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Abstract
We report on our experiences in synthesizing a fully-featured au-
topilot from embedded domain-specific languages (EDSLs) hosted
in Haskell. The autopilot is approximately 50k lines of C code gen-
erated from 10k lines of EDSL code and includes control laws,
mode logic, encrypted communications system, and device drivers.
The autopilot was built in less than two engineer years. This is the
story of how EDSLs provided the productivity and safety gains to
do large-scale low-level embedded programming and lessons we
learned in doing so.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages

Keywords Embedded Domain Specific Languages; Embedded
Systems

1. Introduction
Embedded programming involves the lowest levels of abstraction.
Most development is in low-level languages, like C or assembly,
and programs interact intimately with the hardware. Embedded
domain-specific languages (EDSLs) are in some sense at the other
end of the software spectrum: they are often embedded (in a differ-
ent sense of the word!) in high-level programming languages such
as Haskell or ML, and are used to lift the programmer’s abstraction
level.

That said, there is no reason in-principle why EDSLs cannot be
used for embedded programming; this report is about our experi-
ence in building new EDSLs for embedded programming and the
benefits and difficulties in using them. Our experiences are based
on building an autopilot system called SMACCMPilot using our
EDSLs. The breadth and scope of the project sets it apart. The au-
topilot software is a complete embedded system that includes not
just the core flight control algorithms, but also device drivers, en-
crypted network stack, mode logic, and concurrency and task man-
agement. As far as we know, it is one of the largest (open-source)
embedded systems projects developed using the EDSL approach.

Our story is a largely positive one: we developed the Ivory
and Tower languages and their (EDSL) compilers from scratch in
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approximately 14 engineer-months. Then, we used them to build
the SMACCMPilot hardware support and application in another 22
engineer-months. We achieved a dramatic increase in productivity
as well as code quality. By construction, the generated C excludes
large classes of errors and undefined behaviors.

Our goal in this paper is to summarize some of our lessons-
learned. While we use specific examples, the lessons apply more
generally to large embedded-system design in EDSLs. Our target
audience includes both researchers developing new EDSLs for
low-level programming as well as practitioners considering using
EDSLs.

All of the EDSLs described herein, as well as SMACCMPilot
itself, are open-source software. Further documentation and links
to the sources are available at smaccmpilot.org.

2. Ivory: Safe C Programming
At face value, our approach sounds audacious if not ludicrous:
faced with a deadline for developing a new high-assurance autopi-
lot system in one-and-a-half years, start by designing a new pro-
gramming language and compiler from the ground up.

Of course, developing an EDSL is not the same as developing
a stand-alone compiler. Much of the typical compiler tool-chain,
such as the front-end parser/lexer, is provided for free by the host
language. It took approximately 6 engineer-months to create the
first EDSL language and compiler, which totals about 6k lines of
Haskell code.

The language we developed for generating safe embedded C
code is called Ivory. Ivory compiles to restricted C code suitable
for embedded programming. Ivory shares the goal of other “safe-C”
languages and compilers like Cyclone [9] and Rust [16]. Our main
motivation for not using those languages is our desire for an EDSL
providing convenient, Turing-complete, type-safe macro-language
(Haskell) to improve our productivity.

There have also been some “safe-C” EDSLs including Atom [8],
Copilot [13], and Feldspar [2]. The most significant difference be-
tween these languages and Ivory is that they are focused on pure
computations (e.g., Feldspar is a DSL for digital signal process-
ing), and do not provide convenient support for defining in-memory
data-structures and manipulating memory. Ivory is designed to be
a EDSL that can be used for writing safe memory-manipulating
embedded C.

Ivory also makes contributions from a programming language
perspective, namely in its expressiveness and type-safety. We
overview each, then present a small example, to give the reader
a feel for the language.

Expressiveness Regarding the expressiveness, Ivory has a variety
of useful features, including:

• Memory-areas: the ability to allocate stack-based memory and
manipulate both local and global memory areas [4].



