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“Beware of bugs in the above code; I have only proved it correct,
not tried it.”

—Donald Knuth

“Program testing can be a very effective way to show the presence
of bugs, but is hopelessly inadequate for showing their absence.”

—Edsger Dijkstra

Abstract

Computers are different from all other artifacts in that they are au-
tomatic formal systems. Since computers are automatic formal systems,
techniques called formal methods can be used to help ensure their safety.
First, we call upon practitioners of computer ethics to deliberate over
when the application of formal methods to computing systems is a moral
obligation. To support this deliberation, we provide a primer of the sub-
field of computer science called formal methods for non-specialists. Sec-
ond, we give a few arguments in favor of bringing discussions of formal
methods into the fold of computer ethics.

1 Introduction

1.1 Our Goals

Consider the following general ethical question: ‘what moral obligations do
software engineers and programmers have to apply formal methods to the fruits
of their labour’? A subdiscipline of computer science called formal methods
aims to dramatically increase the quality of software by mathematically proving
programs correct as opposed to merely testing them.

This paper attempts to do two things. First, it is a call to arms to computer
ethicists to answer this general question. Second, it argues that answering
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the question of how much formal methods is a natural and important part of
computer ethics. We show that safety for computational artifacts is different
in kind from conventional artifacts. In doing so, we provide a primer that
will enable practitioners of computer ethics to better understand what formal
verification is.

Some might argue, in considering the first of our two goals, that it is trivially
obvious that the question of how much expense should be taken to ensure the
safety of software, especially when morally significant losses are at risk, is worthy
of study by computer ethics. We are not merely making this claim. Indeed, this
paper is motivated by the following pragmatic conundrum: Given that there
are unique, expensive methods to ensure safety of computer systems, how come
there is little philosophical discussion among computer ethicists regarding their
use? We speculate the reason is a lack of widespread understanding that ensur-
ing safety for computers is different from ensuring safety for other artifacts. The
central purpose of this paper is not dialectical but practical : we hope to broaden
the discipline of computer ethics, and by doing so, change social expectations
of the safety of computer systems.

We take the view that doing applied ethics is not merely an intellectual
pursuit, but also has as its end to change human practices. Just as bioethics
demanded, and procured, considerations of autonomy in doctor/patient set-
tings1 we hope that computer ethics will demand, and procure, considerations
of formal methods in the production and consumption of software.

1.2 Scope and Outline

In this paper, we advocate for the normative implications of the automatic
formal system property of computers. To ground our investigation, we mostly
restrict ourselves to safety-critical computer applications. These applications
are ones in which failures may lead to the loss of human life. Such uses include
aircraft control systems, automotive subsystems, computer systems for piloted
spacecraft, and computerized medical devices. There is no reason, though, that
in discussion of the question ‘how often should formal methods be applied to
software’ computer ethicists must limit themselves to such applications.

In Section 3, we overview the field of formal methods, while in Section 4, we
particularly focus on obstacles – both technological and cultural – for the field
of formal methods, and we attempt to summarize the attitudes within computer
science on the subject. Knowing what formal methods is, and explaining com-
puter scientists’ attitudes on its application, are prerequisites for an informed
productive discussion of how often it should be applied.

Next we argue that consideration of formal methods belongs in computer
ethics on general grounds of what justifies computer ethics. To more concretely
motivate the place of formal methods within the discipline of computer ethics,
in Section 5 we describe both how it informs and is informed by a debate central

1The result of this deliberation directly affected the nature of medicine in the West. See,
for example, [Emanuel and Emanuel, 1992].
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to computer ethics – the free software debate. Concluding remarks are given in
Section 6.

2 Computers and Computer Ethics

2.1 Automatic Formal Systems

Before we explain what formal methods are, it is useful first to say something
about what defines an object as a computer. It is the defining characteristic
of computers that makes ensuring safety different for them than other objects.
It is worth noting that this defining characteristic of computers has been well
studied by cognitive scientists but not computer ethicists.

Cognitive scientists, by and large, agree that what makes computational sys-
tems distinct is that they are instances of, to use John Haugeland’s term, auto-
matic formal systems (AFS) [Haugeland, 1989, Fodor, 1990, Haugeland, 1997,
8-9]. An AFS is a concrete system that satisfies the following three properties:

1. Token manipulation: computers manipulate symbolic tokens according to
formal rules (like games or logics).

2. Digitalization: computers have exact, repeatable results, as opposed to
continuous systems (e.g., billiards or the weather).

