, we prove the same property with k = 9
in a synchronous timeout automata model described below. When the
optimization in Sec 3.3 is also applied, the property is provable for k =
5. This allows significantly more complex systems to be verified via k-
induction without having to strengthen the invariant, and it was necessary
to complete the verification of the reintegration protocol.

Syntax The definition of a synchronizing timeout automaton (STA) is
as follows:

Definition 3 (STA Syntax). A synchronizing timeout automaton STA
is a tuple 〈V, M, I , E〉, where

• V is a nonempty finite set of state variables. fV is the set of all pos-
sible total assignment functions that assign values (from the respec-
tive sets over which the variables range) to these variables. These
functions are called states. We use variables f, g, h, and i to denote
states.

• M ⊆ 2V is a nonempty set of subsets of state variables that cover
V (i.e., for each v ∈ V , there exists m ∈ M such that v ∈ m).
For m ∈ M , the set fVm = {f � m | f ∈ fV } is the set of states
restricted to variables in m. An element fm ∈ fVm is the m timeout
component or m-component of state f .

• I is a set of initial states and associated timeouts. A timeout is
associated with each m ∈ M . A timeout ranges over the set of
nonnegative reals, denoted by R0≤. The set of all possible timeout
vectors is TO =

{
α | α : M → R0≤}

(we use lowercase Greek letters
to denote timeout vector variables). The relation I ⊆ fV × TO
relates initial states to initial timeout vectors.

• E is a set of edges for each timeout component. For m ∈ M , let
TOm =

{
α � m | α : M → R0≤}

be the set of possible timeout vec-
tors restricted to subsets of m (we use subscripted lowercase Greek
letters to denote restricted timeout vector variables). An element
αm ∈ TOm is an m-timeout vector.

Then for each m ∈ M , Em ⊆ fVm × TOm × fVm × TOm is an
edge relation. Em relates a current m-component and m-timeout
vector to an updated m-component and m-timeout vector. An edge
〈fm, αm, gm, βm〉 is called an m-edge or an edge for m.

8

Remark 1 (Timeouts and Timeout Components). A timeout component
represents a portion of the state that updates synchronously. The notion
of a timeout components is orthogonal to that of a single state machine
in a composition. For example, if one automaton sends another a time-
triggered message and the automata synchronize on that message, the
state variables of the two automata are in the timeout component trigger-
ing the message (see Sec. 3.2, for an example). A synchronous distributed
system [Lyn96] can be represented by letting M be a singleton set con-
taining V .

In general, if an edge updates a timeout nondeterministically, it is
updated to some value over a continuous interval on the nonnegative reals.

Semantics We require that a STA satisfy the following property to
provide a semantics. It ensures that if edges for different timeout com-
ponents are simultaneously applied, they agree on how to update shared
variables.

Definition 4 (Synchronous Update Property). For all m, n ∈ M
where m 6= n and m ∩ n 6= ∅, if there exist edges Em(fm, αm, gm, βm)
and En(fn, αn, hn, γn), then gm � n = hn � m, and βm � n = γn � m.

The semantics are then as follows.

Definition 5 (STA Semantics). Let STA = 〈V, M, I , E〉 be a timeout
automaton that satisfies the Synchronous Update Property. Its semantics
is an unlabeled transition system SSTA. A state of SSTA

5 is a tuple 〈f, α, t〉
consisting of a state f ∈ fV , a timeout vector α ∈ TO , and a clock,
t ∈ R0≤. The tuple 〈f, α, t〉 is an initial state of SSTA if and only if
〈f, α〉 ∈ I and t = 0.

Let 〈f, α, t〉 and 〈g, β, t′〉 be states. There is a time progress transition

〈f, α〉 t→ 〈g, β〉 if and only if t < min(α), t′ = min(β), g = f , and β = α.
To specify discrete transitions, the following definitions are of assis-

tance. In the state 〈f, α, t〉, Em(hm, γm, im, δm) is an enabled edge if
and only if hm = f � m, γm = α � m, and α(m) = t. An m-component
is an enabled timeout component in 〈f, α, t〉 if and only if there exists
an m-edge enabled in that state. Furthermore, if 〈f, α, t〉 and 〈g, β, t′〉
are states, then Em(hm, γm, im, δm) is applied in the discrete transi-

tion 〈f, α, t〉 E→ 〈g, β, t′〉 if and only it is an enabled edge in 〈f, α, t〉,
im = g � m, and δm = β � m.

Then the discrete transition 〈f, α, t〉 E→ 〈g, β, t′〉 holds if and only if
for every m ∈ M such that m is an enabled m-component in 〈f, α, t〉,
there exists some m-edge that is applied.

Remark 2 (Minimum Timeouts). Note that an edge Em(fm, αm, gm, βm)
will never be applied if αm(m) 6= min(αm).

Remark 3 (Nonzeroness and NonZenoness). Additional properties are re-
quired for executability. The Nonzero Property ensures that timeouts are
never updated to values in the past, and at least one timeout is updated to
some time in the future. This prevents infinite discrete state transitions

5Context distinguishes whether we speak of the states in fV or the constructed states of
the transition system.

9

with no time progress. For all edges Em(fm, αm, gm, βm), min(βm) ≥
min(αm), and there exists n ∈ M such that βm(n) > min(αm). Note
that this does not prevent an edge from updating a timeout to some time
sooner that its current value.

The nonZeno Property [AL94] ensures that an infinite number of tran-
sitions are not enabled within a finite interval of time. This property
should also be satisfied if a specification is to be implementable.

Composition Two STA are composed by taking the union of their
state variables, timeout components, and edges. The initial states of the
composition is defined as the set of states satisfying the initial conditions
of each automata.

Definition 6 (Composition). Let STA1 = 〈V 1, M1, I 1, E1〉 and STA2 =
〈V 2, M2, I 2, E2〉. Their composition, denoted STA1 ‖ STA2, is the
STA 〈V 1 ∪ V 2, M1 ∪ M2, I , E1 ∪ E2〉, where 〈f, α〉 ∈ I if and only if
〈f � V 1, α � M1〉 ∈ I 1, and 〈f � V 2, α � M2〉 ∈ I 2.

Remark 4 (Compositional Specifications). The specification of a STA is
somewhat orthogonal to the notion of composed state machines. Because
timeout components include state variables from communicating state
machines, in practice, state machines are not specified separately as STAs
and then composed.

3.2 STA Model of the Train-Gate-Controller

The train-gate-controller (TGC) is a canonical example of a real-time
system. It models the interaction of a train, a gate, and a gate controller
at a railroad crossing. (For simplicity, assume there is one train on a
circular track that may repeatedly approach the crossing.) Initially, the
train is out of the crossing, and the gate is up. The train signals its
approach to the controller, and after a delay of exactly one unit of time,
the controller signals the gate to lower. Once the gate has been signaled,
it takes no more than 1 unit of time to lower. It takes more than 2 and
no more than 5 units of time from the time the train signals its approach
until it enters the crossing. Furthermore, it must exit the crossing within
5 units of time from when it signals its approach. When the train signals
its exit to the controller within one unit of time of receiving this signal, the
controller signals the gate to raise. The gate takes at least 1 and no more
than 2 units of time from when it is signaled to raise until it is completely
up. As soon as the train has exited, it may approach the crossing again.

This behavior is modeled as a timed automaton in Fig. 1, by compos-
ing timed state machines, as presented in [Alu99]. The train, gate, and
controller state machines each begin in states t0, g0, and c0, respectively.
Their clock variables are x, y, and z, respectively, and they are assumed
to be synchronous. Clock constraints at the verticies denote the time by
which the state must be left. Clock constraints at the edges constrain
when the edge in enabled, and clocks may also be reset when a transi-
tion is taken. A transition is nondeterministically taken at some time
satisfying the constraints. Edges are labeled. If edges from distinct state
machines share a label, transitions on these edges must be synchronized.

10

Train

t0
t1

x ≤ 5

t2
x ≤ 5

t3
x ≤ 5

approach

x := 0

in
x > 2

out

exit Gate

g0
g1

y ≤ 1

g2
g3

y ≤ 2

lower

y := 0

down

raise

y := 0

up
y ≥ 1

Controller

c0
c1

z ≤ 1

c2
c3

z ≤ 1

approach

z := 0

lower
z = 1

exit

z := 0

raise

Figure 1: The Train-Gate-Controller

For example, when the train state machine is in state t0 and the con-
troller state machine is in state c0, they must transition to states t1 and
c2, respectively, simultaneously. The representation in Fig. 1 is based on
a timed automata model of the TGC. A full description with a formal
syntax and semantics of the TGC modeled as a timed automaton can be
found in [Alu99].

STA Model of the TGC Following Def. 3, the TGC is modeled as
a STA 〈V, M, I , E〉, informally described as follows.

• V : There are five main state variables. The variable st ranges over
the state labels for the train (t0, t1, etc.); variables sg and sc simi-
larly range over the labels for the gate and controller, respectively.
The variable msgt ranges over {approach, exit , null}, the messages
the train sends to the controller (the null message denotes the lack
of a message being sent). Likewise, the variable msgg ranges over
{lower , raise, null}, the messages the controller sends the gate. All
of the messages that are not sent between machines are irrelevant in
the STA model).

• M : The set M contains three elements, mt, mc, and mg. Each of
these sets contain the state-label variables and message variables for
a machine, and if that machine outputs messages to another one,
it contains the state-label variables for that machine, too. Thus,
mt = {st, msgt, sc}, mg = {sg}, and mc = {sc, msgc, sg}.

• I : The state-label variables are initially set to t0, g0, and c0, re-
spectively. The messages variables are initially set to null . Initially,
timeouts may have any value, but note that some initial states lead

11

to deadlock (e.g., if mg initially has the strictly least-valued time-
out).

• E : For each timeout component, the edges update the state labels
and timeouts in that component according to the constraints de-
scribed. Consider, for example, an edge for the mt-component in
which the train and controller synchronize on the approach mes-
sage. For such an edge Emt(fmt , αmt , gmt , βmt), fmt(st) = t0 and
fmt(sc) = c0 (msgt may have any value). In the updated state,
gmt(st) = t1, gmt(sc) = c1, and gmt(msgt) = approach. The up-
dated timeouts are those associated with mt and mc; they are non-
deterministically updated to satisfy the constraints αmt(mt) + 2 <
βmt(mt) ≤ αmt(mt) + 5 and βmt(mc) = αmt(mc) + 1, respectively.

Remark 5 (Timeout Vs. Timed Automata). Note that unlike in the timed
automata formalization, clocks are not reset. Timeouts continue to in-
crease indefinitely, but they are required to satisfy the constrains given
the current time. For example, if t is the current time, upon entering
state t1, the timeout for mtc is nondeterministically updated to some
value greater than t + 2 and less than or equal to t + 5.

TGC Semantics in SAL The specification of the TGC in SAL mod-
ifies the model developed by Dutertre and Sorea in [DS04b], and is pre-
sented in Appendix A. Because SAL is a general-purpose specification and
verification environment, it does not automatically generate the semantics
of an STA from its syntax. Therefore, we describe a shallow embedding of
the STA semantics in the language of SAL. A specialized language is not
required to describe these semantics. Embedding the semantics provides
a great deal of flexibility; in particular, it allows the user to optimize the
semantics; we describe one such possibility in Sec. 3.3.

The basic building block of a SAL specification is a module containing
global, input, output, and local variables. In a module, transitions are
specified by guarded commands in which local and output variables may
be updated. Modules may be either synchronously or asynchronously
composed, and they communicate via shared variables.

To implement the semantics, modules are specified for the train, gate,
and controller. Each of these contains output variables for their state
labels and outgoing messages, and if a module receives messages from
another, those are specified as input variables. Each also has an output
timeout variable. Additionally, there is a module that specifies the global
clock, which outputs the current time. The other modules have an in-
put variable to read the current time. Because edges may simultaneously
update variables from multiple modules (e.g., in a synchronized transi-
tion between the train and controller), the train, gate, and controller are
synchronously composed. In each of the guards for the transitions in the
train, gate, and controller modules is a condition that the relevant time-
out is equal to the current time. The composition of the train, gate, and
controller is asynchronously composed with the clock module. The clock
module has a single transition that updates the clock when the current
time is less than all the timeouts, and it is updated to the minimum of
the timeouts.

12

Verification The following is a typical safety property one might wish
to prove about the TGC: if the train is in the railroad crossing (st = t2),
then the gate is down (sg = g2). In model of the TGC employing asyn-
chronous timeout automata semantics described in Sec. 3, the property
can be proved by k-induction when k = 14. With the STA semantics
defined, the property is proved when k = 9.

3.3 Clockless STA Semantics

We describe an optimization to the STA semantics provided in Def. 5 in
which we describe how to remove the global clock from the semantics.
By applying this optimization, we are able to reduce the depth at which
k-induction must be applied to prove safety properties about timeout
automata. For example, for the TGC, a basic safety property of the model
is that whenever the train is in the railroad crossing, the gate is down.
In the original timeout automaton model, this is proved in SAL by k-
induction at depth 14 [DS04b]. After applying the optimization described
here, this depth is reduced to k = 5. In Appendix B is a STA model of
the TGC after applying the optimization. This optimization was essential
to complete the verification of the reintegration protocol.

In a timeout automaton, the essential purpose of the clock is to record
the least-valued timeouts of the automata. That is, the clock is either
equal to the least-valued timeout(s), or it is equal to the least-valued
timeout(s) in the next state. However, this information can be obtained
from the timeouts themselves; the clock variable is unnecessary. Removing
the clock variable reduces the state space. Each time the timeouts are
updated so that no timeout is equal to the current clock time, a transition
is taken in which only the clock variable is updated. In the worst case,
this can double the value of k required to prove a state invariant via
k-induction. If the number of timeouts is large, then state transitions
overshadow clock transitions.

