
Appears in the proceedings of the The Second International Workshop on Security Testing (SECTEST) 2011, affiliated with the
International Conference on Software Testing, Verification and Validation (ICST).

Practical Considerations in
Control-Flow Integrity Monitoring

Iavor Diatchki
Galois, Inc.

Email: diatchki@galois.com

Lee Pike
Galois, Inc.

Email: leepike@galois.com

Levent Erkök
Galois, Inc.

Email: levent.erkok@galois.com

Abstract—Control-flow integrity (CFI) checks ensure that pro-
grams respect their static call-graphs at runtime. A program
might violate its call-graph due to malicious attacks such as shell-
code injection or return-to-libc style exploits. CFI checking can
also be beneficial during testing to discover properties of control-
flow, as well as at deployment to detect malicious behavior. We
present practical aspects of CFI checking, including advantages
and disadvantages of the following: how to represent call-graphs,
how to instrument CFI checks, and how to refine CFI checks to
properties of control-flow. We discuss two implementations: one
instrumenting the source code and the other instrumenting the
compiler generated assembly, and we describe their performance.
Our paper is meant to be a practical guide to CFI monitoring.

I. INTRODUCTION

Most security attacks on software aim to modify their
control-flow maliciously. If the control-flow of a program can
be statically determined, then the program’s actual control-
flow can be monitored at run-time to ensure conformance.
This idea is known as control-flow integrity (CFI) [1], [2].
CFI approaches detect conventional control-flow modifications
like the well-known jumping to shellcode [3] and return-to-
libc [4] type of attacks, which cause the program’s control-flow
to violate any possible call-graph of the program. However,
carrying out a control-flow attack can be more subtle, such as
modifying data values as well; CFI checks can also be used
to test for these subtler attacks. Moreover, CFI checks can
be used during testing to develop and check properties about
the control-flow of a program: e.g., “Do the error handling
routines always call the logging function?”

From a security standpoint, CFI is a draconian solution,
as compared with lower-overhead approaches such as the
use of canaries [5], [6], [7], address-space layout randomiza-
tion [8], or custom array out-of-bound checks [9]. However,
recent work shows these latter approaches to be ineffective
at stopping all return-to-libc attacks. In a 2010 paper by
Checkoway et al., they demonstrate how to execute return-to-
libc attacks that execute arbitrary programs without modifying
return addresses [10]. The authors therefore write:

What we show in this paper is that these defenses
would not be worthwhile even if implemented in
hardware. Resources would instead be better spent
deploying a comprehensive solution, such as CFI.

While a small number of researchers have explored specific
CFI-like approaches [1], [2], there has been no discussion of
some of the practical trade-offs between design choices of

CFI implementations. We discuss design choices regarding
the location of CFI checks, at what compiler phase to add
the checks, the construction of static call-graphs, and how to
check for conformance. Our hope is that this paper provides
useful guidance for other CFI implementations for testing and
security monitoring.

The remainder of the paper is organized as follows. In
Section II, we overview related work. In Section III, we
describe design choices regarding various aspects of CFI,
including computing the call-graphs, monitoring the control
stack, and developing and testing control-flow properties. In
Section IV, we discuss two implementations building on our
ideas; one implementation instruments source code, and the
other instruments assembly code generated by the compiler.
We also provide initial performance benchmarks. Finally, we
conclude in Section V, with a brief description of future work.

II. BACKGROUND AND RELATED WORK

A large body of literature exists describing approaches for
detecting, preventing, and circumventing attacks to modify
the control-flow of C programs. In this section, we briefly
review the work most relevant to ours. An extensive recent
bibliography for CFI checking can be found in Abadi et al. [1].
We call out specific similarities and differences with prior
work in the remainder of the paper.

Oh et al. [2] describe a CFI monitoring approach based
on signature-based checks at the beginning of basic machine-
code blocks. The motivation for this work is the presence of
transient or permanent faults rather than security. Abadi et al.
present an approach to CFI, where jumps in the program
are instrumented with checks to ensure the targets are valid
before jumping [11], [1]. Their call-graphs are built using static
binary analysis, and instrumentation is done by machine-code
rewriting, making it language-independent. Our implementa-
tions (see Section IV) shows that reasonable efficiency can
be achieved with an architecture-independent (but language-
dependent) approach performed during compilation. Together,
the work of Abadi et al. and our work explore much of the
design space for CFI checking.