3. Finite “playability”: no computations take infinite time or require an “or-
acle”.

Therefore, on this characterization, a computer realizes a formal system. A for-
mal system can be described mathematically by a logic. Therefore, if we hold
constant certain issues of fabrication and usage, we can, by applying a math-
ematical proof, guarantee that certain properties will hold of a computational
system. Notice that we are only claiming a narrow implication: AFSes, im-
plementing a sort of mathematical object, can in principle be subject to proof
concerning certain abstract properties. This is not to say, of course, that there
is a method such that for any abstract property and any formal system, the
method can prove or disprove that the property holds of that system. To claim
otherwise would be in violation of Church’s Theorem, since assessing first order
validity is an instance of determining abstract properties for a formal system.

Overall, the AFS property has received little attention in regards to its nor-
mative implications. Recent texts and anthologies in computer ethics instead
focus on the unprecedented abilities of computers to store, transfer, and analyze
information [Johnson, 2001, Ermann and Shauf, 2003, Winston and Edelbach, 2006,
Tavani, 2007]. We do not mean to dispute the factual claim that computers in-
deed have these unprecedented abilities that result in new ethical problems.
Rather, we present the AFS property as being an additional property justifying
the study of computer ethics, the thesis of which is central to the philosophical
underpinnings of formal methods.
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2.2 The Standard Justification

Let us consider AFS property with respect to a “standard justification” for com-
puter ethics. In her influential textbook on computer ethics, Deborah Johnson
argues, in answering the question, “Why computer ethics?” that the issues
raised by computers are neither wholly new, nor wholly old.

The ethical issues surrounding computer and information technology
are not new in the sense that we have to create a new ethical theory
or system. They call upon us to come to grips with new species. This
means understanding the new issue in familiar moral terms, using
traditionalist moral concepts. For the most part this is consistent
with the traditionalist account because once connected to standard
moral categories and concepts, the new issue can be addressed by
extending familiar moral concepts to the new situation and drawing
on our experience with other cases. However, the new species may
not fit easily into standard categories and concepts: allowances for
the special or new features of the new situation have to be taken
into account. new species have special features and, as pointed out
earlier, if we simply treat them as the same as other, familiar cases,
we may fail to recognize how the new features change the situation
in morally significant ways. [Johnson, 2001, 22]

Johnson introduces what she calls the ‘genus-species account’ of computer
ethics to describe how we ought to address the ethical puzzles introduced by
computing technology. It is dangerous, she argues, to think that we can un-
derstand our obligations by applying policies and arguments concerning older
technologies and issues. Clearly, safety of manufactured products is a human
concern with an existing history of substantial policies, laws, and arguments for
responsibilities of various kinds. However, this genus of moral consideration,
ensuring safety of human artifacts, cannot be applied to the species of AFSes
in a traditional fashion.

Likewise, AFSes have a sort of complexity that is incommensurable with
other artifacts (see Section 4.1). This new form of complexity is most obvious
when we consider both the amount of testing needed to ensure that an artifact
is safe and the certainty available from testing. On the one hand, testing tra-
ditional artifacts can only yield probabilistic measures of safety. On the other
hand, the verification of AFSes, with respect to their formal specification and
under environmental assumptions, can yield absolute certainty of safety.

3 What is Formal Methods?

Formal methods is2 a subdiscipline of computer science. Formal methods takes
the AFS property, described in Section 2.1, as an underpinning to its entire

2The phrase “formal methods” is used both to refer a field of practice (in which case the
noun phrase is used in the singular) and as a description of the various methods used in the
field (in which case the noun phrase is used in the plural).
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enterprise. Formal methods are mathematical techniques that are used to prove
that particular programs (or, alternatively, hardware units) are correct – that
is, that software or hardware satisfy a mathematical description of its desired
functionality. This abstract description of desired functionality is called the
specification of the hardware or software.

Formal methods, used to construct computer systems that behave as in-
tended, can be contrasted with empirically testing the computing system. As
an analogy, formal methods is related to conventional bug testing for computer
design in much the same way that computational fluid dynamics (CFD) is re-
lated to wind tunnel testing for aircraft design [Rushby, 1993].3 The field of
CFD is concerned with building mathematical models to investigate the aero-
dynamic properties of, say, an aircraft wing design or a boat’s dynamics through
water. CFD techniques allow dynamics to be analytically studied as opposed
to building a physical model to test using a wind tunnel or other empirical
experiment.

Similarly, manufacturers of computer systems employ engineers to be testers
so that they can run their products through a “wind tunnel” (or “test harness,”
as it is called in software engineering). A test harness contains a large suite
of inputs with the hope of covering both the full range of normal uses of the
system as well as exceptional circumstances. As we have already described,
through formal methods, one attempts to analytically analyze the system to
prove properties about it for any possible inputs.