Finally, removing the time transitions simplifies the semantics insofar
as only one kind of transition need be considered. In most formalisms for
specifying real-time systems, the semantics included both time and state
transitions.

Definition 7 (Clockless STA Semantics). Let STA = 〈V, M, I , E〉
be a timeout automaton that satisfies the Synchronous Update Property.
Its semantics is an unlabeled transition system S¬cl

STA. A state of SSTA is
a pair 〈f, α〉 consisting of a state f ∈ fV and a timeout vector α ∈ TO .
A state 〈f, α〉 is an initial state of S¬cl

STA if and only if 〈f, α〉 ∈ I .
In the state 〈f, α〉, the edge Em(hm, γm, im, δm) is an enabled edge

if and only hm = f � m, γm = α � m, and α(m) = min(α). An m-
component is an enabled timeout component in 〈f, α〉 if and only if there
exists an m-edge enabled in the state. Furthermore, if 〈f, α〉 and 〈g, β〉 are
states, the edge Em(hm, γm, im, δm) is applied in the transition 〈f, α〉 →
〈g, β〉 if and only it is an enabled edge in 〈f, α〉, im = g � m, and δm =
β � m.

Then the transition 〈f, α〉 → 〈g, β〉 holds if and only if for every
m ∈ M such that m is an enabled m-component in 〈f, α〉, there exists
some m-edge that is applied in the transition.

13

The following proposition asserts that the same state invariants are
true under both clockless semantics and the semantics in Def. 5.

Proposition 1 (Clockless Simulation). Fix a STA 〈V, M, I , E〉. Let
its semantics from Def. 5 be the transition system SSTA, and let its clock-
less semantics be the transition system S¬cl

STA. Let P be some predicate
defined over the states of SSTA that does not take the clock variable t as
an argument. Then P holds for all reachable states in SSTA if and only if
it holds for all reachable states in S¬cl

STA.

Proof. By induction over the states of SSTA and S¬cl
STA, the state 〈f, α〉

is reachable in S¬cl
STA, if and only if either 〈f, α, 0〉 or 〈f, α, min(α)〉 is

reachable in Scl
STA.

Example 1 (TGC with Clockless STA Semantics). Removing the clock is
straightforward. In SAL, this essentially amounts to removing the module
that specifies the global clock, as described in Sec. 3.2. The specifications
of the train, gate and controller must then be modified slightly: rather
than comparing timeouts against the global clock to determine whether
an edge is enabled, timeouts are directly compared with one another. The
full SAL specification is in Appendix B.

Remark 6 (k-Induction in Clockless Semantics). By removing the global
clock, we are able to decrease the depth of k-induction to prove the safety
property described in Sec. 3.2 from 14 under the original timeout automata
semantics to k = 9 in the STA semantics to k = 5 in the clockless STA
semantics. The benefit of removing the clock is particularly pronounced in
the TGC model because there are only three timeouts. Thus, the number
of transitions in a path devoted to updating the clock is relatively high.
In a system with many more timeouts, this effect is less pronounced. For
example, applying these modifications to the timeout automata model of
the Fischer Mutual Exclusion Protocol described in [DS04b] for a large
number of processes would yield more modest results.

4 The Reintegration Protocol

The protocol described here abstracts the reintegration protocol being de-
signed for the latest SPIDER prototype [TPMM05]. The most significant
abstraction is that we model only the portion of the protocol in which the
reintegrator resynchronizes its local clock with the clocks of the nodes in
the clique. We omit that portion of the protocol in which the reintegrator
regains diagnostic data consistent with the operational clique. This por-
tion of the protocol is a slight modification of the SPIDER Distributed
Diagnosis Protocol (the main difference being that the reintegrator simply
listens but does not broadcast messages as in the full distributed diagno-
sis protocol) [TPMM05]. The Distributed Diagnosis Protocol has been
formally verified in PVS [ORSvH95], and the protocol and its verification
is described in [MGPM04].

From a pragmatic standpoint, resynchronization during reintegration
is the most complex portion of the protocol and stood to benefit the most
from formal analysis. Once reintegration is achieved, the remainder of

14

the protocol can be modeled as being synchronous, substantially easing
its analysis.

Other minor simplifications include, for example, not modeling timers
signaling massive failure (e,g., where there is no clique with which to
reintegrate) that triggers the reintegrator to stop executing the reintegra-
tion protocol and begin executing a reset protocol. The protocol, as it is
described in the remainder of this section, is fully modeled and verified.

During the reintegration protocol, the reintegrator monitors its com-
munication links for echo messages (or simply echos) sent by the other
nodes. Echos are messages sent by nodes during the SPIDER Clock Syn-
chronization Protocol, a fault-tolerant protocol in which nodes synchronize
their local clocks that may have drifted (this protocol and its formal ver-
ification are also described in [MGPM04]). The clock synchronization
protocol must be executed periodically by all operational nodes because
clock drift is inevitable, even in operational nodes. The period beginning
at the conclusion of one execution of the synchronization protocol lasting
until its next execution is called a resynchronization frame or simply a
frame.

We verify the correctness of the reintegration protocol with respect to
a single reintegrating node. During the reintegration protocol, the rein-
tegrator sends no messages. If multiple reintegrators are executing the
protocol, they receive no messages from each other, assuming they are
non-faulty. Although a reintegrating node may be non-faulty, it will be
considered faulty by other nodes simultaneously reintegrating. In partic-
ular, a reintegrating node will diagnose another as suffering a fail-silent
fault, since it receives no messages from it.

The reintegrator is designed to tolerate the full range of faulty behav-
iors, including Byzantine faults [LSP82], manifested as arbitrary behavior
to respective observers. However, because the reintegration protocol is not
a distributed protocol (i.e., only a single node executes it), the only fault
manifestations detectable by the reintegrator are benign faults, detectable
in point-to-point communication [PMMG04].

Finally, note that the ability of the reintegrator to reintegrate success-
fully with the operational clique depends on the behavior of the nodes in
the operational clique as well. In particular, the reintegrator executes the
reintegration protocol after suffering a transient fault and reseting. During
this period, the operational nodes have likely determined the reintegrator
to be faulty. So long as the operational nodes believe the reintegrator to
be faulty, they will ignore it, even if it resynchronizes and regains correct
local state. Thus, to allow for reintegration, the operational nodes must
periodically purge its diagnostic data to allow nodes a chance to reinte-
grate. In the current SPIDER prototype under development [TPMM05],
the non-faulty nodes purge their diagnostic data at the end of each resyn-
chronization frame. This allows a node that has suffered a fault in one
resynchronization frame to successfully reintegrate in another.

4.1 System Assumptions

Before describing the behavior of the protocol, a preliminary understand-
ing of the system assumptions is required. These properties are stated in

15

time

Pgood
echos

tn tn+1tn − π

Figure 2: The Frame Property

terms of accusations made by the reintegrator. The reintegrator accuses
a node when it believes the communication from the node is inappropri-
ate (i.e., the reintegrator does not receive an echo message when one is
expected or it receives one unexpectedly).

The first property constrains the behavior of the operational nodes
during each resynchronization frame. It is guaranteed by the correct-
ness of the clock resynchronization protocol [MGPM04] and the high-level
scheduling of the protocols. It is illustrated in Fig. 2.

Definition 8 (Frame Property). Let {tn}∞0 be a sequence of nonneg-
ative reals (denoting real time) assumed to have the following properties:
for all n ∈ N, tn+1 > tn and tn+1 − tn = P . The constant P is called
the frame length, and for each n, the interval [tn, tn+1), closed on the left
and open on the right, is the nth frame. P is constrained as follows: let l
be the number of faulty nodes not accused by the reintegrator during the
preliminary diagnosis and frame synchronization modes (to be described
shortly). Then P > lπ +2π. The constant π ∈ R0< and is called the skew
constant. The reintegrator receives exactly one echo message from each
operational node during each open interval (tn − π, tn),6 and no more
than one echo message in each frame.

The next property ensures that enough of the monitored nodes that
have not been accused are non-faulty for the protocol to work.

Definition 9 (Majority Property). Of the nodes that have not been
accused by the reintegrator during the entire protocol, the majority are
operational.

4.2 Protocol Description

The reintegration protocol is comprised of three modes of operation: pre-
liminary diagnosis, frame synchronization, and synchronization capture.
These modes are executed sequentially in as shown in Fig. 3. We itemize
the global and local state variables of the modes, and then we describe
the behavior of the protocol during each mode.

4.2.1 State Description

State Variables The following state variables of the reintegrator de-
termine the state of the reintegrator during the execution of the protocol.

6In this model, we include communication error in the skew.

16

P.D. F.S. S.C.

Figure 3: State Machine Model of the Protocol Mode Control

In the following, let i range over the indices of the nodes the reintegrator
monitors.

• accs is an array of boolean values such that for each node i, accs[i] is
true if the reintegrator accuses node i of being faulty and it is false
otherwise. The reintegrator ignores echos from nodes it has accused.

• clock is the current time of the reintegrator’s local clock.

• fs finish ranges over the nonnegative reals and is a timer variable
used in the frame synchronization mode.

• mode records the current mode being executed. It ranges over the
set {prelim diag , frame synch, synch capture}, denoting the three
modes, respectively.

• pd finish ranges over the nonnegative reals and denotes the time at
which the preliminary diagnosis mode completes.

• seen is an array of natural numbers such that for each node i, seen[i]
records the number of times a message has been received from i.

State Initialization The following state variables are initialized at
the beginning of the reintegration protocol.

for each i, accs[i] := false;

mode := prelim diag;
for each i, seen[i] := 0;

4.2.2 Protocol Behavior

Preliminary Diagnosis When the reintegrator begins executing the
reintegration protocol, it has no diagnostic data to use in deciding which
nodes are faulty and which are not. Trusting too many faulty nodes
may lower the probability that it will successfully reintegrate with the
operational clique. The purpose of preliminary diagnosis is to acquire
preliminary diagnostic data to attempt to recognize faulty nodes early
in the protocol. This is achieved by monitoring echo messages for the
duration P + π. The reintegrator expects to receive at least one and no
more than two echo messages from i.

In the following pseudo code, a when statement is a guarded action.
The guard echo(i) is true precisely when the reintegrator receives an echo
message from node i.

17

pd finish := clock + P + π;
while clock < pd finish do {

for each i, when echo(i) do {
if (seen[i] < 2 and not accs[i])
then seen[i] := seen[i] + 1
else accs[i] := true;

};
};
for each i, if seen[i] = 0 then accs[i];
mode := frame synch;

Frame Synchronization The purpose of the frame synchronization
mode is to determine a time such that all operational nodes have already
issued an echo message in some frame and before any operational node
issues an echo in the next frame. An interval satisfying this property is
referred to as a frame gap. This provides the reintegrator with a coarse-
grained synchronization with the operational clique: a reintegrator is able
to separate echo messages from operational nodes arriving in different
resynchronization frames.

The mode relies on echo messages from operational nodes being sep-
arated by no more than π units of time. Therefore, the mode begins
monitoring for echos, and it exits when π units of time have elapsed such
that no echo is observed from a node that has not yet been accused. If an
echo is observed within that time from a node that has not be accused,
then the timer is reset.

Acquiring this course-grained level of synchronization is a precondition
for the actual resynchronization that occurs in the next mode.

for each i, seen[i] := 0;
fs finish := clock;
while clock − fs finish < π do {

for each i, when echo(i) do {
if (seen[i] = 0 and not accs[i])
then {

fs finish := clock;
seen[i] := seen[i] + 1;

};
else accs[i] := true;

};
};
mode := synch capture;

Synchronization Capture The synchronization capture mode is the
final mode of the reintegration protocol. Its purpose is to allow the reinte-
grator to determine a time during which some operational node issues an
echo message. It does so by synchronizing when it has received echos from
at least half of the nodes it has not accused (or has not already seen in
this mode). To ensure that it is synchronizing with an operational node,
the Majority Property (Def. 9) must hold. If so, the reintegrator will have

18

become resynchronized with the operational clique, within the accepted
skew, π.

Let trusted be the total number of nodes the reintegrator has not
accused: trusted= |{i | not accs[i]}|. Let seen cnt be the number of
nodes seen (that have not been accused in previous frames): seen cnt :=
|{i | seen[i] > 0}|.

for each i, seen[i] := 0;
while seen cnt ≤ trusted/2 do {

for each i, when echo(i) do {
if (seen[i] = 0 and not accs[i])
then seen[i] := seen[i] + 1;

};
};
clock := 0;

5 Modeling the Protocol in SAL

We now describe the modeling of the reintegration protocol as a STA with
clockless semantics. We describe the model in the language of SAL. The
shallow embedding of the semantics of the reintegration protocol’s STA
model in SAL is similar to our effort to do the same for the TGC’s STA
model, as described in Sec. 3.2 and Ex. 1. The full model can be found
both in Appendix C and on-line at [Pik05] for download.

5.1 Timeouts

The model contains the following timeout variables: reint_to, which is
primarily associated with the reintegrator; frame_to, which is primarily
associated with the operational nodes; and each faulty node has its own
timeout. The timeouts for the operational and faulty nodes essentially
exist for modeling purposes. In modeling the reintegrator’s execution
of the protocol, we require a model of the entire system’s behavior. A
näıve model would fix the behavior of the monitored nodes over multi-
ple resynchronization frames a priori. However, the state space required
to do so makes this infeasible. Rather, we model the behavior of the
monitored nodes one frame at a time. The frame in which the reintegra-
tor is presently in is modeled, and if the reintegrator passes into another
frame by updating reint_to, then the monitored nodes simultaneously
change to the same frame (of course, the reintegrator is modeled to have
no knowledge of which frame it is actually in).