Petroni and Hicks present an approach for monitoring
control-flow attacks to detect Linux kernel rootkits [12]. Their
work addresses environments in which some of the assump-
tions made by Abadi et al. do not hold [11]. The monitoring

1

is external rather than inline: a kernel is periodically validated
from a separate monitoring virtual machine.

CFI has been applied to intrusion/anomaly detection by
monitoring the call-graph to discover violations of a security
policy (e.g., [13]). These efforts relate to the idea of dynami-
cally learning call-graphs, described in Section III-D.

While we focus on run-time integrity of control, Loscocco
et al. address integrity of data with their tool, LKIM [14].
LKIM periodically inspects the memory of its target to monitor
whether static data has changed at all and whether dynamic
data has changed inappropriately, possibly signaling an attack.
LKIM is particularly targeted at inspecting the Linux kernel,
but could be applied to other software systems as well.

III. APPROACHES TO CONTROL-FLOW INTEGRITY
CHECKING

In this section, we compare and contrast different ap-
proaches to CFI checking. We begin by discussing the trade-
offs of different representations of the static call-graph. Next,
we address approaches to check the conformance of the control
stack to the call-graph, including when and how to make those
checks. Finally, we discuss how CFI checking can be used to
develop more refined properties about program behavior.

The high-level property that we monitor through CFI checks
is that at any point of time during the execution of a program,
the program’s control stack corresponds to a valid path through
its call-graph. Generally, there are two ways in which the
conformance check may fail:
• The control stack might contain an unrecognized return

address.
• The control stack might contain (at least) two adjacent

addresses that correspond to known functions, but there
is no known edge between the functions in the call-graph.
This case typically indicates a potential “return-to-libc”
style attack [4].

The basic CFI algorithm takes a control stack and a call-
graph as arguments, and makes sure that the sequence of calls
in the control stack corresponds to a valid path in the call-
graph, starting from the main function.

With CFI checking, both false positives and false negatives
are possible, as we discuss in the following; one important
objective for CFI checking is to reduce both of these.

A. Call-graph representations

Here, we discuss three different approaches to constructing
call-graphs of C programs suitable for CFI checking. In other
work on CFI, the construction and representation of the call-
graph is treated mostly as an implementation detail, but its
representation can affect the kinds of violations caught as well
as affect performance.

As a running example, consider the code snippet and the
corresponding three different call-graph representations given
in Figure 1. The program snippet includes four functions that
call each other. For convenience, we substitute line numbers
in the source code for return addresses.

1 int e() {
2 return 3;
3 }
4

5 void f(int i) {
6 e();
7 g(--i);
8 h(--i);
9 }

10

11 void g(int i) {
12 f(--i);
13 h(--i);
14 }
15

16 void h(int i) {
17 f(--i);
18 g(--i);
19 }

e f

g

h

Canonical call-graph

6

13 18

7 12

17 8

Call-site call-graph

R =


e 7→ {6}
g 7→ {7, 18}
h 7→ {8, 13}
f 7→ {12, 17}

Called-by call-graph
Fig. 1. Functions with multiple call-sites and their call-graph representations.

Consider the following three approaches to constructing a
call-graph:
• Canonical call-graph: The simplest call-graph contains

vertices corresponding to the functions in the program,
and an edge from f to g if there is a function call to g
in the body of f.

• Call-site call-graph: An alternative representation is to
use call-sites (or equivalently, return addresses) as the
vertices of the graph, placing an edge between two
vertices if the target call-site may be directly reached from
the source call-site, i.e., without making any intermediate
function calls. (Recall that in Figure 1, we represent
return addresses with line numbers.)

• Called-by call-graph: A third representation—a hybrid of
the canonical and call-site representations—is a relation
R, where R maps each function f to the set of call-sites
calling f . (Note that the same call-site might appear in
multiple functions, if the call is made through a function
pointer.)