Broadly, three research directions are pursued in the field of formal methods:

1. How to mathematically model formal systems and their environments. Un-
like other engineering artifacts that are mathematically-modeled (bridge
stresses, aircraft aerodynamics, etc.), many concepts in computer science
are brand new, and a research challenge is simply how to mathematically
model these concepts. Such concepts of course include modeling software
and hardware and the environments in which they operate.

Regarding environmental assumptions, any formal verification makes im-
plicit and explicit assumptions. For example, in proving some property
about a program, one might implicitly assume that the computer on which
the software executes is not physically destroyed, that no bugs in the hard-
ware change the intended program semantics, that the process thread exe-
cuting the code is not terminated, and so on. Likewise, some assumptions
might be explicit. For example, one might state as a hypothesis that an
integer input to a program takes no more than a fixed number of bytes
to represent it in binary. Other kinds of environmental assumptions are
probabilistic. For example, fault-tolerant systems found in commercial
aircraft are designed to mask a certain kind of and number of faults. The
kinds of and number of faults is characterized by a maximum fault assump-
tion (MFA). The MFA should hold with sufficiently-high probability, but

3The authors thank Jeffrey M. Maddalon of the NASA Langley Research Center for point-
ing out that the analogy breaks down in a critical way. We describe the shortcoming in
Section 4.1.2.
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it is only probabilistic. However, supposing the MFA holds, the system
should provably satisfy its specification. Thus, the correctness of the sys-
tem is ultimately probabilistic even if its correctness under the MFA has
been formally verified. That formally verified system relies on possibly
probabilistic hypotheses about the environment is a subtle point sometimes
glossed over in the formal verification debate.

In addition to modeling the environment, another challenge is to define and
refine the abstraction of systems. For example, software models may be
of the source-code semantics, an intermediate representation, a memory-
aware model, or the machine code semantics. Hardware models may be
of the microarchitecture, the register-transfer level, or of physical-layer
protocols between components. System-level models may be of interacting
subcomponents and interfaces at different levels of abstraction. Research
is also devoted to modeling the connections between different levels of
abstraction and aspects of systems and the software and hardware from
which they are composed.

2. How to mechanically check the correctness of mathematical proofs. The
output of this research is perhaps most visible in the development of me-
chanical theorem-provers [Wiedijk, 2006]. These software systems allow
mathematics to be formulated4 in a formal language, and the theorem-
provers can check the correctness of proof scripts over the formulations
that a user writes. Some theorem provers also provide a degree of au-
tomation to assist in the development of the proofs.

3. How to automate mathematical proofs. The focus of this research is on
how to automatically generate proofs of correctness. The approach is
limited by the state-explosion problem – even simple formal systems often
contain an infeasible number of states to check whether some property
holds of those states. However, techniques developed over the last two
decades have made the approach feasible for systems with well over 1020

states [J.R. Burch et al., 1990]. Decision procedures for decidable logics
is also an active area of research, allowing infinite-state systems to be
automatically verified [de Moura et al., 2004, Lahiri and Seshia, 2004].

4 The History of the Debate

In Section 4.1, we discuss the apparent paradox of the mathematical modeling
of formal systems lagging behind the success of mathematically modeling less
abstract artifacts, such as bridges and aircraft, for example. We describe the

4We wish to emphasize the difference between formalization and formulation, particularly
because the two notions are sometimes conflated in the field. Formalization is the act of
expressing a concept mathematically; for example, Peano formalized arithmetic and Euclid
formalized planar geometry. Formulation is the act of expressing mathematics in a formal
language; for example, proofs can be formulated in the sequent calculus. (Steve Johnson of
Indiana University made this distinction clear to the second author.)
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status of ethical imperatives to use formal methods within computer science in
Section 4.2. In Section 4.3, we very briefly describe the inroads that formal
methods have made while focusing on what has motivated their use.

Taken together, these sections supports the pragmatic purpose of this pa-
per, by providing the computer ethicist with sufficient background on the use,
benefits, and detriments of formal methods. We particularly try to convey a
“computer scientists”’ perspective, realizing we make some simplifications and
generalizations.

4.1 Bridges, Planes, and Programs

On the face of things, bridges and mathematics do not appear to be intimately
connected, but civil engineers and physicists have figured out how to math-
ematically model bridges to determine analytically all sorts of characteristics
such as the maximum load a bridge can withstand, the effects of strong winds
and earthquakes, and so on. The problem of mathematically modeling a bridge
is essentially solved. The same story holds for studying the aerodynamics of
aircraft, as mentioned in the previous section.