This model allows for a few simplifications. The behavior of the rein-
tegration protocol depends on that of the observed nodes, but not vice
versa. Thus, the model can be constructed so that reint_to is always the
minimum of the other timeouts (this is provable by k-induction). This
ensures the issuing of echo messages are always future events observable
by the timeout model of the reintegrator.

19

P_update: MODULE =
...

TRANSITION
[

frame_to <= reint_to’
-->
frame_to’ = frame_to + P;
new_frame’ = TRUE

[]
ELSE -->
new_frame’ = FALSE

]

Figure 4: Synchronization Frame Module

5.2 Monitored Nodes

To verify the correctness of the protocol, we must model both the rein-
tegrator and the monitored nodes. In the model, we distinguish between
nodes in the operational clique and faulty nodes (as discussed in Sec. 4,
non-faulty nodes not in the operational clique are considered faulty by the
reintegrator, and their behaviors are subsumed by the modeled behavior
of the faulty nodes). We describe the model of the two kinds of nodes in
turn.

5.2.1 Operational Nodes

To model the operational nodes, we begin by defining a module that keeps
track of the resynchronization frames, as presented in Fig. 4. The timeout
frame_to serves as an abstract global clock shared by the synchronized
operational nodes. The timeout keeps track of the values of tn marking
the end of a frame, as described in Sec. 4.1. There is a single transition,
updating the timeout frame_to on transitions when the timeout reint_to
has been updated so that its value is in the next resynchronization frame.
This can be determined by comparing the next state’s value of reint_to
(denoted by reint_to’) to the end of the current resynchronization frame.
The variable new_frame is a boolean value that is true if and only if the
transition just taken was one in which the frame has been updated.

The operational nodes themselves are specified by an op_node mod-
ule, parameterized by the indices of operational nodes, presented in Fig. 5.
The timeout for an operational node is frame_to. Whenever the frame up-
dates, it nondeterministically updates its echo variable, op_echo (ranging
over the nonnegative reals), to a new value satisfying the Frame Property
(Def. 8). This is a conservative model insofar as an operational node may
update its echo to any time satisfying the constraints, so the difference
between the echos it issues in adjoining frames may be up to P + π. In

20

op_node[i: OP_IDS]: MODULE =
...

TRANSITION
[

frame_to <= reint_to’
-->
op_echo’ IN {t: TIME | frame_to’ > t

AND t > frame_to’ - pi}
[]

ELSE -->
]

Figure 5: Operational Node Module

op_nodes: MODULE =
WITH OUTPUT op_echos: OP_ECHOS
(|| (i: OP_IDS): RENAME op_echo TO op_echos[i]

IN op_node[i]);

clique: MODULE = op_nodes || P_update;

Figure 6: Operational Clique Module

reality, the clock of an operational node would not drift so violently.
To ensure the correctness of the model, when the reintegrator moves

from one frame to the next, its timeout reint_to’ must never be updated
so far into the future that it is beyond when operational nodes issues
echos in the next frame. An invariant is proved about the model that
demonstrates that this does not occur.

Finally, the instances of op_node are synchronously composed, and
this composition is synchronously composed with the P_update module
as shown in Fig 6.

5.2.2 Faulty Nodes

Faulty nodes are also specified by a module parameterized by the in-
dices of nodes that may exhibit faulty behavior. The model is slightly
more complicated so that all possible faulty behaviors are modeled, yet k-
induction proofs are feasible over the transition system. In a näıve model
of the entire system, the reintegrator would make a transition whenever
it receives an echo from a node it is actively monitoring. This would
amount to updating its timeout to be equal to the timeout of the first
echo it receives and updating its state accordingly. It would then reset
its timeout to the next echo and so on. In this model, the reintegrator’s

21

time
echoreint to reint to’echo’

undetected

Figure 7: The Reintegrator TA Misses Echo Messages

transitions are event-triggered ; they depend on echo events. However, be-
cause a faulty node may issue multiple echos before being ignored by the
reintegrator, this model can quickly lead the reintegrator to make a large
number of transitions for even a relatively small number of faulty nodes.
For k-induction to succeed, a more sophisticated model is required.

A preferable model is one in which the reintegrator’s transitions are
essentially time-triggered. This amounts to the reintegrator updating its
timeout irrespective of the states and timeouts of the monitored nodes.
Ideally, a time-triggered model of the reintegrator would make a small
number of time-triggered transitions at regular intervals and update its
state based on all of the echos received during the intervals rather than
updating its state upon receiving each echo.

Care must be taken to make a time-triggered model conservative. Be-
cause timeouts record when future events occur, when the reintegrator
makes a state transition, it can only “observe” those echos that come af-
ter its current timeout and no later than the time at which it sets its next
timeout. For example, in a näıve model, suppose the reintegrator were
to update its state in a time-triggered fashion as illustrated in Fig. 7.
Suppose reint_to denotes the reintegrator’s current timeout, which is
also the least of all timeouts. Suppose that for some monitored node,
it issues an echo message at time echo. The reintegrator observes this
echo message, and updates its timeout to reint_to’. Once the current
time reaches echo, however, that node could issue another echo message
at echo’, which will go undetected by the model of the reintegrator.

Therefore, we allow the reintegrator to behave in a time-triggered fash-
ion (in part), but faulty nodes are able to issue multiple echo messages
in a single transition. The model of a faulty node contains a state vari-
able bad_echo, as shown in Fig. 8, that is an array of echos (nonnegative
reals). The array has three indices. This is because the greatest number
of echos that must be observed from any node in a mode is three before
the node is accused. The echo in the first index also serves as the timeout
for a faulty node, and the remaining echos in the array are guaranteed to
always be greater than the timeout by the ascending? predicate. If the
reintegrator updates its timeout in a time-triggered manner, there is the
possibility it will observe all three echos during the update.

Nevertheless, there is no upper bound on how large any of the values
in the array may be. If the echos are too far ahead of the reintegrator’s
timeout, they will be beyond the time to which it updates its timeout in
a time-triggered transition and will never be observed. Thus, the module
also models faulty nodes that are fail-silent. As well, note that the behav-

22

bad_node[i: BAD_IDS]: MODULE =
...

TRANSITION
[

bad_echo[1] <= reint_to’
-->
bad_echo’ IN {be: BAD_ECHO_ARRAY

| ascending?(be, reint_to’)}
[]

ELSE -->
]

Figure 8: Faulty Node Module

ior of a faulty node so modeled may also be indistinguishable from that
of an operational one. A faulty node may issue echos such that the first
echo in the array consistently satisfies the Frame Property (Def. 9), and
the other echos are beyond the observation window of the reintegrator.

The precondition for the transition to update the echos is similar to
that described for the frame synchronization module described in Sec. 5.2.1.
Here, if the next state’s value of reint_to ever surpasses the first echo
from a faulty node, all of the faulty nodes echos are updated. Thus, all of
the faulty node’s echos are always observed by the reintegrator (i.e., the
values of each echo is greater than reint_to). This is also provable in the
model by k-induction.

5.3 The Reintegrator

Each of the three modes of the reintegration protocol is specified as a
separate module. Additionally, another module handles mode control.

5.3.1 Mode Control

Each of the three modes has a binary control signal to determine whether
it is active. Only one mode may be active at any time. The module spec-
ified in Fig. 9 ensures the correct flow of control through the modes. It
is synchronously composed with the modules specifying the modes them-
selves.

We specify mode control for a number of reasons. Making mode con-
trol explicit simplifies the analysis of counterexamples generated by SAL
when attempting to verify properties of the formal model; knowing in
which mode the counterexample occurs simplifies the search for the er-
ror. The mode control is part of the protocol as it was designed. Mode
exit points demarcate locations in the execution of the protocol where
certain invariants are supposed to be reached. An invariant guaranteed
upon the completion of a mode serves as an assumption in demonstrating

23

modes: MODULE =
...

TRANSITION
[

mode = pd_mode
-->
mode’ = IF pd_cntrl=active

THEN mode ELSE fs_mode
ENDIF

[]
mode = fs_mode
-->
mode’ = IF fs_cntrl=active

THEN mode ELSE sc_mode
ENDIF

[]
ELSE -->

]

Figure 9: Mode Control Module

the succeeding mode behaves correctly. Demonstrating that each mode
guarantees the appropriate invariants is sufficient to demonstrate the en-
tire protocol behaves correctly. Thus, modes serve as both a conceptual
and formal decomposition to model and verify the protocol. Because the
module is synchronously composed with the mode modules, it does not
affect the trajectory-length required for k-induction proofs.

5.3.2 Base Modes

Because of the distinct way in which operational and faulty nodes are
modeled, it is simpler to specify distinct accs and seen variables for each
kind. For example, in the SAL model, the reintegrator contains variables
op_accs and bad_accs to record accusations. Nevertheless, care is taken
to ensure that the reintegrator has no a priori knowledge about which
nodes are in fact operational and which are faulty.

In addition, in proving invariants, we found it simpler to specify sep-
arate seen variables for each mode rather than reseting the seen variable
at the conclusion of each mode.

The following paragraphs overview the models of each mode’s execu-
tion.

Preliminary Diagnosis In the preliminary diagnosis mode, there are
two principle transitions, as shown in Fig. 10. The first transition models
the behavior during the mode, and the second models the exiting of the

24

preliminary_diagnosis_mode: MODULE =
...

TRANSITION
[

mode’ = pd_mode
AND frame_to < pd_finish
-->
reint_to’ = frame_to;

...
[]

mode’ = pd_mode
AND frame_to >= pd_finish
-->
pd_cntrl’ = deactive;
reint_to’ = pd_finish;

...
]

Figure 10: Preliminary Diagnosis Module

mode. Our model of the reintegrator during the preliminary diagnosis
mode is essentially time-triggered. The variable pd_finish marks the
time at which the mode exits. The effect of a transition is to move the
reintegrator’s timeout from the beginning of frame n to the beginning
of frame n + 1. As it does so, it records the echos observed in that
frame and updates its state variables recording how many echos are seen
from each node and whether they should be accused, respectively. When
the reintegrator’s timeout is updated to the beginning of the next frame,
the P_update module simultaneously updates frame_to to prepare the
reintegrator to observe the echos in the next frame (Sec. 5.2.1). If the
mode should exit before the termination of the frame, the reintegrator’s
timeout is updated to the time at which the mode should end, and only
those echos in the interium are recorded by the reintegrator.

Frame Synchronization The purpose of the frame synchronization
mode is to allow the reintegrator to discover some time during which no
echos have been observed for π units of time (from nodes it does not
know to be faulty). Thus, as shown in Fig. 11, we define the relation
none_in_pi? that determine whether or not this holds. If the relation is
not satisfied, the reintegrator’s timeout is updated to the greatest echo not
known to be from a faulty node within π units of time of the reintegrator’s
current timeout within the current frame. If no such echo exists within the
current frame, reint_to is updated to the beginning of the next frame,
allowing the operational echos to be updated (see Sec. 5.2.1). When the

25

frame_synchronization_mode: MODULE =
...

TRANSITION
[

mode’ = fs_mode
AND NOT none_in_pi?(reint_to, op_echos, bad_echos,

fs_op_seen, fs_bad_seen,
op_accs, bad_accs)

-->
fs_cntrl’ = active;
reint_to’ IN {t: TIME

| last_in_pi?(t, reint_to,
op_echos, bad_echos,
op_accs, bad_accs,
fs_op_seen,
fs_bad_seen,
reint_to)};

...
[]

mode’ = fs_mode
AND none_in_pi?(reint_to, op_echos, bad_echos,

op_accs, bad_accs,
fs_op_seen, fs_bad_seen)

-->
fs_cntrl’ = deactive;
reint_to’ = reint_to + pi;

...

Figure 11: Frame Synchronization Module

relation does hold, the reintegrator’s timeout is simply updated to be π
units of time greater than its current value.

Synchronization Capture In the last mode, shown in Fig. 12, we
allow the reintegrator to behave in an event-triggered fashion. The reinte-
grator’s timeout is updated from its current value to the time at which the
soonest echo message occurs (that does not come from a node known to
be faulty), or if no such echo exists in the current frame, it updates to the
beginning of the next frame. The function sc_seen_total records how
many echo messages have been seen so far. The mode exits when more
than half of the nodes that have not been accused have been observed –

26

synch_capture_mode: MODULE =
...

TRANSITION
[

mode’ = sc_mode
AND sc_seen_total(sc_op_seen, sc_bad_seen)

<= not_accd(op_accs, bad_accs)/2
-->
sc_cntrl’ = active;
reint_to’ IN {t: TIME

| next?(t, reint_to,
op_echos, bad_echos,
op_accs, bad_accs,
sc_op_seen,
sc_bad_seen, frame_to)};

...
[]

mode’ = sc_mode
AND sc_seen_total(sc_op_seen, sc_bad_seen)

> not_accd(op_accs, bad_accs)/2
-->

sc_cntrl’ = deactive;
...

]

Figure 12: Synchronization Capture Module

that is, when

sc_seen_total(sc_op_seen, sc_bad_seen)

> not_accd(op_accs, bad_accs)/2 .

This also marks the termination of the reintegration protocol.

5.3.3 Composing The Modules

The three mode modules are composed asynchronously, in the base_modes
module:

base_modes: MODULE =

preliminary_diagnosis_mode

[]

frame_synchronization_mode

[]

synch_capture_mode;

27

No two modes should be active simultaneously. This is enforced by
ensuring that if one mode is active, the others are deadlocked. The reinte-
grator is then defined as the synchronous composition of the base_modes

module and the modes module:

reintegrator: MODULE = base_modes || modes;

The entire system is the synchronous composition of the reintegrator
module, the clique module, and the module of the composition of the
faulty nodes:

system: MODULE = reintegrator || clique || bad_nodes;

6 Verifying the Protocol

There are two main theorems to prove. First, we wish to show that
the reintegrator accuses no operational nodes during the execution of the
reintegration protocol. Second, we wish to show that the reintegrator has
successfully resynchronized with the operational nodes upon completion
of the reintegration protocol.