• Product types: C structs with well-typed accessors.
• FFI: typed interfaces for calling arbitrary C functions.
• Bit-fields: support for typed manipulation of bit-fields and reg-

isters [5].

We built Ivory with some limitations to simplify generating safe
C programs. Ivory does not support heap-based dynamic memory
allocation (but global variables can be defined). C arrays are fixed-
length. There is no pointer arithmetic. Pointers are non-nullable.
Union types are not supported. Unsafe casts are not supported: casts
must be to a strictly more expressive type (e.g., from an unsigned 8-
bit integer to an unsigned 16-bit integer) or a default value must be
provided for when the cast is not valid. The most common unsafe
C cast is not possible: no void-pointer type exists in Ivory.

In Ivory, these have not been limiting factors, particularly be-
cause of the power of using Haskell as a macro system. For exam-
ple, while arrays must be of fixed size at C compile-time, we can
define a single Haskell function that is polymorphic in the array
size that becomes instantiated at a particular size at each use site.

Type-checking Ivory’s domain-specific type checking focuses
on guaranteeing memory safety and helping programmers reason
about their programs’ nonfunctional behaviors more easily.

In addition, Ivory programs have an effects type associated with
them, implemented as a parameter to the Ivory monad. There are
three kinds of effects tracked:

• Allocation effects: whether a program performs (stack-based)
memory allocation as well as whether pointers point into global
or stack memory.

• Return effects: whether a program contains a return statement.
• Break effects: whether a program contains a break statement.

Allocation effects allow memory allocation to be restricted and
tracked at the type level. For example, from a program’s type alone,
we can determine whether it allocates memory on the stack, making
stack usage easier to track. More importantly for memory-safety,
allocation effects also ensure Ivory programs contain no dangling
pointers: it is a type error to return a pointer to locally-allocated
memory.

Return and break statements fundamentally affect control-flow
and can result in unexpected behavior by breaking out of the current
block or returning from a function. For example, in a top-level
while loop implementing an real-time operating system task, there
should be no break or return statements; we can enforce this with
the type system. Tracking these effects is novel, we believe, and
particularly important in the context of an EDSL in which programs
are generated and manipulated heavily in the host language.

In an EDSL, we have at least two options for type checking:
(1) write a domain-specific type-checker in Haskell (relying on
Haskell’s type-system just for macro-language type-checking), or
(2) embed the domain-specific type checker into Haskell’s type
system.

We were motivated to pursue option (2) because it allows us
to discover problems sooner in the development cycle. In the case
of option (1), we only find out about problems in the program’s
AST during code generation. Option (2) ensures that all macro
and library code is typed correctly, independent of its use in the
generated code. We discuss the issues of finding errors early on in
more detail in Section 5.

When we began developing Ivory, our hypothesis was that
recent type-system extensions to the Glasgow Haskell Compiler
(GHC) make it feasible to embed the invariants necessary to en-
sure memory-safe C programming into the type-system [12]. From
a practical standpoint, Ivory demonstrates just how far the type-

[ivory|
struct fooStruct
{ bar :: Stored Uint8
; baz :: Array 10 (Stored Sint16)
}

|]

setBaz :: Def ([Ref Global (Struct "fooStruct"), Sint16] :-> ())
setBaz = proc "setBaz" $ \ref val -> body (prgm ref val)

prgm :: Ref Global (Struct "fooStruct") -> Sint16 -> Ivory eff ()
prgm ref val = arrayMap $ \ix ->

store ((ref ∼> baz) ! ix) val

// foo_source.c
#include "foo_module.h"

void setBaz(struct fooStruct* n_var0, int16_t n_var1) {
for ( int32_t n_ix0 = (int32_t) 0

; n_ix0 <= (int32_t) 9
; n_ix0++ ) {
n_var0->baz[n_ix0] = n_var1;

}
}

// foo_module.h
struct fooStruct {

uint8_t bar;
int16_t baz[10U];

};

void setBaz(struct fooStruct* n_var0, int16_t n_var1);

Figure 1. Example Ivory module definition

system has come, allowing us to replicate the type safety of com-
pilers like Cyclone, etc.