A priori then, if a computer is by definition an implementation of a formal,
mathematical system, one may find it surprising that our ability to mathemat-
ically model programs is inchoate relative to bridges or planes. Why is that?

Three obstacles prevent formal methods from being widely adopted: formal
requirements specification, the complexity of proofs, and the size of software
systems.

4.1.1 Requirements Specification

Software requirements, particularly in safety-critical systems, are notoriously
difficult to get right [Lutz, 1993, Berry and Wing, 1985]. Indeed, the very idea
of requirements being “right” may be incoherent. Requirements evolve as the
needs and expectations of users evolve. Software gets used in ways that archi-
tects and developers would never have expected. Environmental interactions
may produce unexpected results (e.g., a programmer for your web browser ne-
glects to handle the case in which the user is navigating to a new web page and
concurrently opens a new browser window, causing the application to crash).

While even formulating requirements is difficult, formalizing them is even
more so. Stated informally, requirements often lack detail or omit corner-cases.
For example, one might have the requirement that a hardware device multiply
two numbers. Stating the requirement in a mathematical notation may lead the
designers to consider the requirement in more detail: What happens if one of the
numbers overfills a buffer? What if a buffer is modified during the computation?
If the result overfills the result buffer, what should be returned? And so on.

On the other hand, formal methods may have its greatest payoff during the
requirements engineering stage of a software project by forcing designers to over-
comes these difficulties early, before software has been implemented [Berry and Wing, 1985].
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4.1.2 Proof Complexity

Whereas the in CFD, a system is modeled with differential equations, programs
are modeled using logic (propositional, first-order predicate, and second-order
predicate logic are all used). A program can be modeled by determining the
satisfiability of a logical formula modeling it – intuitively, a program is turned
into a logical formula stating something of the form, “For all inputs, program
P yields outputs with property X.” The computational complexity of deter-
mining the satisfiability of even boolean formulas – the simplest of logics – is
NP-complete, meaning it belongs to a mathematical class of “very hard” com-
putational problems.

In mathematics, complexity is oftentimes managed by abstraction or problem-
decomposition. While these techniques certainly pertain to software as well,
their application is limited. Intuitively, the difficulty with decomposing soft-
ware verification results from small local changes having global effects. For
example, if a program changes a single “1” to a “0”, the entire program could
result in completely opposite behavior. De Millo, Lipton, and Perlis call this
property the discontinuity property of software, as contrasted with the contin-
uous functions reasoned about in Newtonian physics [Millo et al., 1979]. That
said, well-designed software is built to be compositional so that to the greatest
extent possible, errors are localized. For example, a software bug that causes
an application to crash should not cause the operating system to crash. In
continuous domains, composition is inherent and depends less on good design
principles. For example, a small, localized change to, say, the shape of an airfoil
will have relatively small, localized effects on the aerodynamics of the aircraft.

In contrast, physical systems, like those analyzed using CFD models, are
inherently continuous. CFD models can be used to model a system’s behav-
ior under nominal conditions. To account for potentially anomalous behavior,
a “safety factor” can be built in. For example, if an wing is expected to un-
dergo x kilograms per square centimeter (kg/cm2) under nominal conditions,
it can be built to withstand 1.5x kg/cm2, or some other safety factor. Due
to the discontinuity of software, an analogous safety factor cannot be similarly
computed.

4.1.3 Software System Size

The second reason that formal methods have not been more widely used is
the size of software systems. For example, there is an estimated one billion
lines of code on the new Airbus 380 airliner (not all of it is safety-critical,
however) [Knight, 2002a]. Comparatively, the largest aircraft carriers in the
world have on the order of one billion parts.

Together, the difficulty of mathematically modeling computers is more ap-
parent – imagine if one missing bolt in an American aircraft carrier turned it
into a Soviet submarine. That’s software.
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4.2 The “Computer Science Perspective”

Philosophers, logicians and computer scientists have written extensively on
metaphysical underpinnings of formal methods and program verification [Barwise, 1989,
Smith, 1985, James, 1988]; a nice annotated bibliography is available on-line [Rapaport, 2007].
Much of the debate has ranged over issues such as what it means to prove a pro-
gram correct and what is the nature of a mathematical proof (i.e., is it sufficient
for a machine to verify a proof or must a human do so?).