Theorem 1 (No Operational Accusations). For all operational nodes
i, accs[i] does not hold during the reintegration protocol.

Theorem 2 (Synchronization Acquisition). For all operational nodes
i, |clock − echo(i)| < π upon termination of the reintegration protocol.

The proofs of these theorems via k-induction requires a number of
supporting lemmas. As mentioned in Sect. 5.3.1, our general strategy is
to decompose the protocol verification into a verification of its constituent
modes. Each mode should guarantee certain postconditions. The post-
conditions for a mode then serve as preconditions for succeeding modes.
This strategy can be followed through the entire protocol making the proof
of the above theorems straightforward.

This proof strategy is similar to the proof by abstraction technique
used in [DS04b, DS04a] and inspired by abstraction techniques described
in [Rus00, MP94]. However, in [DS04b, DS04a], the abstraction was man-
ually constructed after the fact to aid in the verification. It’s construc-
tion seemed to require a great deal of understanding about the protocol
before verifying it. Furthermore, it is a predicate abstraction: a state
machine is constructed, the states of which are predicates over the pro-
tocol model. These predicates roughly correspond to the postconditions
we verify. While the predicate abstraction technique is more powerful, its
construction is more complicated; the mode abstraction is simply adopted
from the protocol specification.

In this respect, a proof by k-induction can be seen to fall somewhere
between an inductive invariant approach and a clock function approach
used in verifying total correctness of transformational programs via me-
chanical theorem-proving [RM04]. The former approach amounts to in-
duction over a transition system, while the latter requires one to show
that from any state satisfying the precondition, the program halts and

28

the postcondition is satisfied after some fixed number of transitions from
that state.

The proof of Thm 1 requires showing that no accusations are issued
in any of the modes; accusations are not issued in the synchronization
capture mode, so we need be concerned with only the first two modes.
One challenge in doing so is that the reintegrator is unsynchronized with
the operational nodes in these modes, so it may begin listening for echos
at any time during a frame. In particular, it may begin listening for
echos after some operational nodes have issued them and before others
have done so. Thus, for example, in the preliminary diagnosis mode, we
cannot state precisely how many echos messages the reintegrator should
receive from operational node. Rather, the reintegrator should receive at
least one and no more than two echos. Proving that this in fact happens
requires some additional lemmas regarding the maximum and minimum
length of time the mode is active, and the effects of the mode initializing
at different points in a frame.

The proof of Thm 2 relies principally on two supporting lemmas, each
of which provides preconditions for the mode. The first precondition is
that no operational nodes have been accused (Thm 1). The second is that
the time at which the synchronization capture mode initializes and the
reintegrator begins listening for echos is such that either all operational
nodes in that frame have already issued echo messages or no operational
node in the frame has issued one; that is, the frame synchronization mode
has successfully located a frame gap.

Architectures Verified In the prototypical design of SPIDER, the
reintegrator monitors no more than three nodes. The architecture of the
SPIDER bus is a bipartite graph of six nodes (i.e., there are two disjoint
sets of nodes, and any two nodes from distinct sets have interconnects and
no two nodes from the same set have interconnects) [MMT02], and this
architecture with six nodes is designed to tolerate up to two simultaneous
Byzantine faults.

The protocol has been verified for up to four monitored nodes, where
one node may be faulty, (without increasing the number of non-faulty
nodes, a greater number of faulty nodes would violate the Def. 9, the
Majority Property). The proofs took on the order of seconds (and occa-
sionally minutes) to complete on a machine with a gigabyte of memory.
Although we did not attempt it, it may be possible to verify these proper-
ties for models containing a greater number of monitored nodes if proofs
are allowed to run on the order of hours or on a more powerful machine.
Furthermore, strengthening the invariants would allow larger architectures
to be verified.

Invariant k-Induction Proofs Because of the way in which we have
modeled the protocol, for most lemmas, the size of k required to prove
a lemma is invariant to the number of monitored nodes modeled. The
size of k is dependent upon the duration of a mode (i.e., for how many
resynchronization frames it is active) rather than on how many echos are
received in the mode. For the architectures verified, all lemmas are proved

29

by k-induction for k ≤ 4.

Lemmas From Failed Proof Attempts SAL has the capacity to
assist the user in discovering required lemmas. It has an option such
that when enabled, SAL will return a counterexample to a proof by k-
induction. Because the model is infinite, the counterexample is often sym-
bolic. It shows a k-trajectory over which the constraints of the infinitely-
typed variables do not satisfy the induction step (rarely does the base case
fail). The onus is upon the user to interpret how the constraints lead to
a counterexample.

Clique Avoidance Clique avoidance is the property that there exists
exactly one operational clique in the system [Rus01, BP00]. If more than
one clique exists, the nodes in one clique will consider the nodes in the
other to be either faulty or recovering, and the members of each clique
disregard the nodes in the other. This decreases the survivability of the
system, since each clique is smaller than it would be if all the nodes were
in the same clique. Worse though is that multiple cliques may lead the
processors connected to the bus architecture to loose agreement about
the status of the bus. The bus interface unit serving as the interface
between a processor and the other nodes in the bus architecture can only
communicate within the clique in which it is a member. Consequently,
multiple cliques can violate processor-level fault-tolerance requirements
the bus is supposed to guarantee for the attached processors.

The SPIDER architecture does not have a protocol to guarantee clique
avoidance [TPMM05], unlike, e.g., TTP/C [BP00, Pfe03]. However, the
architecture is designed with the intent that if during the course of its
operation the MFA (Sec. 1) is not violated, clique avoidance is guaran-
teed. The analysis of the reintegration protocol supports this claim by
demonstrating that a necessary condition for clique avoidance is met.

Suppose the MFA is not violated and the protocols executed by the
non-faulty nodes during startup and normal operation guarantee clique
avoidance. Then the only opportunity for clique avoidance to be violated
is after multiple nodes suffer transient faults and attempt to find a clique
with which to reintegrate. If we assume clique avoidance holds while a
node begins to reintegrate, it has only one clique to observe. By Thm. 1,
such a node will not accuse the nodes in the single clique during reintegra-
tion and will therefore reintegrate into it by executing the reintegration
protocol.

The two assumptions to the above argument are essential. First, it
is necessary to assume the MFA is not violated. If the architecture suf-
fers a massive failure that triggers a bus restart, scenarios exist in which
clique avoidance is violated, although these scenarios have a low prob-
ability [TPMM05]. Although the essential protocols that execute dur-
ing startup and normal operation have been formally verified individu-
ally [MGPM04], there does not yet exist a cohesive argument to demon-
strate formally that clique avoidance is preserved.

30

7 Conclusion

We have described a formal proof of the correctness of the SPIDER Rein-
tegration Protocol in the SAL tool using k-induction. We have described
improvements to a novel formalism for real-time system that has recently
been proposed and successfully used now in two industrial-scale verifica-
tion projects (this and the work presented in [DS04a]). Furthermore,
we have described a means by which event-triggered behavior can be
modeled as time-triggered behavior. This application demonstrates that
both appropriate formalisms and appropriate abstractions of the physical
world [PMMG04] are necessary if non-trivial problems are to be addressed
by formal methods. The essential means by which we achieved our results
was by introducing synchrony into the formalism and by (conservatively)
modeling event-triggered actions with time-triggered behavior.

Modeling the reintegration protocol revealed two distinctions between
this protocol and the other fault-tolerant protocols designed for SPIDER
and similar systems. First, although the ROBUS is designed to withstand
Byzantine faults, these sort of faults do not warrant special consideration
when reasoning about reintegration. A node that suffers a Byzantine fault
can send arbitrary messages to other nodes. The difficulty in designing
distributed protocols to tolerate Byzantine faults is that different nodes
may receive different messages from the same node. Reintegration is not
a distributed protocol; only the reintegrator executes a reintegration pro-
tocol, so only the messages the reintegrator receives are relevant when
reasoning about the correctness of the protocol.

Second, the topology of the system does not need to be modeled. The
verification is with respect to a single node, the reintegrator. All that is of
concern are what messages the reintegrator receives from the other nodes
in the system. If a communication link does not exist that allows a node
to send messages to the reintegrator, then that node is simply ignored in
the formal model.

The formal specification and verification of the reintegration protocol
did not reveal any flaws in the protocol. Nevertheless, it was of value since
no hand proofs existed to demonstrate its correctness. Furthermore, the
protocol was significantly different from the other SPIDER protocols and
many other well-studied fault-tolerant distributed protocols [Lyn96]. As
well, the formal verification not only demonstrated the correctness of rein-
tegration but it also strongly suggests that clique avoidance is preserved.

Nevertheless, the formal verification did reveal that a more general
assumption can be used to prove the correctness of this mode: we require
only that P > lπ + 2π, where P is the duration of a resynchronization
frame, π is the skew, and l is the number of faulty nodes not accused
by the reintegrator during the first two modes. In the originally-stated
assumption, the requirement was that P > mπ + π, where m is the total
number of monitored nodes. This latter requirement implies the former
(since Def. 9, the Majority Property, ensures there is at least one oper-
ational node). In the worst case (i.e., if the reintegrator trusts as many
faulty nodes as possible for the protocol to work), they are equivalent.

As called for in [DS04a], future work includes theoretical studies com-
paring STA and other real-time formalisms. Other techniques for opti-

31

mizing STA for k-induction would be useful; in particular, techniques for
k-induction over parameterized systems would be of much practical value.
Also of value would be direct comparisons between the specification and
verification of real-time systems in SAL and in other tools specifically
designed for real-time system verification (e.g., HyTech [HHWT97], Kro-
nos [DOTY95], Uppaal [LPY97], etc.).

We note too that we have concerned ourselves with only timeout au-
tomata here. In [DS04a, DS04b], Dutertre and Sorea develop a more
complex real-time formalism they call calendar automata in which time-
outs are also associated with the delay between when a message is sent and
received by communicating processes. We did not model communication
delays in our model of the reintegration protocol. The relationship be-
tween timeout automata, synchronizing timeout automata, and calendar
automata should be examined in more detail.

A difficulty with k-induction is that properties can be proved vacuously
if the system is deadlocked. Checking for deadlocks in a infinite-state
systems is a difficult problem. This is exacerbated by the fact that SAL’s
language is typed, and violating typing constraints can cause deadlocks as
well. The heuristic used to check for deadlocks was to specify properties
we knew should be false and attempt to prove them by k-induction. This
is only a positive test for deadlock; a counterexample does not imply the
system is not deadlocked. An alternative strategy that might be fruitful
would be to construct some finite abstraction of a transition system with
the property that if the finite abstraction contains a deadlock, then so
does the infinite-state system. SAL contains a deadlock checker for finite
state systems that could be then applied. This approach was not pursued
in this work, however.

References

[AL94] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe
for real time. ACM Transactions on Programming Languages
and Systems, 16(5):1543–1571, September 1994.

[Alu99] Rajeev Alur. Timed automata. In 11th International Confer-
ence on Computer-Aided Verification, Lecture Notes in Com-
puter Science, pages 8–22. Springer-Verlag, 1999. Available
at http://www.cis.upenn.edu/~alur/onlinepub.html.

[BGL+00] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech,
César Mu noz, Sam Owre, Harald Rueß, John Rushby, Vlad
Rusu, Hassen Säıdi, N. Shankar, Eli Singerman, and Ashish
Tiwari. An overview of SAL. In C. Michael Holloway, edi-
tor, LFM 2000: Fifth NASA Langley Formal Methods Work-
shop, pages 187–196, Hampton, VA, jun 2000. NASA Lan-
gley Research Center. Available at http://www.csl.sri.

com/papers/lfm2000/.

[BI84] Jerry Banks and John S. Carson II. Discrete-Event Simula-
tion. Prentice-Hall, 1984.

32

http://www.cis.upenn.edu/~alur/onlinepub.html
http://www.csl.sri.com/papers/lfm2000/
http://www.csl.sri.com/papers/lfm2000/

[BP00] Gnther Bauer and Michael Paulitsch. An investigation of
membership and clique avoidance in ttp/c. 19th IEEE Sym-
posium on Reliable Distributed Systems, 16th - 18th October
2000, Nrnberg, Germany, October 2000.

[CCO+04] Roberto Cavada, Alessandro Cimatti, Emanuele Olivetti,
Gavin Keighren, Marco Pistore, and Marco Roveri. NuSMV
2.2 User Manual. IRST, Via Sommarive 18, 38055 Povo
(Trento) Italy, 2004. Available at http://nusmv.irst.itc.
it/NuSMV/userman/index-v2.html.

[dMOR+04] Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby,
and N. Shankar. The ICS decision procedures for embedded
deduction, July 2004.

[DOTY95] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio
Yovine. The tool KRONOS. In Hybrid Systems, pages 208–
219, 1995.

[DS04a] Bruno Dutertre and Maria Sorea. Modeling and verification
of a fault-tolerant real-time startup protocol using calendar
automata. In Formal Techniques in Real-Time and Fault-
Tolerant Systems, volume 3253 of Lecture Notes in Computer
Science, pages 199–214, Grenoble, France, September 2004.
Springer-Verlag. Available at http://fm.csl.sri.com/doc/
abstracts/ftrtft04.

[DS04b] Bruno Dutertre and Maria Sorea. Timed systems in SAL.
Technical Report SRI-SDL-04-03, SRI, International, July
2004. Available at http://www.sdl.sri.com/users/bruno/
publis.html.

[ES03] Niklas Eén and Niklas Sörensson. Temporal induction by
incremental SAT solving. Electronic Notes in Theoretical
Computer Science, 89(4), 2003.