We do not have space to adequately describe Ivory’s type sys-
tem; we leave that to a forthcoming paper. Here we will note that
the embedding depends on the use of data kinds [20], type fami-
lies [18], and rank-2 polymorphism [10].

Ivory example We present a small example of Ivory code. The
example omits many features of the language, but should give the
reader a feeling for it.

Consider Figure 1, in which an Ivory program is shown, as well
as the corresponding generated C sources and headers (making a
few syntactic changes to the C for readability, not relevant to the
example).

First, we define a struct (or product type) using a quasiquoter
that is part of the Ivory language. The Ivory code generated by
Template Haskell [19] constructs a struct definition containing two
fields consisting of an unsigned byte and an array of 10 signed
16-bit integers. Template Haskell also constructs a new type-level
literal, fooStruct, that is unique to the defined struct. The Stored
type constructor signifies that the value is allocated in-memory [4].
The Array type constructor takes a type-level natural number as a
parameter (available as a Glasgow Haskell Compiler extension) to
fix the size of an array.

A procedure, corresponding to a C function, has a type of the
form

Def (params :-> out)

where params are the procedure’s parameter types and out is its
return type. The procedure setBaz takes two arguments and its
return type is unit, corresponding to the void type in C. The types
of the procedure’s arguments are types in a type-level list: the first
argument is a reference, a non-null pointer by construction, to a
struct, and the second argument is a signed 16-bit integer. The
Ref type constructor takes a scope type and a memory-area type.



The scope type denotes either stack-allocated scope, or global (and
statically allocated) scope. In the example, we expect the reference
to be to a global.

Procedures are defined with the proc operator that takes a
string, corresponding to the name of the function that will be
generated in C, and a function from the procedures arguments to its
body. The body of the function is an Ivory program that sets each
element in the baz field of the struct with the value val passed to
it, leaving the bar field unchanged.

Following [4], Ivory guarantees memory-safe array access in the
type system since array lengths are statically known. Ivory provides
an arrayMap operator that applies a function to each valid index
into the array. The function applied in this case is a store operation
that takes a reference to a memory area, a value, and stores the value
in the area. It is a type-error if the value’s type and memory-area’s
type do not match.

The operation (ref ∼> baz) takes the struct reference and
returns a reference to the baz field. The bang (!) operator takes
a reference to an array, an index, and returns a reference to the
value at that index. The safety of indexing is maintained since the
operator has the type

(!) :: Ref s (Array len area) -> Ix len -> Ref s area

tying the length of the array to the maximum index. For example,
an index type (Ix 10) supports index values from 0 to 9.

The example only shows a small part of Ivory’s language and
does not exhibit some of its additional features to prevent unsafe
programs. For example, if setBaz had allocated stack memory and
created a reference to it, then tried to return the reference (creating
a dangling pointer), it would result in a type error.

Additionally, for application-specific properties that cannot be
type-checked, Ivory permits the insertion of assertions, assump-
tions on arguments, and requirements on return values. Ivory also
automatically inserts checks for arithmetic underflow/overflow and
division-by-zero. All these checks are useful during testing and we
have used them to assist with static analysis and model-checking
the generated C.

3. Tower: from Functions to Architectures
In many embedded systems, programmers produce an entire sys-
tem of software that interacts with multiple input and output pe-
ripherals concurrently using a real-time operating system (RTOS).
Typical RTOSes provide just a few low-level locking and signaling
primitives for scheduling. Since microcontrollers do not have the
virtual memory managment units (MMUs) found on larger proces-
sors, the RTOS kernel cannot protect any system memory against
badly behaved user code. These restrictions put significant burden
on programmers: they must ensure all tasks, and all communication
between tasks, are implemented correctly.