However, as far as the authors are aware, the normative implications of for-
mal methods have largely been ignored by professional ethicists, and they have
been mostly taken for granted amongst computer scientists. Of course, gener-
alizing the viewpoint of all computer scientist professional or even all formal
verification practitioners is impossible, but the normative questions rarely arise.
When they do, there is a presupposition that they will further support program
verification. The point might best be made by a quip heard by one of the au-
thors at a recent formal verification conference: “It’s true that no catastrophic
commercial aircraft crash has been determined to be the result of faulty soft-
ware, and that’s a pity – program verification would be in greater demand if
one had.”

On the other hand, formal methods practitioners do not simply deliver dia-
tribes against software and hardware developers. Formal verification practition-
ers are computer scientists themselves. They know that building correct software
is difficult and that the most stringent program verification practices are not
sufficiently mature to be used by non-experts in large-scale projects (indeed,
skeptics often point out that few formal methods advocates verify programs
they write themselves). Furthermore, industrial practitioners are employed by
corporations producing the potentially-faulty software. Consider that although
an airbag designer may genuinely believe in the potential airbags to save lives,
how many (publicly) condemn their automobile manufacturer for not installing
airbags in every make and model? Likewise, no verificationist would seriously
claim that all software should be verified.

Perhaps a fair characterization of the formal verification community’s posi-
tion is something along the following lines:

Program verification is difficult. Our job is to figure out ways to re-
duce the difficulty so that the practice is feasible for industrial-scale
endeavors. For security-critical and safety-critical systems, program
verification is a “best practice” that should be employed, but we ac-
knowledge the trade-offs between assurance of correctness and cost.
Just as a car with anti-lock brakes is safer than one without, some
individuals decide the trade-off of greater safety is not worth the ad-
ditional cost. Our job is to make the practice more feasible and to
advocate for formal methods, but only in a few circumstances would
we claim that program verification is a moral imperative.

Let us expand the last point a bit regarding the moral obligation to practice
program verification. Continuing our comparison to best practices in automo-
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bile manufacture, the infamous Ford Pinto case seemed to be a clear-cut moral
issue. The Ford Motor Company calculated the cost of settling lawsuits due to
a known unsafe design against the cost of recalling the vehicle [Dowie, 1977].
In comparison, malicious software development and deployment has not yet
had similar high-profile cases of maliciousness. Indeed, faulty software has rel-
atively rarely been deemed to be the result of gross incompetence, given the
acknowledged complexity of software (see Section 4.3) and difficulty of formal
verification. Indeed, we state the following formal methods dilemma:

If formal methods is a best practice of software engineering, then an
engineer who does not employ it is either negligent or incompetent.
But formal methods is beyond the capability of typical software en-
gineers (otherwise, why do we need formal methods experts and
researchers?) or is too time-intensive to employ, so it cannot be
considered to be a best practice today.

4.3 The Story So Far

Not surprisingly, advocates for formal methods are largely computer scientists,
and even less surprisingly, the most ardent advocates are formal methods re-
searchers and practitioners. The most significant inroads of formal methods into
industrial design have come by way of economic motivation rather than ethical
considerations. Perhaps the singularly most famous instance is Intel’s “Pentium
FDIV bug”, which was a subtle hardware bug found in 1994 [Halfhill, 1995]. The
bug eventually led to Intel’s replacing defective chips, costing the company some
half-billion dollars. Subsequently, Intel and other hardware companies began to
augment their testing staff with formal methods experts.

In general, bugs have been less costly for software companies since software
can be patched whereas hardware can only be replaced.5 Nevertheless, more
recently, software companies, such as Microsoft, also employ formal methods
engineers to help improve code quality.6 The motivation of a software company
is increased reliability (e.g., reducing the likelihood of the “blue screen of death”)
and increased security.

Outside of the mainstream, safety-critical and security-critical computer
developers have long advocated for – if not relied upon – formal verification
[Neumann, 1996]. Safety-critical software, for example, includes automated
flight-control software developed for commercial aircraft [Knight, 2002b]. Security-
critical computers includes encryption devices [Pike et al., 2006]. Safety-critical
and security-critical devices are usually designed to be as simple as possible
with well-defined fixed functionality; see, for example, the L4 Microkernel7

Project [Elphinstone et al., 2007]. Their simplicity begins to make formal veri-
fication feasible.

5Sometimes, software can be modified to mask faults in hardware.
6For example, the Software Reliability Research group at Microsoft Research (http://

research.microsoft.com/srr/) builds tools and invents new techniques to assist Microsoft
developers to build more robust systems.

7A microkernel is a lightweight (and usually highly-robust) operating system.
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Today, safety-critical and security-critical computer systems are becoming
more pervasive. For example, next-generation automobiles may have “auto-
pilot” functionality [Baleani et al., 2003]. Software and robotics are used in
medical devices [Jetley et al., 2006]. Many of us rely on security protections of
on-line banking, shopping, and so on. The pervasiveness is coupled with more
complexity and increased functionality.