[HD92] Kenneth Hoyme and Kevin Driscoll. SAFEbus. In 11th
AIAA/IEEE Digital Avionics Systems Conference (DASC),
pages 68–73, October 1992.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HYTECH: A model checker for hybrid systems. Interna-
tional Journal on Software Tools for Technology Transfer,
1(1–2):110–122, 1997. Available at http://citeseer.ist.

psu.edu/henzinger97hytech.html.

[HS96] Klaus Havelund and Natarajan Shankar. Experiements in
theorem proving and model checking for protocol verifica-
tion. In Proceedings of Formal Methods Europe FME’96,
Lecture Notes in Computer Science. Springer, 1996.

[Kop94] Hermann Kopetz. TTP—a protocol for fault-tolerant real-
time systems. IEEE Computer, 27(1):14–23, January 1994.

[Kop97] Hermann Kopetz. Real-Time Systems. Kluwer Academic
Publishers, 1997.

33

http://nusmv.irst.itc.it/NuSMV/userman/index-v2.html
http://nusmv.irst.itc.it/NuSMV/userman/index-v2.html
http://fm.csl.sri.com/doc/abstracts/ftrtft04
http://fm.csl.sri.com/doc/abstracts/ftrtft04
http://www.sdl.sri.com/users/bruno/publis.html
http://www.sdl.sri.com/users/bruno/publis.html
http://citeseer.ist.psu.edu/henzinger97hytech.html
http://citeseer.ist.psu.edu/henzinger97hytech.html

[LH02] G. Leen and D. Heffernan. Expanding automotive electronic
systems. IEEE Computer, 0018-9162/02:88–93, Jan 2002.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UP-
PAAL in a nutshell. STTT, 1(1-2):134–152, 1997.

[LSP82] Lamport, Shostak, and Pease. The byzantine generals
problem. ACM Transactions on Programming Languages
and Systems, 4:382–401, July 1982. Available at http:

//citeseer.nj.nec.com/lamport82byzantine.html.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kauf-
mann, 1996.

[MGPM04] Paul Miner, Alfons Geser, Lee Pike, and Jeffery Mad-
dalon. A unified fault-tolerance protocol. In Yas-
sine Lakhnech and Sergio Yovine, editors, Formal Tech-
niques, Modeling and Analysis of Timed and Fault-Tolerant
Systems (FORMATS-FTRTFT), volume 3253 of Lecture
Notes in Computer Science, pages 167–182. Springer,
2004. Available at http://techreports.larc.nasa.gov/

ltrs/PDF/2004/mtg/NASA-2004-jcfmats-pm.pdf.

[MMT02] Paul S. Miner, Mahyar Malekpour, and Wilfredo Torres.
Conceptual design of a reliable optical bus (robus). In 21st
AIAA/IEEE Digital Avionics Systems Conference DASC,
Irvine, CA, October, 2002.

[MP94] Zohar Manna and Amir Pnueli. Temporal verification dia-
grams. In TACS ’94: Proceedings of the International Con-
ference on Theoretical Aspects of Computer Software, pages
726–765. Springer-Verlag, 1994.

[NAS04] NASA Formal Methods Group. SPIDER homepage. Web-
site, 2004. Available at http://shemesh.larc.nasa.gov/

fm/spider/.

[ORSvH95] Sam Owre, John Rusby, Natarajan Shankar, and Friedrich
von Henke. Formal verification for fault-tolerant architec-
tures: Prolegomena to the design of pvs. IEEE Transactions
on Software Engineering, 21(2):107–125, February 1995.

[Pfe03] Holger Pfeifer. Formal Analysis of Fault-Tolerant Algorithms
in the Time-Triggered Architecture. PhD thesis, Universität
Ulm, 2003. Available at http://www.informatik.uni-ulm.
de/ki/Papers/pfeifer-phd.html.

[Pik05] Lee Pike. SPIDER reintegration protocol SAL files. Web-
site, 2005. Available at http://shemesh.larc.nasa.gov/

fm/spider/reint_sal/.

[PMMG04] Lee Pike, Jeffery Maddalon, Paul Miner, and Alfons
Geser. Abstractions for fault-tolerant distributed sys-
tem verification. In Konrad Slind, Annette Bunker,
and Ganesh Gopalakrishnan, editors, Theorem Proving
in Higher Order Logics (TPHOLs), volume 3223 of Lec-
ture Notes in Computer Science, pages 257–270. Springer,

34

http://citeseer.nj.nec.com/lamport82byzantine.html
http://citeseer.nj.nec.com/lamport82byzantine.html
http://techreports.larc.nasa.gov/ltrs/PDF/2004/mtg/NASA-2004-jcfmats-pm.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/2004/mtg/NASA-2004-jcfmats-pm.pdf
http://shemesh.larc.nasa.gov/fm/spider/
http://shemesh.larc.nasa.gov/fm/spider/
http://www.informatik.uni-ulm.de/ki/Papers/pfeifer-phd.html
http://www.informatik.uni-ulm.de/ki/Papers/pfeifer-phd.html
http://shemesh.larc.nasa.gov/fm/spider/reint_sal/
http://shemesh.larc.nasa.gov/fm/spider/reint_sal/

2004. Available at http://techreports.larc.nasa.gov/

ltrs/PDF/2004/mtg/NASA-2004-17tphol-lsp.pdf.

[PMT04] Lee Pike, Paul Miner, and Wilfredo Torres. Model
checking failed conjectures in theorem proving: a case
study. Technical Report NASA/TM–2004–213278, NASA
Langley Research Center, November 2004. Avail-
able at http://techreports.larc.nasa.gov/ltrs/PDF/

2004/tm/NASA-2004-tm213278.pdf.

[RM04] Sandip Ray and J. Strother Moore. Proof styles in oper-
ational semantics. In Formal Methods in Computer-Aided
Design (FMCAD), pages 67–81, 2004.

[Rus99] John Rushby. Systematic formal verification for fault-
tolerant time-triggered algorithms. IEEE Transactions
on Software Engineering, 25(5):651–660, September 1999.
Available at http://www.csl.sri.com/papers/tse99/.

[Rus00] John Rushby. Verification diagrams revisited: Disjunc-
tive invariants for easy verification. In E. A. Emer-
son and A. P. Sistla, editors, Computer-Aided Verifica-
tion, CAV ’2000, volume 1855 of Lecture Notes in Com-
puter Science, pages 508–520, Chicago, IL, July 2000.
Springer-Verlag. Available at http://www.csl.sri.com/

users/rushby/abstracts/cav00.

[Rus01] John Rushby. Bus architectures for safety-critical embedded
systems. In Tom Henzinger and Christoph Kirsch, editors,
EMSOFT 2001: Proceedings of the First Workshop on Em-
bedded Software, volume 2211 of Lecture Notes in Computer
Science, pages 306–323, Lake Tahoe, CA, October 2001.
Springer-Verlag.

[Rus02] John Rushby. An overview of formal verification for the
time-triggered architecture. In Werner Damm and Ernst-
Rüdiger Olderog, editors, Formal Techniques in Real-Time
and Fault-Tolerant Systems, volume 2469 of Lecture Notes
in Computer Science, pages 83–105, Oldenburg, Germany,
September 2002. Springer-Verlag.

[SRI04] SRI International. Symbolic analysis laboratory SAL, 2004.
Available at http://sal.csl.sri.com/.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck.
Checking safety properties using induction and a SAT-
solver. In FMCAD ’00: Proceedings of the Third Interna-
tional Conference on Formal Methods in Computer-Aided
Design, pages 108–125. Springer-Verlag, 2000. Available at
http://www.cs.chalmers.se/~ms/.

[TPMM05] Wilfredo Torres-Pomales, Mahyar R. Malekpour, and Paul
Miner. ROBUS-2: A fault-tolerant broadcast communica-
tion system. Technical report, NASA Langley Research Cen-
ter, 2005.

35

http://techreports.larc.nasa.gov/ltrs/PDF/2004/mtg/NASA-2004-17tphol-lsp.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/2004/mtg/NASA-2004-17tphol-lsp.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/2004/tm/NASA-2004-tm213278.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/2004/tm/NASA-2004-tm213278.pdf
http://www.csl.sri.com/papers/tse99/
http://www.csl.sri.com/users/rushby/abstracts/cav00
http://www.csl.sri.com/users/rushby/abstracts/cav00
http://sal.csl.sri.com/
http://www.cs.chalmers.se/~ms/

A STA Model of the TGC in SAL

% ---

% Lee Pike

% NASA Langley Formal Methods Group

% lee.s.pike@nasa.gov

%

% SAL 2.3

%

% Adapted from the TGC model in SAL by B. Dutertre and

% M.Sorea, in "Timed Systems in SAL," Technical Report

% SRI-SDL-04-03, July 2004.

% ---

sta_tgc: CONTEXT =

BEGIN

SIGNAL : TYPE = {approach, exit, lower,

raise, null};

TIME : TYPE = REAL;

N : NATURAL = 3;

INDEX : TYPE = [1..N];

TIMEOUT_ARRAY : TYPE = ARRAY INDEX OF TIME;

T_STATE: TYPE = {t0, t1, t2, t3};

G_STATE: TYPE = {g0, g1, g2, g3};

C_STATE: TYPE = {c0, c1, c2, c3};

to_min(t1: TIME, t2: TIME, t3: TIME): TIME =

min(t1, min(t2, t3));

%---

% Clock module: makes time elapse up to the next timeout

%---

clock: MODULE =

BEGIN

INPUT

t_timeout : TIME,

c_timeout : TIME,

g_timeout : TIME

OUTPUT time: TIME

INITIALIZATION time = 0

TRANSITION

[time_elapses:

time < to_min(t_timeout, c_timeout, g_timeout)

-->

time’ = to_min(t_timeout, c_timeout, g_timeout)

]

END;

%---

36

% Train module

%---

train: MODULE =

BEGIN

INPUT

time : TIME,

c_state : C_STATE

OUTPUT

t_timeout : TIME,

msg1 : SIGNAL

LOCAL

reset : TIME,

t_state : T_STATE

INITIALIZATION

t_state = t0;

msg1 = null;

TRANSITION

[t0_t1:

t_state = t0

AND t_timeout = time

AND c_state = c0

-->

t_state’ = t1;

msg1’ = approach;

reset’ = time + 5;

t_timeout’ IN { x: TIME | time + 2 < x

AND x <= time + 5}

[] t1_t2:

t_state = t1

AND t_timeout = time

-->

msg1’ = null;

t_state’ = t2;

t_timeout’ IN { x: TIME | time < x

AND x <= reset}

[] t2_t3:

t_state = t2

AND t_timeout = time

-->

msg1’ = null;

t_state’ = t3;

t_timeout’ IN { x: TIME | time < x

AND x <= reset}

[] t3_t0:

t_state = t3

AND t_timeout = time

AND c_state = c2

-->

t_state’ = t0;

msg1’ = exit;

37

t_timeout’ IN { x: TIME | time < x}

[]

ELSE -->

]

END;

%---

% GATE module

%---

gate: MODULE =

BEGIN

INPUT

time : TIME,

c_timeout : TIME,

msg2 : SIGNAL

OUTPUT

g_timeout : TIME,

g_state : G_STATE

INITIALIZATION

g_state = g0;

TRANSITION

[g0_g1:

g_state = g0

AND msg2’ = lower

AND c_timeout = time

-->

g_state’ = g1;

g_timeout’ IN { x: TIME | time < x

AND x <= time + 1}

[] g1_g2:

g_state = g1

AND g_timeout = time

-->

g_state’ = g2;

g_timeout’ IN { x: TIME | time < x }

[] g2_g3:

g_state = g2

AND msg2’ = raise

AND c_timeout = time

-->

g_state’ = g3;

g_timeout’ IN { x: TIME | time + 1 <= x

AND x <= time + 2}

[] g3_g0:

g_state = g3

AND g_timeout = time

-->

g_state’ = g0;

g_timeout’ IN { x: TIME | time < x}

[]

38

ELSE -->

]

END;

%---

% Controller module

%---

controller : MODULE =

BEGIN

INPUT

time : TIME,

t_timeout : TIME,

msg1 : SIGNAL,

g_state : G_STATE

OUTPUT

c_timeout : TIME,

msg2 : SIGNAL,

c_state : C_STATE

INITIALIZATION

c_state = c0;

msg2 = null;

TRANSITION

[c0_c1:

c_state = c0

AND t_timeout = time

AND msg1’ = approach

-->

c_state’ = c1;

c_timeout’ = time + 1

[] c1_c2:

c_state = c1

AND c_timeout = time

AND g_state = g0

-->

c_state’ = c2;

msg2’ = lower;

c_timeout’ IN { x: TIME | time < x }

[] c2_c3:

c_state = c2

AND msg1’ = exit

AND t_timeout = time

-->

c_state’ = c3;

c_timeout’ IN { x: TIME | time < x

AND x <= time + 1}

[] c3_c0:

c_state = c3

AND c_timeout = time

AND g_state = g2

-->

39

c_state’ = c0;

msg2’ = raise;

c_timeout’ IN { x: TIME | time < x}

[]

ELSE -->

]

END;

tgc: MODULE = train || gate || controller;

system: MODULE = clock [] tgc;

%---

% properties

%---

% proved d9

safe: LEMMA system |- G(t_state = t2 => g_state = g2);

%---

% liveness checks

%---

tstate2: LEMMA system |- G(t_state /= t2);

gstate2: LEMMA system |- G(g_state /= g2);

cstate2: LEMMA system |- G(c_state /= c2);

tstate3: LEMMA system |- G(t_state /= t3);

gstate3: LEMMA system |- G(g_state /= g3);

cstate3: LEMMA system |- G(c_state /= c3);

END

40

B STA Model of the TGC with Clockless
Semantics in SAL

% ---

% Lee Pike

% NASA Langley Formal Methods Group

% lee.s.pike@nasa.gov

%

% SAL 2.3

%

% Adapted from the TGC model in SAL by B. Dutertre and

% M.Sorea, in "Timed Systems in SAL," Technical Report

% SRI-SDL-04-03, July 2004.