During our initial development of SMACCMPilot, we found
ourselves generating high-quality C functions from Ivory, which
guarantees memory-safety of the generated code. But whenever
we needed “glue code” to implement inter-process communication,
initialize data-structures, read the system clock, lock the processor,
etc., we were forced to abandon our well-typed world and tediously
use C directly via Ivory’s foreign function interface. Furthermore,
the hand-written C is OS-specific, meaning it would have to be
rewritten for any OS port.

Extending Ivory The hand-written glue code was ruining both
our productivity and our assurance story. We wanted a language to
describe the structure of the glue code that would generate it for us.
Our key insight was that such an EDSL could be built as a macro
over Ivory, using Ivory’s code-generation facilities, without losing
anything.

From these ideas, the Tower EDSL was born. Tower is an ex-
tension to the Ivory language that is designed to deal with the spe-
cific concerns of multithreaded software architectures. Tower still
allows the programmer to use all the low-level power of Ivory for
general programming, but uses a separate language for describing
tasks and the connections between them. It took about 4 engineer-
months and 3k lines of Haskell code to build Tower. This is one of
the great productivity features of working with EDSLs: if we dis-
cover the language we built is difficult, tricky, or unsafe for solving
a particular problem, we can extend that language with a library
without modifying the compiler.

In Tower, one specifies tasks and communication channels, and
the Tower compiler generates correct Ivory implementations, as
well as architecture description artifacts. Tower hides the danger-
ous low-level scheduling primitives from the user, and keeps type
information for channels (i.e., the datatype of the channel message),
expressed as Ivory types, in the Haskell type system.

Tower allows the programmer to describe a static graph of
channels and tasks. For the intended use case in high assurance
systems, a static configuration of channels and tasks simplifies
reasoning about memory requirements and permits the system to
be analyzed for schedulability.

Multiple interpreters In the Tower front end, the programmer
specifies a system that can be compiled to multiple artifacts.

Tower is designed to support different operating systems via a
swappable backend. Since all code that touches operating system
primitives is generated by Tower, it is easy for the user to specify
a system and compile it for different operating systems. Tower
supports both the open-soure FreeRTOS [7] as well as the formally-
verified eChronos RTOS [6] developed by NICTA.

Tower also has a backend which generates a system description
in the Architecture Analysis and Design Language (AADL) [17].
We also built a backend for the Graphviz language to generate
graphs of tasks and channels. These output formats make it possible
to visualize, analyze, and automatically check properties about the
system.

Tower example In Figure 2, we sketch a small Tower example
that is representative of a device driver that blinks an LED. Small
simplifications to Tower have been made in the code, eliding details
relating to code generation and backend selection.

In the first column of the figure, the communication architecture
is defined in the Tower monad. The program initializes a unidirec-
tional channel between two tasks as well as the tasks themselves. A
channel, or queue, consists of transmit (tx) and receive (rx) end-
points, respectively. The blinkTask task is an RTOS task that will
send output to the lightswitch RTOS task via an RTOS-mediated
channel. The lightswitch task toggles the LED based on the in-
coming Boolean values. (In the third column, a graph of the tower
program is shown, generated from the Tower compiler’s Graphviz
dot output, showing the architectural structure of the two tasks as
well as the queue between them.)

To conserve space, we only define blinkTask. The second col-
umn contains the definition of blinkTask, defined in the Task
monad. The blinkTask task takes a channel source and returns a
task. The task first initializes an emitter for the channel then cre-
ates a reference to allocated memory that is private to the task.
Every 100 milliseconds, an Ivory action is taken. In this case,
the action is to call Ivory function blinkFromTime that is exe-
cuted whenever the task is enabled (we elide the implementation of
blinkFromTime in this example). The boolean value res is then
emitted on the channel.