Amongst formal methods practitioners, there has been a conventional wis-
dom that lawsuits will soon be a prime motivator. The idea has been that
liability lawsuits will be brought against hardware or software companies for
losses (such as financial loss, security, life, etc.), and when it is shown that
best practices in the field include formal methods, companies not employing
them will be deemed negligent. The problem is, this has been the conventional
wisdom for more than twenty years!

Such lawsuits have not materialized, despite estimates that faulty software
and abandoned software development projects costing the U.S. economy at least
$5 billion per year [Charette, 2005]. Why they have not – when, for example, ex-
travagant liability lawsuits have been brought against companies in most other
economic sectors – is an interesting question itself. However, bringing the dis-
cussion of formal methods to a wider audience might alter expectations by the
public for the software they use.

5 Formal Methods and Intellectual Property

In this section, we further motivate the importance of considering formal meth-
ods within computer science. In Section 1, we began to motivate the ethical
consideration of formal methods by describing the AFS property and examining
it within the context of the “genus-species” justification for computer science.
Here, we explore a topic that is squarely within the domain of computer ethics –
free software – and argue that the consideration of formal methods informs the
free software debate. First, we examine arguments in favor of the imperative
that all software be free, in a very specific sense. We show that these arguments
do not establish the desired conclusion. Then we argue that consideration of
formal methods strengthens the position of free software advocates.

5.1 Stallman’s Freedom Manifesto

To begin, let us briefly review the free sofwate debate. Computer ethics routinely
treats the issue of whether intellectual ownership of software is ethically permis-
sible, forbidden, or optional. In an influential series of documents, Richard M.
Stallman has advocated the second position: he claims that allowing an individ-
ual or corporation to own software is unethical. A central thesis of Stallman’s
GNU Manifesto8 is that free software is better justified than proprietary soft-
ware [Stallman, 1985]. We will briefly explain what this means, how Stallman

8’GNU’ is a “recursive” acronym that stands for “GNU’s not UNIX,” where UNIX is a
famous operating system standard.
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argues for this claim in very broad terms, and then describe the importance of
formal methods for the issue of the freedom of software.

First, we must understand what Stallman means by free software. In an
endnote to the Manifesto, he describes an ambiguity later resolved in another
article, The Free Software Definition.9 Stallman does not mean that individuals
ought to have free access to physical instances of software (or, as he puts it in
the definition, “You should think of free as in free speech, not as in free beer.”).
Rather, Stallman goes on to argue in the same article that individuals should
have the following four freedoms with respect to software they acquire. We
quote these freedoms below:

Freedom 0 The freedom to run the program, for any purpose.

Freedom 1 The freedom to study how the program works, and adapt it to
your needs. Access to the source code is a precondition for this.

Freedom 2 The freedom to redistribute copies so you can help your neighbor.

Freedom 3 The freedom to improve the program, and release your improve-
ments to the public, so that the whole community benefits. Notice that
access to the source code is a precondition for this.

Stallman’s Manifesto is directed at encouraging support for the creation
of a fully-featured operating system under these four freedoms. Moreover, he
gives some arguments in favor that all software should be free in these senses.
In justifying the GNU project, Stallman appears to argue that his idea for
a software project follows from defensible, general principles for how software
should be created.

For example, he writes, “GNU serves as an example to inspire and a ban-
ner to rally others to join us in sharing. This can give us a feeling of har-
mony which is impossible if we use software that is not free. For about half
the programmers I talk to, this is an important happiness that money cannot
replace.”[Stallman, 1985, 155]

Stallman also addresses independent considerations of utility. For example,
consider the last two paragraphs of the same article: Stallman insinuates a
utopian future based on sharing of information. Last, Stallman appeals to the
historical justification used by Western societies for introducing protections on
intellectual property. He claims first that copyright law has been introduced to
benefit society, and not merely innovating individuals. Then, he writes,

The fact that the easiest way to copy a program is from one neighbor
to another, the fact that a program has both source code and object
code which are distinct, and the fact that a program is used rather
than read and enjoyed, combine to create a situation in which a
person who enforces a copyright is harming society as a whole both
materially and spiritually. . . (ibid., 159)

9Available at http://www.gnu.org/philosophy/free-sw.html.
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Let us assume, with Stallman, for the time being, that copyright law has
only been, and only ever is, justified on the basis of benefit to society and not
the individual whose intellectual property might be protected. Furthermore, let
us suppose also that there are clear personal benefits to open source software.
Nevertheless, it has not been widely agreed that the facts concerning software
Stallman cites do not establish his conclusion that, on balance, enforcement of
copyright for software harms society. After all, it is not clear that, for example,
Apple is on balance harming society by releasing only compiled code for its
operating system to the public.