A canonical call-graph is simple to understand and construct
statically. Its disadvantage, however, is that it abstracts infor-
mation about particular return-addresses within a function. For
example, consider the following function, in which a message
is created, encrypted, and sent:

1 void main() {
2 create_msg();
3 encrypt();
4 send();
5 // ...
6 }

Consider a CFI check made in function create_msg()
against a call-graph in the canonical representation: the check
does not know the location in main where the function
will return to, but we may wish to ensure that the call will
return exactly to the encrypt() statement. A call-site graph
provides this level of granularity. Another advantage of a call-
site graph over a canonical graph for run-time monitoring is
that the former corresponds directly to the return addresses
available on the control stack. With the canonical representa-
tion, a translation must be made from return addresses to the
function names for each monitored call, which incurs some
runtime overhead.

The main disadvantage of a call-site graph is that for
some programs the call-graphs may be larger, as illustrated
in Figure 1. As compared to the canonical representation,
the number of vertices can grow at most linearly, since each
function can call a constant number of functions (i.e., each
function has a fixed number of call-sites). A call-site call-graph
can also have fewer vertices than the canonical form depending
on the proportion of terminal functions, i.e., functions that
do not contain call-sites themselves. Indeed, in the example
above, if the functions create_msg(), encrypt(), and
send() contain no calls themselves, the call-site call-graph
representation for the code snippet contains no edges at all.

The called-by call-graph representation maintains the ad-
vantage of the call-site call-graph insofar as the call-sites
conform to the return addresses on the control-stack (obviating
the need to translate return addresses to function names at
runtime). In contrast with the call-site call-graph, the called-
by representation provides a mapping for terminal functions
without calls themselves. It does not distinguish callers, how-
ever, like the canonical call-graph. Custom checks can be
generated statically for each function f, which eliminates the
need to dynamically lookup f in the relation. Our fastest
implementation uses the called-by call-graph representation.
(The work of Abadi et al. primarily considers a call-graph R′

that is the inverse of our relation R, mapping call-sites to the
functions they point to [1].)

B. Call-graph approximations

Independent of which call-graph representation we choose,
we will have to approximate the call-graph for some programs.
This may happen if, for example, we are analyzing a program
that uses a binary-only library for which we cannot construct
the call-graph. A more fundamental reason for approximate
call graphs is that, in general, the problem of determining
what functions may be called via an indirect call (e.g., via
a function pointer in C) is undecidable. Similarly, the use
of setjmp/longjmp instructions can also cause call-graph
inaccuracies.

For each pair of vertices in the call-graph, there are two
possible outcomes of such an approximation:

• Under-approximating the edges may result in rejecting a
valid control stack because an edge is missing from the
call-graph;

• Over-approximating the edges may result in failing to
detect an invalid control stack because there are too many
edges in the call-graph.

Whether an under-approximation or over-approximation is
appropriate depends on the context of CFI checking. An over-
approximation may reduce false-positives (i.e., a valid call
is erroneously flagged). Unless we are using a gross over-
approximation, the probability that an attack falls within the
relaxed call-graph is still low.

To improve the results of the indirect pointer analysis, we
may use dynamically discovered information, while the pro-
gram is executing in a trusted (i.e., sand-boxed) environment.
This technique may be implemented by generating a modified
version of the original program, where each indirect call-site is
instrumented to record the address of the function that is being
called. The information collected in this way can be used to
improve the statically computed call-graph: If the set of edges
is known to be an under-approximation, then we may discover
additional edges. Conversely, if the set of edges is known to
be an over-approximation, then we can discover edges which
are known to be valid.

We return to the idea of using dynamically-learned call-
graphs in Section III-D when we discuss control-flow proper-
ties.

C. Monitoring the control stack

Here we discuss when to perform CFI checks during ex-
ecution as well as techniques for improving the precision of
the checks.