blinkTower :: Tower ()
blinkTower = do

(tx,rx) <- channel
task "blink" (blinkTask tx)
task "lightswitch" $

onChannel rx $
\lit -> do

ifte_ lit (turnOn light)
(turnOff light)

blinkTask :: ChannelSource (Stored IBool)
-> Task ()

blinkTask chan = do
tx <- withChannelEmitter chan
res <- taskLocal
onPeriod period $ \now -> do

res <- call blinkFromTime now
emit_ tx res

where period = Milliseconds 100

"blink" task

periodic @ 100ms

emitter

"lightswitch" task

event handlerIBool

Figure 2. Tower (Col. 2), Task (Column. 1), Graphviz output (Col. 3)
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Figure 3. Simplified diagram of SMACCMPilot software archi-
tecture. Tasks written in Ivory are shown as white boxes, tasks im-
plemented in legacy C++ code are gray boxes, channels are arrows,
hardware components are black boxes.

4. SMACCMPilot: a High-Assurance Autopilot
Our main use for Ivory and Tower thus far has been in building a ro-
bust autopilot. The result is SMACCMPilot, an open-source (BSD
licensed) autopilot system for quadcopter unmanned air vehicles
(UAVs). It is a complete embedded system that includes low-level
IO peripheral drivers, an encrypted communication protocol stack,
and several layers of control systems.

SMACCMPilot runs on open source flight controller hardware
from the PX4 Autopilot project [15]. The hardware platform is
a custom printed circuit board with an ARM Cortex M4 micro-
controller and the accelerometer, magnetometer, gyroscope, and
barometer sensors used to determine the orientation and altitude
of the vehicle.

A simplified software architecture of SMACCMPilot is shown
in Figure 3. The flight control software is primarily responsible for
reading the sensors, estimating the vehicle’s attitude and position
using sensor fusion, calculating control outputs, and sending mo-
tor power commands to the motor controllers. Higher level con-
trollers manage navigation, and an encrypted command, control,
and telemetry link interprets ground station instructions and sends
system state to the operator.

The result is a reasonably complex piece of embedded soft-
ware. SMACCMPilot has 30 tasks connected by 47 channels, and
57 globally shared state variables. Most of those shared state vari-
ables are controller tuning parameters, which can be modified by
commands sent over the telemetry link.

SMACCMPilot was developed alongside the Ivory/Tower tools.
The complete system took approximately 22 engineer-months to
develop. The low level drivers for the system were written first
in C, then transliterated to Ivory as the language became mature

enough to support them. We built a stack for command, control,
and telemetry, encapsulated in an encrypted packet protocol. A few
components from the ArduPilot open source project, the biggest of
which is a 10kloc C++ library for inertial sensor fusion, are still
used inside SMACCMPilot. We plan to replace the remaining C++
code with Ivory implementations in the future.

Complexity comparison The SMACCMPilot application code is
10kloc of Ivory, the board support code is 3kloc of Ivory (and
Tower), and the telemetry link binary packing and unpacking code
is a machine-generated 10kloc of Ivory code. When compiled, the
complete application is 48kloc of generated C code, and depends
on some external C libraries to implement the operating system
(4kloc) and other functions, such as sensor fusion. This is compa-
rable to existing open source flight controller systems.

We can compare this to two systems which have a similar
feature set and run on similar hardware to SMACCMPilot. The
ArduPilot project [1] and the PX4 project are popular open source
autopilots. Both implement all of the low level drivers to support
similar (or identical) microcontroller based flight controller boards,
comparable control laws, and implement the same MAVLink
telemetry protocol. We do note that the APM and PX4 projects
have more high level autonomous capabilities than SMACCMPilot
has at this time.

The ArduPilot project is over 60kloc of C++, runs in three
pseudo-threads, and supports at least four distinct autopilot hard-
ware platforms. The PX4 Autopilot software stack has 25kloc of
C/C++ application code, 25kloc of C/C++ platform support code,
and depends on the large (50kloc+) NuttX operating system.

5. Lessons Learned
In this section, we discuss some of the benefits and challenges of
using EDSLs for embedded programming, focusing on those that
were surprising to us, despite our teams’ previous experience in
functional programming and embedded development.

