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Previous	research	revealed	pervasive	software	vulnerabilities	in	modern	automobiles.	This	
article	presents	a	rejoinder	to	that	research,	discussing	four	general	approaches	to	secure	
automotive	software	systems:	compile-time	assurance,	runtime	protection,	automated	testing,	
and	architecture	security.	
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In 2010 and 2011, a research team from the University of California, San Diego and University of 
Washington (hereafter called UCSD–UW) showed that modern cars can be compromised 
remotely through exploitation of software-based vulnerabilities.1,2 Modern cars have a lot of 
software to hack. Estimates suggest that a luxury car contains tens of millions of LOC executing 
on 50 to 70 electronic control units (ECUs). An economy car might contain more than 25 ECUs, 
and the number of ECUs continues to grow. 

Motivated by these sort of attacks, other security concerns,3 and more general automotive 
software engineering challenges,4 organizations have provided some basic guidance on 
improving automotive cybersecurity. The SAE J3061 standard, released in early 2016, offers high-
level guidance, focusing primarily on processes.5 Also in 2016, the US National Highway 
Transportation Safety Administration released a draft set of best practices.6 

Here, we provide more specific recommendations on securing software systems. We focus on 
software using artifact-based approaches rather than processes. Our recommendations are 
based on concrete evidence about what works and what doesn’t. Regarding what doesn’t work, 
we draw lessons from successful car-hacking attempts, such as the UCSD–UW research. 

Regarding what works, we draw lessons primarily from our experiences in DARPA’s High-
Assurance Cyber Military Systems (HACMS) program.7 In that program, we and many 
collaborators built tools to construct cyberattack-resistant cyber-physical systems. These systems 
included ground robots, automobiles, manned aircraft, and unmanned aerial vehicles (UAVs). Our 
team focused on air vehicles. The independent US-government-sponsored red team that 
analyzed the UAV found it to be free from typical software-based vulnerabilities. One government 
official deemed it “the most secure UAV on the planet.”8 Later, we transitioned the tools to Boeing 
for them to secure the software in the optionally unpiloted Little Bird helicopter. 

The	USCD–UW	Attacks	
The key enabler of the UCSD–UW attacks was the ease of accessing at least one of a car’s data 
buses. These buses let the ECUs coordinate with each other—for example, so that the braking 
system can interact with the engine controllers to provide better control. Some ECUs act as data 
bus bridges and can broadcast on multiple buses. In the analyzed automobiles, every ECU was 
transitively connected to every other ECU through a data bus or data bus bridges. This highly 
connected architecture was driven by complex interactions required for safety or desired for 
comfort. For example, the door lock system had to know when the airbags had been deployed so 
that it could automatically unlock all doors to make escape easier. The entertainment system had 
to know the vehicle’s speed so that it could raise the audio volume to compensate for wind and 
road noise. 

The UCSD–UW researchers found multiple attack vectors. These included an audio track played 
in the CD player, Bluetooth access to the entertainment system, and cellular access to the 
telematics system. The researchers also considered other vectors, such as remotely hacking a 
mechanic’s diagnostics tool. 

Each attack initially exploited some interface vulnerability. Such vulnerabilities included some 
combination of the brute-force guessing of short PIN numbers (for example, Bluetooth), exploiting 
buffer overflows in low-level networking code, shell code injections, and exploiting automated 
firmware updates. Once an attack accessed a data bus, it obtained further access by 
reprogramming other ECUs over the data bus. To do this, the attack exploited mechanisms that 
normally let mechanics update software without needing physical access to individual ECUs. 
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Automotive	Challenges	to	Secure	Software	
The following impediments to improving software security are specific to the automotive industry. 
Alexander Pretschner and his colleagues have also covered some of these impediments in 
depth.4 

Part	Cost	
The automotive industry is extremely sensitive to part cost, making expensive hardware-based 
security solutions difficult to achieve. 

Size	and	Weight	
Solutions must take into account size and weight increases. For example, replacing a Controller 
Area Network (a line topology) with Ethernet (a star topology with a central switch) might be 
infeasible owing to the extra wiring required. 

Legacy	Integration	
The automobile industry often depends on long component lifetimes to keep costs down, so a 
new design might have to integrate with legacy components. Approaches requiring major 
architectural changes, such as changes in bus technology, might be delayed or ruled out to 
maintain compatibility with legacy components. 