% ---

sta_tgc_clockless: CONTEXT =

BEGIN

SIGNAL : TYPE = {approach, exit, lower,

raise, null};

TIME : TYPE = REAL;

N : NATURAL = 3;

INDEX : TYPE = [1..N];

TIMEOUT_ARRAY : TYPE = ARRAY INDEX OF TIME;

T_STATE: TYPE = {t0, t1, t2, t3};

G_STATE: TYPE = {g0, g1, g2, g3};

C_STATE: TYPE = {c0, c1, c2, c3};

to_min(t1: TIME, t2: TIME, t3: TIME): TIME =

min(t1, min(t2, t3));

%---

% Train module

%---

train: MODULE =

BEGIN

INPUT

c_timeout : TIME,

g_timeout : TIME,

c_state : C_STATE

OUTPUT

t_timeout : TIME,

msg1 : SIGNAL

LOCAL

reset : TIME,

t_state : T_STATE

INITIALIZATION

t_state = t0;

msg1 = null;

41

TRANSITION

[t0_t1:

t_state = t0

AND t_timeout = to_min(t_timeout, c_timeout, g_timeout)

AND c_state = c0

-->

t_state’ = t1;

msg1’ = approach;

reset’ = t_timeout + 5;

t_timeout’ IN { x: TIME | t_timeout + 2 < x

AND x <= t_timeout + 5}

[] t1_t2:

t_state = t1

AND t_timeout = to_min(t_timeout, c_timeout, g_timeout)

-->

msg1’ = null;

t_state’ = t2;

t_timeout’ IN { x: TIME | t_timeout < x

AND x <= reset}

[] t2_t3:

t_state = t2

AND t_timeout = to_min(t_timeout, c_timeout, g_timeout)

-->

msg1’ = null;

t_state’ = t3;

t_timeout’ IN { x: TIME | t_timeout < x

AND x <= reset}

[] t3_t0:

t_state = t3

AND t_timeout = to_min(t_timeout, c_timeout, g_timeout)

AND c_state = c2

-->

t_state’ = t0;

msg1’ = exit;

t_timeout’ IN { x: TIME | t_timeout < x}

[]

ELSE -->

]

END;

%---

% GATE module

%---

gate: MODULE =

BEGIN

INPUT

c_timeout : TIME,

t_timeout : TIME,

msg2 : SIGNAL

OUTPUT

42

g_timeout : TIME,

g_state : G_STATE

INITIALIZATION

g_state = g0;

TRANSITION

[g0_g1:

g_state = g0

AND msg2’ = lower

AND c_timeout = to_min(t_timeout, c_timeout, g_timeout)

-->

g_state’ = g1;

g_timeout’ IN { x: TIME | c_timeout < x

AND x <= c_timeout + 1}

[] g1_g2:

g_state = g1

AND g_timeout = to_min(t_timeout, c_timeout, g_timeout)

-->

g_state’ = g2;

g_timeout’ IN { x: TIME | g_timeout < x }

[] g2_g3:

g_state = g2

AND msg2’ = raise

AND c_timeout = to_min(t_timeout, c_timeout, g_timeout)

-->

g_state’ = g3;

g_timeout’ IN { x: TIME | c_timeout + 1 <= x

AND x <= c_timeout + 2}

[] g3_g0:

g_state = g3

AND g_timeout = to_min(t_timeout, c_timeout, g_timeout)

-->

g_state’ = g0;

g_timeout’ IN { x: TIME | g_timeout < x}

[]

ELSE -->

]

END;

%---

% Controller module

%---

controller : MODULE =

BEGIN

INPUT

t_timeout : TIME,

g_timeout : TIME,

msg1 : SIGNAL,

g_state : G_STATE

OUTPUT

c_timeout : TIME,

43

msg2 : SIGNAL,

c_state : C_STATE

INITIALIZATION

c_state = c0;

msg2 = raise;

TRANSITION

[c0_c1:

c_state = c0

AND t_timeout = to_min(t_timeout, c_timeout, g_timeout)

AND msg1’ = approach

-->

c_state’ = c1;

c_timeout’ = t_timeout + 1

[] c1_c2:

c_state = c1

AND c_timeout = to_min(t_timeout, c_timeout, g_timeout)

AND g_state = g0

-->

c_state’ = c2;

msg2’ = lower;

c_timeout’ IN { x: TIME | c_timeout < x }

[] c2_c3:

c_state = c2

AND msg1’ = exit

AND t_timeout = to_min(t_timeout, c_timeout, g_timeout)

-->

c_state’ = c3;

c_timeout’ IN { x: TIME | t_timeout < x

AND x <= t_timeout + 1}

[] c3_c0:

c_state = c3

AND c_timeout = to_min(t_timeout, c_timeout, g_timeout)

AND g_state = g2

-->

c_state’ = c0;

msg2’ = raise;

c_timeout’ IN { x: TIME | c_timeout < x}

[]

ELSE -->

]

END;

system: MODULE = train || gate || controller;

%---

% properties

%---

% proved d5

safe: LEMMA system |- G(t_state = t2 => g_state = g2);

44

%---

% liveness checks

%---

tstate2: LEMMA system |- G(t_state /= t2);

gstate2: LEMMA system |- G(g_state /= g2);

cstate2: LEMMA system |- G(c_state /= c2);

tstate3: LEMMA system |- G(t_state /= t3);

gstate3: LEMMA system |- G(g_state /= g3);

cstate3: LEMMA system |- G(c_state /= c3);

END

45

C STA Model of the Reintegration Pro-
tocol in SAL

% ---

% Lee Pike

% NASA Langley Formal Methods Group

% lee.s.pike@nasa.gov

%

% Compatible with SAL 2.3 & SAL 2.4

% ---

reint: CONTEXT =

BEGIN

% --------------------------TYPES AND CONSTANTS -------------

% The nonnegative reals.

TIME : TYPE = {x: REAL | 0 <= x};

MODES : TYPE = {pd_mode, fs_mode, sc_mode};

CNTRL : TYPE = {active, deactive};

% --------------------------------------

% IF THE NUMBER OF NODES ARE CHANGED, UPDATE THESE TYPES AND

% CONSTANTS APPROPRIATELY.

% The user must ensure that there are enough operational

% nodes to ensure the majority property always holds

% (this requires the majority of nodes to be operational).

% Number of abstract operational nodes.

op_total : NATURAL = 2;

% Number of abstract bad nodes.

bad_total : NATURAL = 1;

% Total number of abstract nodes.

total : NATURAL = op_total + bad_total;

% The set of all abstract nodes.

ALL_IDS : TYPE = {x: [1..total] | x=1 OR x=2 OR x=3};

ALL_CNT : TYPE = {x: [0..total] | x=0 OR x=1

OR x=2 OR x=3};

% The set of abstract operational nodes.

OP_IDS : TYPE = {x: [1..op_total] | x=1 OR x=2};

% Where the indexing of bad nodes starts.

b_st : NATURAL = op_total + 1;

% The set of abstract bad nodes.

BAD_IDS : TYPE = {x: [b_st..total] | x=3};

% --------------------------------------

% The size of the seen variable in preliminary diagnosis.

pd_see_top : NATURAL = 3;

% The set of possible seen vals in preliminary diagnosis.

PD_SEEN : TYPE = {x: [0..pd_see_top]

46

| x=0 OR x=1 OR x=2

OR x=pd_see_top};

% The set of times at which abtract operational nodes send

% echos.

OP_ECHOS : TYPE = ARRAY OP_IDS OF TIME;

% Each bad node has an array of times at which it echos.

% The array is as big as the number of times that echos

% can be seen in a mode.

BAD_ECHO_ARRAY : TYPE = ARRAY [1..pd_see_top] OF TIME;

% The set of echo arrays for the abstract bad nodes.

BAD_ECHOS : TYPE = ARRAY BAD_IDS OF BAD_ECHO_ARRAY;

% The reintegrator’s set of accusations of operational nodes.

OP_ACCS : TYPE = ARRAY OP_IDS OF BOOLEAN;

% The reintegrator’s set of accusations of bad nodes.

BAD_ACCS : TYPE = ARRAY BAD_IDS OF BOOLEAN;

% The reintegrator’s record of how many times an operational

% node has been seen in preliminary diagnosis.

PD_OP_SEEN : TYPE = ARRAY OP_IDS OF PD_SEEN;

% The reintegrator’s record of how many times an bad node

% has been seen in preliminary diagnosis.

PD_BAD_SEEN : TYPE = ARRAY BAD_IDS OF PD_SEEN;

% maximum skew between operational nodes

pi : {t: TIME | 0 < t};

% Length of synchronization frame. Constrained by skew.

P : {t: TIME | t > pi*(bad_total + 2)};

% ---

% ------------------FUNCTIONS--------------------------------

% Is the node id of an operational node?

operational?(i: ALL_IDS): BOOLEAN = i <= op_total;

% --------------------------------------

% Functions for monitoring echos from faulty nodes in the

% preliminary diagnosis mode.

pd_bad_see_rec(bad_ecs: BAD_ECHO_ARRAY, ind: PD_SEEN,

start: TIME, ending: TIME, seen: PD_SEEN)

: PD_SEEN =

IF ind=0 THEN seen

ELSIF (bad_ecs[ind] > start AND bad_ecs[ind] <= ending)

THEN pd_bad_see_rec(bad_ecs, ind-1, start, ending, seen+1)

ELSE pd_bad_see_rec(bad_ecs, ind-1, start, ending, seen) ENDIF;

pd_bad_see(seen: PD_SEEN, bad_ecs: BAD_ECHO_ARRAY,

start: TIME, ending: TIME): PD_SEEN =

IF pd_bad_see_rec(bad_ecs, pd_see_top, start, ending, 0)

+ seen

>= pd_see_top

THEN pd_see_top

47

ELSE pd_bad_see_rec(bad_ecs, pd_see_top, start, ending, 0)

+ seen

ENDIF;

pd_bad_echos(seen: PD_SEEN, bad_ec: BAD_ECHO_ARRAY,

start: TIME, ending: TIME): PD_SEEN =

pd_bad_see(seen, bad_ec, start, ending);

% --------------------------------------

% Functions for monitoring echos from faulty nodes in the

% preliminary diagnosis mode.

pd_op_echos(seen: PD_SEEN, op_ec: TIME,

start: TIME, ending: TIME): PD_SEEN =

IF (op_ec > start AND op_ec <= ending AND seen < pd_see_top)

THEN seen+1 ELSE seen ENDIF;

% --------------------------------------

% Functions for finding the last valid echo in the

% frame synchronization mode transitions.

% No echos from eligible nodes within pi ticks.

none_in_pi?(reint_to: TIME, op_echos: OP_ECHOS,

bad_echos: BAD_ECHOS, fs_op_seen: OP_ACCS,

fs_bad_seen: BAD_ACCS, op_accs: OP_ACCS,

bad_accs: BAD_ACCS): BOOLEAN =

(FORALL (i: OP_IDS):

(op_echos[i] > reint_to

AND (NOT op_accs[i]) AND (NOT fs_op_seen[i]))

=> op_echos[i] > pi+reint_to)

AND (FORALL (i: BAD_IDS):

((NOT bad_accs[i]) AND (NOT fs_bad_seen[i]))

=> bad_echos[i][1] > pi+reint_to);

% Defined as a predicate rather than a recursive function;

% see Dutertre and Sorea’s tech report for an explanation.

% True at the time of the last eligible echo in pi ticks.

last_in_pi?(t: TIME, reint_to: TIME, op_echos: OP_ECHOS,

bad_echos: BAD_ECHOS, fs_op_seen: OP_ACCS,

fs_bad_seen: BAD_ACCS, op_accs: OP_ACCS,

bad_accs: BAD_ACCS, frame_to: TIME): BOOLEAN =

(FORALL (i: OP_IDS):

(op_echos[i] > reint_to

AND op_echos[i] <= pi+reint_to

AND (NOT op_accs[i]) AND (NOT fs_op_seen[i]))

=> t >= op_echos[i])

AND (FORALL (i: BAD_IDS):

(bad_echos[i][1] <= pi+reint_to

AND (NOT bad_accs[i]) AND (NOT fs_bad_seen[i]))

=> t >= bad_echos[i][1])

AND ((EXISTS (i: OP_IDS):

48

(NOT op_accs[i]) AND (NOT fs_op_seen[i])

AND op_echos[i] <= pi+reint_to

AND op_echos[i] < frame_to

AND t = op_echos[i])

OR (EXISTS (j: BAD_IDS):

(NOT bad_accs[j]) AND (NOT fs_bad_seen[j])

AND bad_echos[j][1] <= pi+reint_to

AND bad_echos[j][1] < frame_to

AND t = bad_echos[j][1])

OR (frame_to < reint_to+pi AND t = frame_to));

% --------------------------------------

% --------------------------------------

% Functions for counting the number of accused

% for the synchronization mode.

not_accd_rec(op_accs: OP_ACCS, bad_accs: BAD_ACCS,

i: ALL_CNT, cnt: ALL_CNT): ALL_CNT =

IF i=0 THEN cnt

ELSE (IF operational?(i)

THEN

(IF op_accs[i]

THEN not_accd_rec(op_accs, bad_accs, i-1, cnt)

ELSE not_accd_rec(op_accs, bad_accs, i-1, cnt+1)

ENDIF)

ELSE

(IF bad_accs[i]

THEN not_accd_rec(op_accs, bad_accs, i-1, cnt)

ELSE not_accd_rec(op_accs, bad_accs, i-1, cnt+1)

ENDIF)

ENDIF)

ENDIF;

not_accd(op_accs: OP_ACCS, bad_accs: BAD_ACCS): ALL_CNT =

not_accd_rec(op_accs, bad_accs, total, 0);

% --------------------------------------

% How many nodes seen in synch capture mode.

sc_seen_rec(sc_op_seen: OP_ACCS, sc_bad_seen: BAD_ACCS,

i: ALL_CNT, cnt: ALL_CNT): ALL_CNT =

IF i = 0 THEN cnt

ELSE

(IF operational?(i)

THEN

(IF sc_op_seen[i]

THEN sc_seen_rec(sc_op_seen, sc_bad_seen, i-1, cnt+1)

ELSE sc_seen_rec(sc_op_seen, sc_bad_seen, i-1, cnt)

ENDIF)

ELSE

(IF sc_bad_seen[i]

THEN sc_seen_rec(sc_op_seen, sc_bad_seen, i-1, cnt+1)

49

ELSE sc_seen_rec(sc_op_seen, sc_bad_seen, i-1, cnt)

ENDIF)

ENDIF)

ENDIF;

sc_seen_total(sc_op_seen: OP_ACCS,

sc_bad_seen: BAD_ACCS): ALL_CNT =

sc_seen_rec(sc_op_seen, sc_bad_seen, total, 0);

% Defined as a predicate rather than a recursive function;

% see Dutertre and Sorea’s tech report for an explanation.