Our experience using Ivory and Tower to build SMACCMPilot
has been an extreme lesson in “eating our own dog-food”. We
had multiple developers writing the compilers and using them to
build applications concurrently. We learned a few lessons that are
relevant to any compiler development but particularly relevant to
EDSL development.

Type-checking for embedded programming Build times are non-
trivial for large software systems. At the time of writing, a fresh
build of SMACCMPilot and associated test programs is over seven
minutes of real time (and 12 minutes of CPU time since we have a
multi-threaded build system). One reason the build time is so large
is that it requires Cabal (the Haskell package manager) to discover
library dependencies and install packages, compile the Haskell
sources, and then compile the C sources. As well, some sources are
compiled multiple times for different targets on multiple operating
systems.



Then, to execute the software on the embedded device, we
have to write the software to the device’s memory via a JTAG
programmer or a serial bootloader, which takes on the order of ten
seconds.

All this is to say that the end-to-end debug cycle might mean
testing a small number of changes to Ivory or Tower per hour.
Clearly, the debug cycle in embedded development particularly
motivates us to make fewer bugs and to discover them early.

During development, it became apparent how useful Haskell
type-checking is for embedded programming. As described in
Section 2, we have embedded Ivory’s type system in Haskell’s.
Thus, domain-specific type-errors are caught during Haskell type-
checking. Type-checking, and other static warnings reported by
GHC, are nearly instantaneous since it can be done on a module-
by-module basis. The type system tracks the global or stack frame
provenance of references, as well as structure accessors and array
indices, to ensure all well-typed Ivory programs generate memory-
safe C. The upshot is that Ivory programs that would generate
unsafe C programs are caught immediately.

In addition, we have found it useful to detect potential bugs even
if the C compiler might also detect them. To take one example,
consider unused variable declarations. While a C compiler can
detect this, perhaps late in the compilation phase, we discover these
warnings nearly instantaneously during type checking. Moreover,
the more preprocessing we can do in Haskell, the more potential
errors we may find, and with a better relation to the EDSL source.

However, not every property of interest in embedded program-
ming can be conveniently embedded in the Haskell type system
with GHC extensions. For example, integer overflows checks are
not practical to embed.

Moreover, GHC’s type error reporting can be unwieldy. Ivory
users would benefit from domain-specific error reporting which
could, for example, describe type errors in the vocabulary of Ivory,
rather than burden the user to interpret the way the Ivory language
types are embedded into Haskell types. For example, passing the
wrong number of arguments to an Ivory function in a procedure
call is reported as a type error when using functional dependencies,
whereas a mismatch between the type of a procedure and the
number of arguments provided in its declaration is reported as
a kind error. The errors reported are of the particular type-level
implementation given for Ivory types. Haskell does not yet have
good facilities for type-level programming abstraction.

Type-safe system plumbing Adding many new features to SMAC-
CMPilot is easy. In fact, the most tedious part is writing the busi-
ness logic in Tower, where we define a new task, and then plumb
values representing communication channels through the code.
There is nothing conceptually difficult in doing so—it is similar
to any monadic interface for specifying a graph. When changes
cross Haskell function boundaries, we must modify the arguments
to the Haskell function that generates the Tower task (or modifying
the fields of a data-type if channels have been grouped together).
Channels are typed, so type-checking detects most plausible inter-
task communication errors.

Stepping back, the idea that plumbing arguments to Haskell
functions is the hardest part of embedded development is amazing.
We are not dealing with bugs in low-level OS interfaces, we are not
making timing or resource contention errors in communication, we
are not dealing with type-errors like you might find in raw C (where
data might be cast to void* or char[]).

Because plumbing is so easy, it encourages us to improve mod-
ularity in the system. Defining a new RTOS task is easy, so we
might as well modularize functionality to improve isolation and se-
curity. For example, in the ground station communication subsys-
tem, encryption and decryption are each executed in isolated tasks,
simplifying the architectural analysis of the system. As we noted

in Section 4, our system is significantly more modular than other
autopilots.