To be clear, it is true that open source software can be easily improved and
exchanged by the public at large than closed source software can. However,
there are possible incentives for society in having closed source software. As we
have been stressing, some software projects are extremely large and expensive.
By enforcing copyright for software, the public can ensure that companies that
take great risk in creating a piece of software can have a reasonable expectation
of recouping their expenses. Perhaps the benefit of having Apple invest consid-
erable resources into its operating system, OS X, with the expectation of profit
outweighs the harms of my not being able to (legally) copy and alter it. It is
clear, then, that the questions of if and how much of software ought to be open
source remains itself open. In the next section we show that new arguments
concerning formal methods can be applied to this issue, and in a way that may
tip the balance for certain uses of software.

5.2 Formal Methods and Free Software

Consider the following claim: the specification and verification of software de-
pends on publicly scrutable proofs and to be accomplished effectively, it must
be done in an open intellectual community. De Millo, Lipton, and Perlis have
famously argued that mathematical proof is a social process, meaning that the
value of a proof is to convince other mathematicians of the truth of the proved
fact, and indeed, to say that a fact is proved is to say that the community has
internalized the truth of the fact, not that some informal logical derivation has
been published (however, they claim this does not hold for formal verification
specifically; we address that claim shortly) [Millo et al., 1979].

Couched in terms of Stallman’s freedoms (Section 5.1), the motivation for
open proofs mostly falls under Freedom 1 (freedom to study how the proof
works) and Freedom 3 (freedom to improve the proof). Presently, open, independently-
verifiable results are not ubiquitous in formal methods specifically or computer
science more generally. Indeed, Denning argues that computer science is not
perceived as – and in some ways, does not act as – a science [Denning, 2005].
For example, Denning cites a study showing that 50% of the published models
and hypotheses in computer science go untested [Tichy, 1998].

A number of reasons exist for the current state of affairs. Some reasons
include (1) computer science being a young field, (2) much research occurs in
industrial labs of for-profit companies, which sometimes do not release internal
intellectual property validating the published research, and (3) there is a lack of
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data on which to validate models and approaches (in formal verification, data
are programs and designs, many of which are closed-source). The full set of
causes are surely complex and are a combination of economic, cultural, and
political reasons.

Regardless of the reasons for why results are not publicized more broadly,
the reasons for why they should be publicized are not different than the “four-
freedoms justification” for why software should be open. For a concrete anec-
dotal reason, consider the following: A theory of a class of distributed protocols
was developed, verified, and subsequently published [Rushby, 1999]. One of us
read the published paper but was slightly unclear regarding a few of the details
– the theory was only informally presented in the published paper. Fortunately,
the original specifications were made publicly available, and we able to examine
them. In doing so, we found that three out of four of the fundamental sys-
tem assumptions (i.e., axioms in the formal theory) not only failed to model
the domain of discourse but were in fact inconsistent. We were able to quickly
correct the theory – the fundamental insights were correct – and publish the
corrections [Pike, 2006].

If the original specifications and proofs had not been available, the incon-
sistencies would have remained. Nevertheless, merely making them public was
also not enough: in this instance, the original paper had been cited two or three
dozen times, and it had been reviewed multiple times. None of those citing the
paper or reviewing it caught the inconsistencies (indeed, we had cited the paper
in earlier work without inspecting the proofs themselves). With open software,
there is the presupposition or hope that when it gets used, bugs will be caught
and corrected. Perhaps it is the same with formal proofs (we believe we were
the first to “use” the published proofs in this particular instance).

De Millo, Lipton, and Perlis contradict this claim [Millo et al., 1979]. Essen-
tially, they argue that unlike pure mathematics, formal proofs about software,
even if they are free, will never garner the interest required to bring the value
of independent review like for pure mathematics.

Verifications are long and involved but shallow; that’s what’s wrong
with them. . . . Nobody is going to run into a friends’ office with
a program verification. Nobody is going to sketch a verification on
a paper napkin. Nobody is going to buttonhole a colleague into
listening to a verification. Nobody is going to read it.

Our anecdotal story above contradicts this claim. More generally, one of the
present authors works in industry at a company that does formal verifications,
and he is routinely buttonholed into listening to verifications. To be sure, he is
not buttonholed into listening to the details of an entire verification but often
key parts of a proof or new insights and techniques.