% Determining the next valid echo for the synchronization

% mode transitions.

next?(t: TIME, reint_to: TIME, op_echos: OP_ECHOS,

bad_echos: BAD_ECHOS, fs_op_seen: OP_ACCS,

fs_bad_seen: BAD_ACCS, op_accs: OP_ACCS,

bad_accs: BAD_ACCS, frame_to: TIME): BOOLEAN =

(FORALL (i: OP_IDS):

(op_echos[i] > reint_to

AND (NOT op_accs[i]) AND (NOT fs_op_seen[i]))

=> t <= op_echos[i])

AND (FORALL (i: BAD_IDS):

(NOT bad_accs[i]) AND (NOT fs_bad_seen[i])

=> t <= bad_echos[i][1])

AND ((EXISTS (i: OP_IDS):

(NOT op_accs[i]) AND (NOT fs_op_seen[i])

AND reint_to < op_echos[i]

AND op_echos[i] < frame_to

AND t = op_echos[i])

OR (EXISTS (j: BAD_IDS):

(NOT bad_accs[j]) AND (NOT fs_bad_seen[j])

AND bad_echos[j][1] < frame_to

AND t = bad_echos[j][1])

OR t = frame_to);

% Ensures the array of echos from faulty nodes satisfy

% are ascending.

ascending?(be: BAD_ECHO_ARRAY, reint_to: TIME): BOOLEAN =

FORALL (e: [1..pd_see_top-1]): be[e] > reint_to

AND be[e] < be[e+1];

% ---

% -------------------------------- MODEL --------------------

% MODES ---

modes: MODULE =

BEGIN

INPUT

pd_cntrl : CNTRL,

50

fs_cntrl : CNTRL,

sc_cntrl : CNTRL

OUTPUT

mode : MODES

INITIALIZATION

mode = pd_mode

TRANSITION

[

mode = pd_mode

-->

mode’ = IF pd_cntrl=active THEN mode ELSE fs_mode

ENDIF

[]

mode = fs_mode

-->

mode’ = IF fs_cntrl=active THEN mode ELSE sc_mode

ENDIF

[]

ELSE -->

]

END;

% ---

% PRELIMINARY DIAGNOSIS MODE --------------------------------

preliminary_diagnosis_mode: MODULE =

BEGIN

INPUT

mode : MODES,

frame_to : TIME,

op_echos : OP_ECHOS,

bad_echos : BAD_ECHOS

OUTPUT

pd_cntrl : CNTRL

LOCAL

pd_finish : TIME,

pd_op_seen : PD_OP_SEEN,

pd_bad_seen : PD_BAD_SEEN

GLOBAL

op_accs : OP_ACCS,

bad_accs : BAD_ACCS,

reint_to : TIME

INITIALIZATION

pd_cntrl = active;

op_accs = [[i: OP_IDS] FALSE];

bad_accs = [[i: BAD_IDS] FALSE];

pd_op_seen = [[i: OP_IDS] 0];

pd_bad_seen = [[i: BAD_IDS] 0];

reint_to IN {t: TIME | t >= 0 AND t < P};

pd_finish = reint_to+P+pi

51

TRANSITION

[

mode’ = pd_mode

AND frame_to < pd_finish

-->

reint_to’ = frame_to;

pd_op_seen’ = [[i: OP_IDS]

IF (NOT op_accs[i])

THEN pd_op_echos(pd_op_seen[i],

op_echos[i],

reint_to, reint_to’)

ELSE pd_op_seen[i] ENDIF];

pd_bad_seen’ = [[i: BAD_IDS]

IF (NOT bad_accs[i])

THEN pd_bad_echos(pd_bad_seen[i],

bad_echos[i],

reint_to,

reint_to’)

ELSE pd_bad_seen[i] ENDIF];

op_accs’ = [[i: OP_IDS]

op_accs[i]

OR pd_op_seen’[i] = pd_see_top];

bad_accs’ = [[i: BAD_IDS]

bad_accs[i]

OR pd_bad_seen’[i] = pd_see_top]

[] % ---

mode’ = pd_mode

AND frame_to >= pd_finish

-->

pd_cntrl’ = deactive;

reint_to’ = pd_finish;

pd_op_seen’ = [[i: OP_IDS]

IF (NOT op_accs[i])

THEN pd_op_echos(pd_op_seen[i],

op_echos[i],

reint_to, reint_to’)

ELSE pd_op_seen[i] ENDIF];

pd_bad_seen’ = [[i: BAD_IDS]

IF (NOT bad_accs[i])

THEN pd_bad_echos(pd_bad_seen[i],

bad_echos[i],

reint_to, reint_to’)

ELSE pd_bad_seen[i] ENDIF];

op_accs’ = [[i: OP_IDS]

op_accs[i]

OR pd_op_seen’[i] = pd_see_top

OR pd_op_seen’[i] = 0];

bad_accs’ = [[i: BAD_IDS]

bad_accs[i]

OR pd_bad_seen’[i] = pd_see_top

52

OR pd_bad_seen’[i] = 0]

]

END;

% ---

% FRAME SYNCHRONIZATION -------------------------------------

frame_synchronization_mode: MODULE =

BEGIN

INPUT

mode : MODES,

op_echos : OP_ECHOS,

bad_echos : BAD_ECHOS,

frame_to : TIME

OUTPUT

fs_cntrl : CNTRL

LOCAL

fs_op_seen : OP_ACCS,

fs_bad_seen : BAD_ACCS

GLOBAL

op_accs : OP_ACCS,

bad_accs : BAD_ACCS,

reint_to : TIME

INITIALIZATION

fs_cntrl = deactive;

fs_op_seen = [[i: OP_IDS] FALSE];

fs_bad_seen = [[i: BAD_IDS] FALSE]

TRANSITION

[

mode’ = fs_mode

AND NOT none_in_pi?(reint_to, op_echos, bad_echos,

fs_op_seen, fs_bad_seen,

op_accs, bad_accs)

-->

fs_cntrl’ = active;

reint_to’ IN {t: TIME

| last_in_pi?(t, reint_to,

op_echos, bad_echos,

op_accs, bad_accs,

fs_op_seen,

fs_bad_seen, frame_to)};

fs_op_seen’ = [[i: OP_IDS]

fs_op_seen[i]

OR (op_echos[i] > reint_to

AND op_echos[i] <= reint_to’)];

fs_bad_seen’ = [[i: BAD_IDS]

fs_bad_seen[i]

OR bad_echos[i][1] <= reint_to’];

op_accs’ = [[i: OP_IDS]

op_accs[i]

53

OR (op_echos[i] > reint_to

AND op_echos[i] <= reint_to’

AND fs_op_seen[i])];

bad_accs’ = [[i: BAD_IDS]

bad_accs[i]

OR (bad_echos[i][1] <= reint_to’

AND fs_bad_seen[i])];

[]

mode’ = fs_mode

AND none_in_pi?(reint_to, op_echos, bad_echos,

op_accs, bad_accs,

fs_op_seen, fs_bad_seen)

-->

fs_cntrl’ = deactive;

reint_to’ = reint_to+pi;

op_accs’ = [[i: OP_IDS]

op_accs[i]

OR (op_echos[i] > reint_to

AND op_echos[i] <= reint_to’

AND fs_op_seen[i])];

bad_accs’ = [[i: BAD_IDS]

bad_accs[i]

OR (bad_echos[i][1] <= reint_to’

AND fs_bad_seen[i])];

]

END;

% ---

% SYNCHRONIZATION CAPTURE MODE ------------------------------

synch_capture_mode: MODULE =

BEGIN

INPUT

mode : MODES,

frame_to : TIME,

op_echos : OP_ECHOS,

bad_echos : BAD_ECHOS

OUTPUT

sc_cntrl : CNTRL

LOCAL

sc_op_seen : OP_ACCS,

sc_bad_seen : BAD_ACCS

GLOBAL

reint_to : TIME,

op_accs : OP_ACCS,

bad_accs : BAD_ACCS

INITIALIZATION

sc_cntrl = deactive;

sc_op_seen = [[i: OP_IDS] FALSE];

sc_bad_seen = [[i: BAD_IDS] FALSE]

54

TRANSITION

[

mode’ = sc_mode

AND sc_seen_total(sc_op_seen, sc_bad_seen)

<= not_accd(op_accs, bad_accs)/2

-->

sc_cntrl’ = active;

reint_to’ IN {t: TIME

| next?(t, reint_to,

op_echos, bad_echos,

op_accs, bad_accs, sc_op_seen,

sc_bad_seen, frame_to)};

sc_op_seen’ = [[i: OP_IDS]

sc_op_seen[i]

OR op_echos[i] = reint_to’];

sc_bad_seen’ = [[i: BAD_IDS]

sc_bad_seen[i]

OR bad_echos[i][1] = reint_to’];

[]

mode’ = sc_mode

AND sc_seen_total(sc_op_seen, sc_bad_seen)

> not_accd(op_accs, bad_accs)/2

-->

sc_cntrl’ = deactive

]

END;

% ---

% CLIQUE --

op_node[i: OP_IDS]: MODULE =

BEGIN

INPUT

frame_to: TIME,

reint_to: TIME

OUTPUT

op_echo: TIME

INITIALIZATION

op_echo IN {t: TIME | frame_to > t AND t > frame_to-pi}

TRANSITION

[

frame_to <= reint_to’

-->

op_echo’ IN {t: TIME | frame_to’ > t

AND t > frame_to’-pi}

[]

ELSE -->

]

END;

55

P_update: MODULE =

BEGIN

INPUT

reint_to: TIME

LOCAL

new_frame: BOOLEAN

OUTPUT

frame_to: TIME

INITIALIZATION

frame_to = IF reint_to >= pi THEN P+pi ELSE pi

ENDIF;

new_frame = FALSE

TRANSITION

[

frame_to <= reint_to’

-->

frame_to’ = frame_to+P;

new_frame’ = TRUE

[]

ELSE -->

new_frame’ = FALSE

]

END;

op_nodes: MODULE =

WITH OUTPUT op_echos: OP_ECHOS

(|| (i: OP_IDS): RENAME op_echo TO op_echos[i]

IN op_node[i]);

clique: MODULE = op_nodes || P_update;

%--

% BAD NODES ---

bad_node[i: BAD_IDS]: MODULE =

BEGIN

INPUT

reint_to: TIME

OUTPUT

bad_echo: BAD_ECHO_ARRAY

INITIALIZATION

bad_echo IN {be: BAD_ECHO_ARRAY

| ascending?(be, reint_to)}

TRANSITION

[

bad_echo[1] <= reint_to’

-->

bad_echo’ IN {be: BAD_ECHO_ARRAY

| ascending?(be, reint_to’)}

56

[]

ELSE -->

]

END;

bad_nodes: MODULE =

WITH OUTPUT bad_echos: BAD_ECHOS

(|| (i: BAD_IDS): RENAME bad_echo TO bad_echos[i]

IN bad_node[i]);

%--

% FULL SYSTEM ---

base_modes: MODULE =

preliminary_diagnosis_mode

[]

frame_synchronization_mode

[]

synch_capture_mode;

reintegrator: MODULE = base_modes || modes;

system: MODULE = reintegrator || clique || bad_nodes;

%--

% ------------------------------- CONJECTURES ---------------

% Depths for a model with 2-3 operational nodes and

% one faulty node.

% In the comments above a conjecture, "dn", where n is a

% natural number, is the k-induction depth. The lemmas

% follow, preceded by "-l."

% NOTE: With a great number of nodes, it is often useful to

% disable disable expensive buchi automata optimizations

% by setting the --disable-expensive-ba-opt flag.

% SYSTEM INVARIANTS ---

% If a mode is enabled, then the other modes are deactive.

% proved d1

mode_cntrl: LEMMA

system |- G((mode = pd_mode

=> (fs_cntrl = deactive

AND sc_cntrl = deactive))

AND (mode = fs_mode

=> (pd_cntrl = deactive

AND sc_cntrl = deactive))

AND (mode = sc_mode

57

=> (pd_cntrl = deactive

AND fs_cntrl = deactive)));

% Echos from operational nodes satisfy the frame property.

% proved d1

frame_prop: LEMMA

system |- G(FORALL (i: OP_IDS):

frame_to > op_echos[i]

AND frame_to-op_echos[i] < pi);

%--

% PRELIMINARY DIAGNOSIS INVARIANTS --------------------------

% Bounds the finish time for the preliminary diagnosis mode.