Memory	Constraints	
Cost pressures require that ECUs use the least expensive components that can do the job. 
Particularly in small microcontroller-based ECUs, memory is the costliest part. Software for such 
ECUs is designed to have the smallest memory footprint possible, and security approaches that 
use large amounts of memory might be ruled out on the basis of cost. 

Timing	Requirements	
Many ECUs perform tasks with a fixed real-time deadline (the time between receiving and carrying 
out a command), which is often safety-critical. Security measures that might prevent a program 
from meeting timing requirements will be ruled out on the basis of safety. 

Standardization	
A single original equipment manufacturer (OEM) can’t afford to break away from industry 
standards. Keeping supply chain costs low requires leveraging the suppliers that make similar 
parts for multiple manufacturers. 

Supplier	Integration	
To protect intellectual property, suppliers often provide components without source code, making 
assessment, modification, or instrumentation by an OEM to improve security more difficult. 

Dealing	with	the	Impediments	
Our recommendations try to respect these constraints. In particular, we focus on improving 
software quality rather than making hardware more secure. On the other hand, we’re optimistic 
that some of today’s technical constraints will become less onerous in the future. For example, 
as processor manufacturers retire old components, some processors will be upgraded to modern 
alternatives that offer superior security features “for free”—such as virtual memory or 
cryptographic instructions. However, the current supplier model might be the most problematic 
issue. As the UCSD–UW researchers noted, 



	
	Secure	Automotive	Software:	The	Next	Steps	

	 5	

While this outsourcing process might have been appropriate for purely mechanical systems, it is no longer 
appropriate for digital systems that have the potential for remote compromise.2 

Our	Recommendations	
The automotive industry has often ignored the low-hanging fruit for improving software quality,9 
such as using version control, unit testing, integrated testing, and code reviews. The Motor 
Industry Software Reliability Association’s Development Guidelines for Vehicle Based Software 
already recommends these approaches,10 so we don’t discuss them here. 

The following recommendations typically go beyond the automotive industry’s current standard 
practices. Table 1 summarizes the recommendations, organized into four areas: compile-time 
assurance, runtime protection, automated testing, and architectural security. 

	Compile-Time	Assurance	
Compile-time assurance happens before code 
execution. We present the recommendations in 
the increasing order of engineering effort. 

Static analysis. Static analysis tries to discover 
software flaws without execution or testing, and 
many tools are commercially available. Some 
tools are sound; that is, they shouldn’t produce 
false negatives. To improve scalability and 
reduce false positives, some tools are unsound 
and can be considered advanced bug-hunting 
tools. 

SAE J3061 recommends using static analysis, 
and we do too. However, although static 
analysis is powerful, it can lead to a false sense 
of security. Furthermore, static-analysis tools 
can produce so many false positives that 

discerning legitimate vulnerabilities is difficult. Finally, static analysis is unreliable for automatically 
uncovering domain-specific bugs. 

Memory-safe programming. Microsoft discovered that the Pareto principle applies to software 
quality: 80 percent of Windows and Office errors and crashes came from 20 percent of the bugs.11 
We conjecture that the principle applies more generally to software security: 80 percent of exploits 
come from 20 percent of the classes of vulnerabilities. 

For example, all the UCSD–UW attacks on short- and long-range wireless systems depended on 
exploiting buffer overflows.2 Buffer overflows are a rudimentary vulnerability known since at least 
1972.12 They’re a particular example of a memory-safety violation, which is an example of 
undefined behavior. Coding standards and static analysis target mostly the prevention and 
discovery, respectively, of undefined behavior resulting from using “unsafe” programming 
languages such as C or C++. 

We propose that the most expeditious way to improve software security is to use memory-safe 
languages. Safe-C languages are memory-safe and suitable for embedded programming. They 
guarantee memory safety while still allowing programmers fine-grained control of memory use 
and timing. 

Table 1. Recommendations for improving 
automotive-software security. 