More generally, De Millo, Lipton, and Perlis make a few errors in their con-
clusions about the utility of open verifications. First, free and open verifications
are important even if nobody manually reads them. Automated proof checkers
exist today (De Millo et al.’s paper was written in 1979) so that one can check
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the correctness of a verification without reviewing it manually, but this still re-
quires that the proofs be available. Second, more abstract concepts in computer
science (e.g., the distributed protocol verification mentioned above) are short
and simple enough to be manually reviewed. Third, “chicken-egg” phenomena
may exist: nobody reviews free and open verifications, because there are no free
and open verifications! Nearly 30 years ago, would anyone have predicted the
success of free software? Would we have predicted the thousands of software
develops who contribute to open-source software projects?

Finally, just like in free software, open verifications would allow society to
share the considerable burden of formal methods. Linux is a full-featured free
operating system built mostly by volunteers (indeed, you can buy computers to-
day running Linux from general-market dealers like Wal-Mart). Linux competes
favorably with proprietary extremely well-funded operating systems, like Win-
dows. Linux’s success is possible due to massively-distributed efforts. Similar ef-
forts in verification can have an analogous effect. Indeed, this is already happen-
ing: when a researcher develops a new formal verification tool, one convincing
way to demonstrate its effectiveness is to find bugs in free software (like Linux)
using it (see, for example, work by Dawson Engler et al. [Engler et al., 2000]).

Let us reemphasize our main point of this section: the topic of free software is
an example of a central issue in computer ethics, and the ethical issues of formal
methods both inform and are informed by the free software debate. While we
have presented specific arguments for why formal verifications should be free, we
only wish to convince the reader that the debate over their freedom is important
and belongs in computer ethics, too.

6 Conclusion

Why have formal methods not entered into the discourse in computer ethics
in a central way already? Is it because of the contrast between computers and
other things that can harm human beings? For example, there are widely-
accepted moral obligations that go along with automobile manufacturing. They
have to be recalled if a safety-critical defect is found. Cigarette manufacturers
have had multi-million-dollar liability suits levied against them. They are held
accountable for a product they knew to be dangerous. To be sure, the causes
are not completely ethical; for example, an automobile manufacture has strong
economic motivations for building safe vehicles. Still, the difference between the
computer industry and other industries appears to be one of kind, not degree.

Why has the public perception of computers been different? Why may a
software manufacturer attach a “non-warranty” to software, to which you, the
reader, have likely assented upon initially booting a new computer you have
purchase? Why have there been no multi-million dollar liability suits against
software manufacturers? Are current practices in software engineering the best
practices? Does there exist a moral imperative to increase the assurance of
software via formal methods, even if there may be no immediate economical
gain in doing so?
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Recall the developments in bioethics from the late 1960s to the present.
The health care system, as a result of an interdisciplinary critique by philoso-
phers, lawyers, and computer scientists, moved from widespread paternalism to
a recognition of the autonomy of the patient. A dialogue outside of the com-
puting profession can contribute to raising of public awareness, which itself is
necessary for computing professionals to satisfy the imperative to prove safety,
where and when it is a justifiable imperative.

We don’t take the foregoing considerations to provide an airtight case for
the claim that all software ought to be open, or that there is indeed an obliga-
tion to use formal methods. Rather, we hope to have shown that considerations
of formal methods properly belong to computer ethics. To summarize, formal
methods belongs computer ethics for three reasons: first, on the account given
of what the purpose and nature of computer ethics are, formal methods belongs
there. Second, canonical content of computer ethics is connected to issues re-
lated to formal methods. Finally, normative questions ought to be answered
within a dialogue that includes the wider community of computer users, not
just computer producers, and there is evidence that practitioners of normative
theory bear some responsibility for ensuring more global deliberation on issues
of professional responsibility.

In closing, let us summarize our goals in this paper, which included arguing
for the following:

1. Computers, considered as automated formal systems, can be made safe in
a way which other artifacts cannot.

2. There are open philosophical problems in the applied ethics of formal
methods. The computer ethics community must help address these prob-
lems.

In furthering these goals, we

1. described formal methods in enough detail for computer ethicists to begin
ethics projects about the subject, and

2. showed that formal methods belongs to computer ethics for both general
reasons and consideration of important canonical issues within computer
ethics.

We opened this article with two quotes from two of the world’s most influen-
tial computer scientists. The quote from Knuth is slightly tongue-in-cheek, but
the point to be drawn from it is that proof can never replace testing a program
on real data in the intended environment. Dijksta’s quote is meant quite seri-
ously to explain that correctness cannot be proved via testing. Taken together,
the quotes delightfully expose the work required to provide an ethics of formal
methods.
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