Faking a module system In Ivory and Tower, top-level functions
and structures are packaged into a Haskell data structure to provide
to the Ivory compiler. The onus is on the programmer to package
up all the necessary components.

On one hand, the approach provides the programmer control
over how to modularize the generated C code, deciding which
definitions to put in a C source or header file. On the other hand,
we have found it to be verbose, tedious, and error-prone. Generally,
we want the C files to have similar structure to the Haskell modules
in which Ivory programs are written. From that respect, the Ivory
module system simply duplicates the Haskell module system.

Worse is when the programmer forgets to package a definition.
The error only becomes apparent at C link time, near the end of a
long build process. Missing definitions have plagued our builds.

We could move symbol resolution up the build cycle to the
C-code generation phase. Ideally, we would move it up the build
cycle even further. We are currently exploring the use of Template
Haskell to generate Ivory modules at compile-time to assist the
programmer.

Control your compiler If we were writing our application in a
typical compiled language, even a high-level one, and found a com-
piler bug, we would perhaps file a bug report with the developers...
and wait. If we had access to the sources, we might try making
a change, but doing so risks introducing new bugs or at the least,
forking the compiler. Most likely, the compiler would not change,
and we would either make some ad-hoc work-around or introduce
regression tests to make sure that the specific bug found is not hit
again. Such a situation is notorious in embedded cross-compilers
that usually have a small support team and are themselves many
revisions behind the main compiler tool-chain.

But with an EDSL the situation is different. With a small code-
base implementing the compiler, it is easy to write new passes or
inspect passes for errors. Rebuilding the compiler takes seconds.

More generally, we have a different mindset programming in an
EDSL: if a class of bug occurs a few times—whether caused in the
compiler or not—we change the language/compiler to eliminate it
(or at least to automatically insert assertions to check for it). Instead
of a growing test-suite, we have a growing set of checks in the
compiler, to help eliminate both our bugs and the bugs in all future
Ivory programs.

We claim that Ivory code compiles to memory-safe C code.
However, a formal proof of these claims, or more generally, a
proof that the semantics of Ivory programs are implemented by the
generated C code, is work-in-progress. However, a small number of
primitives and simple compiler facilitates inspection and testing. In
all, this is less assurance than is given by fully verified toolchains,
such as CompCert [11]. Other approaches more specific to bringing
assurance to EDSL compilers could be borrowed as well [14].

Everything is a library With an EDSL, and particularly a Turing-
complete macro language, everything is a library. The distinction
between language developers and users becomes ambiguous. As
an extreme example, one can think of Tower as “just” a library
for Ivory. A small example is defining a conditional operator in
terms of Ivory’s if-then-else primitive as shown in Figure 4. All
types above were introduced in Section 2. With the cond opera-
tor, we can replace nested if-then-else statements as shown in the
figure with more convenient conditionals, without modifying the
language.

Because macros are so easy to define and natural in EDSL
development, our biggest challenge has been ensuring developers
on our team put useful ones in a standard library, to be shared.



data Cond eff a =
Cond IBool (Ivory eff a)

(==>) :: IBool -> Ivory eff a
-> Cond eff a

(==>) = Cond

cond_ :: [Cond eff ()]
-> Ivory eff ()

cond_ [] = return ()
cond_ ((Cond b f):cs) =

ifte_ b f (cond_ cs)

cond_
[ x >? 100 ==> ret 10
, x >? 50 ==> ret 5
, true ==> ret 0 ]

ifte_ (x >? 100)
(ret 10)
(ifte_ (x >? 50)

(ret 5)
(ret 0))

Figure 4. Conditional Ivory macro.