Area Recommendations 

Compile-time assurance • Static analysis 
• Memory-safe programming 
• Formal verification 

Runtime protection • System specialization 
• Measurement and attestation 
• Cryptography 
• Runtime verification 

Automated testing • Fuzz testing 
• Property-based testing 

Architectural security • Trusted interfaces 
* Software isolation 
* Glue code generation 
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We developed the safe-C language Ivory13 to support the HACMS program. Ivory is a secure 
alternative to C/C++ in which memory-safety errors are impossible; it supports a variety of 
verification tools. The HACMS program used Ivory to develop secure avionics with no memory-
safety vulnerabilities. 

Formal verification. Whereas testing provides partial assurance about the actual artifact to be 
fielded (because one more test vector might uncover a vulnerability), formal verification provides 
complete assurance about a model of the system. With testing, the designer’s worry is, “Have I 
tested enough?” With formal verification, the worry is, “Is my model’s fidelity accurate enough?”14 

Formal verification requires a two-step approach: build a model, then verify it. Both steps are 
usually partly manual. Because of the effort involved, formal verification is the most cost-effective 
for critical, well-defined components. One example is embedded OSs.15 Another example is 
specific control systems. These systems are particularly difficult to test because they combine 
continuous dynamics with discrete control. However, inroads are being made into formal 
verification of automotive control systems.16 

Runtime	Protection	
Here we describe four types of runtime protection. 

System specialization. In the UCSD–UW analysis, some middleware contained a full installation 
of an OS (for example, Linux), complete with standard root-level networking tools. The UCSD–
UW researchers leveraged these tools to simplify the attacker’s analysis of other parts of the 
system and to simplify the attacks. However, these tools didn’t have to be on the system. Stephen 
Checkoway and his colleagues noted the following: 

Finally, a number of the exploits we developed were also facilitated by the services included in several units. 
For example, we made extensive use of telnetd, ftp, and vi, which were installed on the PassThru and telematics 
devices. There is no reason for these extraneous binaries to exist in shipping ECUs, and they should be removed 
before deployment, as they make it easier to exploit additional connectivity to the platform.2 

The lesson is that only the software required during deployment should be installed in deployment. 

Moreover, OS researchers have been developing a unikernel approach that develops an OS and 
drivers as a set of specialized libraries. Only the libraries required for the applications running on 
the OS are linked in. One virtual machine implementing this approach is HaLVM (Haskell 
Lightweight Virtual Machine).17 Tools such as HaLVM are particularly relevant for securing 
systems built on modern application processors, such as the infotainment system. 

Measurement and attestation. Measurement and attestation (M&A) checks the value of data, 
including the executable, and then proves to a third party that the values are as expected.18 M&A 
often assumes the existence of special hardware (such as a Trusted Platform Module) to provide 
a root of trust, but such hardware might not exist on small microcontrollers. So, researchers have 
proposed lighter-weight solutions for the automotive industry.19 

M&A is particularly relevant to ensure that ECUs execute only the binaries the manufacturer has 
endorsed. Reflashing ECUs with maliciously modified binaries was a key element in some of the 
UCSD–UW attacks. An M&A infrastructure could make such attacks more difficult. 

Cryptography. Cryptography is a common recommendation for improving security, and strong 
cryptography (including authentication) can make some aspects of automotive software more 
secure.5 For example, firmware updates, either provided by mechanics or over the air, should be 
signed and encrypted.20 



	
	Secure	Automotive	Software:	The	Next	Steps	

	 7	

The principal security risk with cryptography is misuse in its application, not flaws in the 
cryptography itself.21 The implementation details of any cryptographic solution should be reviewed 
by cryptography experts and tested by a team of penetration-testing experts. 

Runtime verification. Runtime verification is a research field that marries formal verification and 
testing. The idea is to take a high-level specification of program behavior—the same specification 
that might be used for formal verification at compile time—and automatically instrument a program 
to check for conformance with the specification. Runtime verification separates software control 
from software monitoring and eliminates the onerous task of proving correctness at compile 
time.22 

A particular challenge of runtime verification is how to instrument a program to check all control 
paths that are relevant to the specified property, while ensuring that the instrumentation doesn’t 
adversely change the program’s behavior (particularly the nonfunctional behavior, such as timing 
and memory use). 

Automated	Testing	
Testing is the primary means in industry to provide software assurance. Two highly effective types 
of automated testing are fuzz testing and property-based testing. 