% proved d1

pd_finish: LEMMA system |- G(pd_finish < 2*P+pi);

% No operational nodes are accused upon initialization.

% proved d1

pd_init_op_accs: LEMMA

system |- G(FORALL (i: OP_IDS):

(mode = pd_mode AND pd_op_seen[i] = 0

AND pd_cntrl = active)

=> NOT op_accs[i]);

% Operational nodes are seen no more than twice during the

% preliminary diagnosis mode.

% proved d4 -l pd_finish -l mode_cntrl

op_seen_less2: LEMMA

system |- G(FORALL (i: OP_IDS): pd_op_seen[i] <= 2);

% Operational nodes are seen no less than once during the

% preliminary diagnosis mode.

% proved d3 -l mode_cntrl -l pd_init_op_accs

op_seen_more1: LEMMA

system |- G(pd_cntrl = deactive

=> FORALL (i: OP_IDS): pd_op_seen[i] >= 1);

% No operational nodes are accused in the preliminary

% diagnosis mode.

% proved d1 -l op_seen_more1 -l op_seen_less2

pd_no_op_accs: LEMMA

system |- G(mode = pd_mode

=> FORALL (i: OP_IDS): NOT op_accs[i]);

% The frame synchronization mode seen variables are

% unchanged in the preliminary diagnosis mode.

% proved d1

pd_not_fs_seen: LEMMA

system |- G(mode = pd_mode

58

=> ((FORALL(i: OP_IDS): NOT fs_op_seen[i])

AND (FORALL(i: BAD_IDS): NOT fs_bad_seen[i])));

% The synchronization capture mode seen variables are

% unchanged in the preliminary diagnosis mode.

% proved d1

pd_not_sc_seen: LEMMA

system |- G(mode = pd_mode

=> ((FORALL(i: OP_IDS): NOT sc_op_seen[i])

AND (FORALL(i: BAD_IDS): NOT sc_bad_seen[i])));

%--

% FRAME SYNCHRONIZATION INVARIANTS --------------------------

% No operational nodes are accused when the frame

% synchronization mode initializes.

% proved d1 -l pd_no_op_accs

fs_init_no_op_accs: LEMMA

system |- G(FORALL (i: OP_IDS):

(mode = fs_mode AND NOT fs_op_seen[i])

=> NOT op_accs[i]);

% The frame gap is found at the conclusion of the

% frame synchronization mode.

% proved d3 -l pd_no_op_accs -l fs_init_no_op_accs

% -l frame_prop -l pd_not_fs_seen

fs_frame_gap: LEMMA

system |- G((mode = fs_mode AND fs_cntrl = deactive)

=> (FORALL (i: OP_IDS):

reint_to < op_echos[i]));

% Demonstrates that the reintegrator’s timeout has passed

% the echo of an operational node in the current frame

% if it has seen the echo already.

% proved d3 -l mode_cntrl -l pd_not_fs_seen

% -l fs_init_no_op_accs -l pd_no_op_accs

% -l frame_prop -l fs_frame_gap

fs_window: LEMMA

system |- G(fs_cntrl = active

=> (FORALL (i: OP_IDS):

(reint_to > frame_to-pi

AND fs_op_seen[i]

AND NOT reint_to = op_echos[i])

=> reint_to > op_echos[i]));

% No operational nodes are accused in the frame

% synchronization mode.

% proved d3 -l mode_cntrl -l pd_not_fs_seen

% -l fs_init_no_op_accs -l pd_no_op_accs

% -l frame_prop -l fs_window

59

fs_no_op_accs: LEMMA

system |- G(mode = fs_mode

=> FORALL (i: OP_IDS): NOT op_accs[i]);

% The seen state variables for the synchronization capture

% mode are invariant in the frame synchronization mode.

% proved d1 -l pd_not_sc_seen

fs_not_sc_seen: LEMMA

system |- G(mode = fs_mode

=> ((FORALL(i: OP_IDS): NOT sc_op_seen[i])

AND (FORALL(i: BAD_IDS): NOT sc_bad_seen[i])));

%--

% SYNCHRONIZATION CAPTURE INVARIANTS ------------------------

% No operational nodes are accused during the reintegration

% protocol.

% proved d1 -l fs_no_op_accs -l pd_no_op_accs

no_op_accs: THEOREM

system |- G(FORALL (i: OP_IDS): NOT op_accs[i]);

% When the synchronization protocol initializes, the

% reintegrator is in a frame gap.

% proved d1 -l mode_cntrl -l frame_prop -l no_op_accs

% -l fs_not_sc_seen -l fs_frame_gap

sc_init_frame_gap: LEMMA

system |- G(mode = sc_mode

=> (FORALL (i: OP_IDS):

NOT sc_op_seen[i]

=> reint_to < op_echos[i]));

% The reintegration protocol synchronizes the reintegrator.

% proved d4 -l mode_cntrl -l frame_prop -l no_op_accs

% -l fs_not_sc_seen -l sc_init_frame_gap

synched: THEOREM

system |- G((mode = sc_mode AND sc_cntrl = deactive)

=> (FORALL (i: OP_IDS):

IF reint_to >= op_echos[i]

THEN reint_to - op_echos[i] < pi

ELSE op_echos[i] - reint_to < pi

ENDIF));

%--

% MODEL INVARIANTS --

% To prove the timeout automata model with time-triggered

% transitions is faithful.

% The bad echo array behaves correctly.

60

% proved d1

bad_echos_ascend: LEMMA

system |- G(FORALL (i: BAD_IDS):

FORALL (e: [1..pd_see_top-1]):

bad_echos[i][e] < bad_echos[i][e+1]);

% The reintegrator’s timeout is always less than the frame

% timeout and the echos of the faulty nodes.

% proved d2 -l mode_cntrl -l sc_init_frame_gap

% -l fs_frame_gap -l frame_prop -l bad_echos_ascend

reint_to_least: LEMMA

system |- G(reint_to < frame_to

AND (FORALL (i: BAD_IDS):

FORALL (e: [1..pd_see_top]):

reint_to < bad_echos[i][e]));

% The reintegrator’s timeout is always within the current

% frame.

% proved d3 -l reint_to_least -l fs_frame_gap -l synched

current_frame: LEMMA

system |- G(frame_to - reint_to <= P);

% Whenever the reintegrator moves to a new frame, it

% does not immediately move to the window in which

% operational nodes issue their echos.

% proved d2

good_frame_update: LEMMA

system |- G(new_frame => reint_to <= frame_to-pi);

%--

% LIVENESS CHECKS ---

% These should be false. A counterexample to them provides

% some assurance that the model is not deadlocked (making

% conjectures vaccuously true).

% Counter examples at

% d4 -l frame_prop -l mode_cntrl -l pd_finish

% -l pd_not_fs_seen -l pd_not_sc_seen -l fs_frame_gap

% -l fs_window -l fs_no_op_accs -l no_op_accs

% -l synched -l sc_init_frame_gap -l pd_no_op_accs

% -l current_frame -l reint_to_least

pd_ck: LEMMA system |- G(mode /= pd_mode);

fs_ck: LEMMA system |- G(mode /= fs_mode);

sc_ck: LEMMA system |- G(mode /= sc_mode);

%--

END

61

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE

Technical Memorandum
 4. TITLE AND SUBTITLE

Real-Time System Verification by k-Induction
5a. CONTRACT NUMBER

 6. AUTHOR(S)

Pike, Lee

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19110

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 62
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

We report the first formal verification of a reintegration protocol for a safety-critical, fault-tolerant, real-time distributed
embedded system. A reintegration protocol increases system survivability by allowing a node that has suffered a fault to regain
state consistent with the operational nodes. The protocol is verified in the Symbolic Analysis Laboratory (SAL), where
bounded model checking and decision procedures are used to verify infinite-state systems by k-induction. The protocol and its
environment are modeled as synchronizing timeout automata. Because k-induction is exponential with respect to k, we
optimize the formal model to reduce the size of k. Also, the reintegrator’s event-triggered behavior is conservatively modeled
as time-triggered behavior to further reduce the size of k and to make it invariant to the number of nodes modeled. A corollary
is that a clique avoidance property is satisfied.

15. SUBJECT TERMS

Fault-tolerance; Formal verification; Model checking; Real-time systems; Reintegration protocol

18. NUMBER
 OF
 PAGES

66

19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

23-063-30-RF

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2005-213751

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

04 - 200501-

	tm213751txt.pdf
	Introduction
	Symbolic Analysis Laboratory (SAL) and k-Induction
	Timed Systems in SAL
	Synchronizing Timeout Automata (STA)
	STA Model of the Train-Gate-Controller
	Clockless STA Semantics

	The Reintegration Protocol
	System Assumptions
	Protocol Description
	State Description
	Protocol Behavior

	Modeling the Protocol in SAL
	Timeouts
	Monitored Nodes
	Operational Nodes
	Faulty Nodes

	The Reintegrator
	Mode Control
	Base Modes
	Composing The Modules

	Verifying the Protocol
	Conclusion
	References
	STA Model of the TGC in SAL
	STA Model of the TGC with Clockless Semantics in SAL
	STA Model of the Reintegration Protocol in SAL

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /APCCourier
 /APCCourierBold
 /APCCourierBoldOblique
 /APCCourierOblique
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AmericanTypewriter
 /AmericanTypewriter-Bold
 /AmericanTypewriter-Condensed
 /AmericanTypewriter-CondensedBold
 /AmericanTypewriter-CondensedLight
 /AmericanTypewriter-Light
 /AndaleMono
 /Apple-Chancery
 /AppleGothic
 /AppleMyungjo
 /AppleSymbols
 /AquaKana
 /AquaKana-Bold
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /Baskerville
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /Baskerville-SemiBold
 /Baskerville-SemiBoldItalic
 /BastionBold
 /BastionBoldOblique
 /BastionOblique
 /BastionPlain
 /BigCaslon-Medium
 /Bookman-DemiItalic
 /Bookman-Light
 /BrushScriptMT
 /CapitalsRegular
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Chalkboard
 /Charcoal
 /Chicago
 /Cochin
 /Cochin-Bold
 /Cochin-BoldItalic
 /Cochin-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /Copperplate
 /Copperplate-Bold
 /Copperplate-Light
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /CourierCE
 /CourierCE-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /DFKaiShu-SB-Estd-BF
 /Didot
 /Didot-Bold
 /Didot-Italic
 /Dirtyhouse
 /EdwardianScriptITC
 /Futura-CondensedExtraBold
 /Futura-CondensedMedium
 /Futura-Medium
 /Futura-MediumItalic
 /GadgetRegular
 /GeezaPro
 /GeezaPro-Bold
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GrHelvetica
 /GrHelveticaBold
 /GrPlain
 /GrTimes
 /GrTimesBold
 /Hangang
 /Helvetica
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-CondensedBlack
 /HelveticaNeue-CondensedBold
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItalic
 /Herculanum
 /HiraKakuPro-W3
 /HiraKakuPro-W6
 /HiraKakuStd-W8
 /HiraMaruPro-W4
 /HiraMinPro-W3
 /HiraMinPro-W6
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Impact
 /JCHEadA
 /JCfg
 /JCkg
 /JCsmPC
 /LatinskijBold
 /LatinskijBoldItalic
 /LatinskijBook
 /LatinskijItalic
 /LiGothicMed
 /LiHeiPro
 /LiSongPro
 /LiSungLight
 /LucidaGrande
 /LucidaGrande-Bold
 /LucidaHandwriting-Italic
 /MarkerFelt-Thin
 /MarkerFelt-Wide
 /Monaco
 /MonotypeCorsiva
 /MonotypeSorts
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewYork
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-ExtraBlack
 /Optima-Italic
 /Optima-Regular
 /Osaka
 /Osaka-Mono
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Papyrus
 /RoPlain
 /SIL-FangSong-Reg-Jian
 /SIL-Hei-Med-Jian
 /SIL-Kai-Reg-Jian
 /SIL-Song-Reg-Jian
 /SandRegular
 /Skia-Regular
 /StoneInformal
 /StoneInformal-Bold
 /StoneInformal-BoldItalic
 /StoneInformal-Italic
 /StoneInformal-Semibold
 /StoneInformal-SemiboldItalic
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Symbol
 /Tahoma
 /Tahoma-Bold
 /TechnoRegular
 /TextileRegular
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TimesOERoman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /WarnockPro-Bold
 /WarnockPro-BoldCapt
 /WarnockPro-BoldDisp
 /WarnockPro-BoldIt
 /WarnockPro-BoldItCapt
 /WarnockPro-BoldItDisp
 /WarnockPro-BoldItSubh
 /WarnockPro-BoldSubh
 /WarnockPro-Capt
 /WarnockPro-Disp
 /WarnockPro-It
 /WarnockPro-ItCapt
 /WarnockPro-ItDisp
 /WarnockPro-ItSubh
 /WarnockPro-Light
 /WarnockPro-LightCapt
 /WarnockPro-LightDisp
 /WarnockPro-LightIt
 /WarnockPro-LightItCapt
 /WarnockPro-LightItDisp
 /WarnockPro-LightItSubh
 /WarnockPro-LightSubh
 /WarnockPro-Regular
 /WarnockPro-Semibold
 /WarnockPro-SemiboldCapt
 /WarnockPro-SemiboldDisp
 /WarnockPro-SemiboldIt
 /WarnockPro-SemiboldItCapt
 /WarnockPro-SemiboldItDisp
 /WarnockPro-SemiboldItSubh
 /WarnockPro-SemiboldSubh
 /WarnockPro-Subh
 /Webdings
 /Wingdings
 /ZapfDingbatsITC
 /Zapfino
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