Semantics To take advantage of legacy cross-compilers, we are
forced to generate C code from our EDSL. A large focus in design-
ing Ivory is to allow expressive but well-defined programs. We be-
lieve Ivory cannot produce memory-unsafe C programs. However,
undefined C programs can be generated from Ivory; for example,
signed integer overflow and division-by-zero are undefined. Guar-
anteeing programs are free from these behaviors is decidable (the
arithmetic is on fixed-width integer types), but intractable to prove
automatically.

To assist the programmer, the Ivory compiler automatically
inserts predicates into the generated code to check for overflow,
division-by-zero, etc. The user defines the behavior of the program
if a check fails. For example, during testing, we define the checks to
insert a breakpoint for use with a debugger. Another option may be
to do nothing and rely on the semantics provided by the C compiler.
Still another option might be to trap to a user-defined exception-
handler. Currently, SMACCMPilot contains approximately 2500
compiler-inserted non-trivial checks that cannot be constant-folded
away. In the future, we hope to prove these checks never fail.

Early in the development process, we used the CBMC model
checker [3] to partially verify the assertions in the generated
C code. However, as our application grew, we ran into three prob-
lems. First, a naive application of whole program model checking
did not scale to our application size. Second, many assertions de-
pend on user-provided preconditions (e.g. on inputs from hardware
devices). Third, some assertions were undecidable (e.g. non-linear
arithmetic).

There are two other semantics categories to consider: defined
behavior and implementation-defined behavior. In Ivory, we at-
tempt to eliminate almost all implementation-defined behaviors.
For example, only fixed-width size types, like uint8 t or int32 t,
can be generated. Implementation-defined sizes, like int or char
are not used. We have found these to be dangerous: programmers
might assume properties about the size of a type that do not hold
in a non-standard architecture (e.g., that an int is at least 32 bits
or that char is unsigned; both are implementation-defined). Such
assumptions are particularly dangerous when porting code between
different embedded platforms. Indeed, when we ported portions of
ArduPilot, initially built for an 8-bit AVR architecture to a 32-bit
ARM, we found these sorts of implicit assumptions.

Finally, even defined behavior is not necessarily intuitive behav-
ior. For example, in C, the defined behavior for arithmetic on values
that have a size-type smaller than int is to implicitly promote them
to ints before performing the arithmetic.

For example, given

uint8 t a = 10;
uint8 t b = 250;
bool x = a-b > 0;
bool y = (uint8 t)(a-b) > 0;

x evaluates to 0 and y to 1, provided that

sizeof(uint8 t) < sizeof(int)

This behavior is worrisome to the embedded programmer because,
across various embedded processors and C compilers, integer sizes
are often defined differently.

In Ivory, arithmetic is at the size of the operands, which we
believe is more intuitive. We force the generated C to respect
this semantics by inserting casts into expressions. So the Ivory
expression a-b results in the C expression (uint8 t) (a-b).

6. Conclusions
We have described our use of the Ivory and Tower EDSLs for
building a large embedded system.

Many of the advantages of EDSLs for embedded programming
relate to type-checking in Haskell. Of course, some bugs cannot be
caught statically. For the most part, once type-checking is complete,
we are confident that the bug is a logical bug. We do not spend our
time chasing segmentation faults or strange undefined or compiler-
dependent behaviors but rather focus on the bugs that result from
our misunderstanding of the application, not the programming en-
vironment.

What is next? In the next few years, SMACCMPilot will con-
tinue to grow. It, along with the Ivory & Tower tools, are open
source, in the hope of engaging a broader community. We will
add new hardware, new sensors, and new controllers so that it is
not only one of the highest-assurance autopilots in existence but is
competitive with others in terms of functionality.

In addition, we are looking to improve the usability of Ivory
and Tower. For example, we are working to integrate verification
tools more closely into the language. We have also begun to define
quasiquoters for the languages so that C programmers might feel
more at home with the language but power (Haskell) users can still
enjoy the benefits of EDSL programming.

In short, we believe EDSLs can be brought down from the ivory
tower (pun intended) to the grungy world of embedded program-
ming.
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