Fuzz testing. Fuzz testing has had significant industrial adoption and is recommended by SAE 
J3061. It automatically “fuzzes” (randomizes) conforming inputs to discover slightly out-of-
specification inputs that cause bugs. Fuzz testing is particularly effective for discovering bugs 
caused by insufficiently sanitized user input. 

Property-based testing. Property-based testing (PBT) automatically derives test cases from the 
property specification and possibly a data format configuration. PBT is roughly the inverse of fuzz 
testing in that the tests are generally expected to be well-formed. PBT tools initially generate 
simple test cases and then iteratively generate more elaborate tests. Because PBT generates 
tests automatically, generating one million tests requires no more effort (disregarding computation 
time) than generating 100 tests. 

One of the first PBT tools was QuickCheck. It has been applied to real-world automotive problems; 
for example, Volvo is using it to test conformance with the AUTOSAR (Automotive Open System 
Architecture) 4.0 standard.23 

Architectural	Security	
SAE J3061 mentions that software partitioning and isolation are important for security. We refine 
those claims along three dimensions here. First, we discuss an approach for building trusted 
interface software. Then, we discuss isolation more generally. Finally, we discuss the problem of 
architectural glue code. 

Trusted interfaces. Every remote attack on a vehicle requires penetrating the software in some 
external interface. Two important functions of interfaces are to decode and sanitize data. A data 
description language, such as the commonly used ASN.1 (Abstract Syntax Notation 1), provides 
a notation for describing messages and standards for encoding, decoding, and transmitting 
messages over a wired or wireless network. 

Unfortunately, interface software often has critical flaws. For example, MITRE’s Common 
Vulnerability Enumeration database (cve.mitre.org) lists 99 vulnerabilities related to software 
implementing ASN.1 encoders and decoders. Data description languages have complexities and 
idiosyncrasies that make secure encoding and decoding difficult.24 For example, complex 
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languages encourage ad hoc hand-written decoders, which are more error-prone than machine-
generated decoders. Catch-all messages, debugging messages, and user-defined messages are 
also attack vectors. 

Simple interfaces are secure interfaces. Of all the onboard software, interface software must be 
simple, well defined, and rely on no assumptions about externally defined messages. 

Software isolation. A car’s head unit, which includes the telematics and entertainment systems, 
is the component most likely to have an exploitable vulnerability. However, it’s also the easiest to 
compartmentalize, for two reasons. First, it’s centrally located in the vehicle, which minimizes 
extra wiring. Second, it uses relatively high-end CPUs with a variety of security features and 
support for higher-cost buses such as Ethernet. 

The head unit should be isolated, and its different functions can be partitioned. Fine-grained, 
formally verified partitioning is possible using a microkernel such as seL4.15 Through technologies 
such as unikernels, lightweight, fine-grained isolation is achievable. 

Glue code generation. Glue code provides the interface between software subcomponents and 
between applications, the OS, and drivers. It’s usually boilerplate. It can integrate a collection of 
reusable components into a complete system. Also, it can modify data formatting as the data 
passes between components and can translate new software interfaces to work with legacy 
components. 

Glue code is conceptually simple, but it’s often where errors occur because correctness relies on 
understanding both the requirements and assumptions of all the software components it touches. 
Glue code flaws have been responsible for multiple published security attacks on automobiles, 
including Bluetooth use, diagnostic PassThru systems (used by mechanics to diagnose and 
update ECUs), and even the audio system.2 

A top-level specification describing individual components’ assumptions and requirements is good 
engineering practice, but too often these requirements and the architectural model might diverge 
from the implemented system. In the HACMS program, we developed formal architectural models 
of the system from which we could reason about dataflow and connectivity. We then generated 
glue code from those models directly, tying the analysis to the implemented systems.13,25 Doing 
so ensured that our requirements and models didn’t drift from the implementations. 

	

Conclusion	
Automobiles’ software infrastructure is rapidly expanding in functionality and complexity. This 
includes more driver assistance and autonomy, increasing head-unit functionality, and even 
vehicle-to-vehicle and vehicle-to-infrastructure communication.26 Although securing software will 
become more challenging, the advice laid out in this article will still provide the basis for secure 
software. 

Even though our recommendations largely go beyond today’s common practices, they’re 
achievable with a modest increase in effort. Because automotive recalls are increasingly based 
on software vulnerabilities, we believe the recommendations will help achieve significant long-
term cost savings. 
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