1) When to monitor: We consider three possibilities for
when to perform CFI checks: during function prologues,
during function epilogues, and elsewhere within a function.
(In the work of Abadi et al., monitoring is done at the level
of machine-code, providing more options for when to perform
checks [1].) One benefit of prologue checks is that no matter
how control-flow arrives at a function, a check is made before
executing its body. The disadvantage of prologue-based checks
is that attacks that “jump into” the middle of a function are
not detected. To illustrate, consider the program in Figure 2.
While f is executing, a buffer overflow is used to overwrite the
value of a function pointer to h with an address somewhere in
the middle of g. (The +39 offset in line 23 is implementation
dependent.) The execution of the program thus progresses as
follows: main calls f, where the attack is launched. Once f
jumps into the middle of g, a new stack frame is not built for g
since the function prologue is skipped. Thus, after g executes
its body, it returns directly to main using f’s return address.
In particular, the printf on line 25 will not be reached, but
the one on line 10 (which was not intended) will be executed.

While this program’s execution violates its static call-graph,
a CFI check that is executed at function prologues will not
detect the above attack since the attack causes a jump to the
middle of a function. To detect such attacks, the checks should
occur in function epilogues.

Two other approaches are possible in addition to—or in
lieu of—checks within function prologues and epilogues. First,

1 #define SIZE 10
2

3 void g(int a)
4 {
5 /* g is not intended to
6 be called from main,
7 but it will be. */
8 int i = 0;
9 i = a;

10 printf("Overrun!\n");
11 }
12

13 void h(void)
14 {
15 printf("Good function\n");
16 }
17

18 void f(int x) {
19 void (*func)(void);
20 func = &h;
21 void* test[SIZE];
22

23 //+39 is implementation dependent
24 test[x] = (&g)+39;
25 func();
26 printf("Unreachable!\n");
27 }
28

29 int main() {
30 f(SIZE);
31 printf("Back in main\n");
32 return 0;
33 }

Fig. 2. Function-pointer overwrite jumping to the middle of a function.

we may traverse the entire control stack of a program, to
check that all return addresses correspond to transitions in
the program’s call graph. Doing so on every function call is
prohibitively expensive, but may nevertheless be useful during
testing. However, a full check can be explicitly called at crucial
but infrequent points in the control-flow determined by pro-
gram design or experimentation. (One of our implementations
described in Section IV allows for explicit checks.)

Alternatively, the monitor can be a separate program from
the one being observed (the monitor must have access to the
memory of the observed program in this case, i.e., it must be
a privileged process). The advantage of an external monitor is
that the observed program has less information about when a
check of its control stack against its call-graph occurs. The
greatest benefit of external monitoring is that it does not
require modification to the target. Less information makes it
more difficult for a compromised program’s attacker to “clean-
up” the control stack in preparation for a conformance check.
The drawback of an external process is that the additional

complexity of granting access to the observed program’s
memory may introduce new attack vectors. Furthermore, syn-
chronization must be maintained between monitor and the
program to ensure the coherence of the observations. The
external monitoring approach has been previously investigated
for specialized kernel control-flow integrity monitoring [12] as
well as for data-integrity monitoring [14].

CFI checks can include information about the current state
of the program (e.g., the program counter, global variables,
etc.) in addition to the return address. With the state, one can
check not only that the control-flow conforms to the call-graph,
but also that the control stack is valid for the current state. For
example, consider the following function:
void f(int i) {
int b = i;
if (b) g();
else h();

}

If the control-flow shows f calls g but b == 0, then the
control stack is invalid.

Finally, concurrent programs do not present a fundamental
difficulty, since each thread has its own control stack. In
addition, in one of our implementations, we have explored
the use of dedicated threads for CFI checking, improving
efficiency on multicore machines (see Section IV-A).

D. From call-graphs to properties

As shown above, control-flow can be data-dependent, so
not all paths through the graph correspond to valid execution
paths. So far, we have only considered the property of whether
a call-stack corresponds to the call-graph, but we can make
queries using more sophisticated properties. As a another
example of data-dependent control-flow, consider the code
fragment in Figure 3.

A canonical call-graph for this program contains the path
e→ f→ g→ h2, which is actually not a valid transition due
to the particular data-dependency on this path. (Note that f is
called with argument CMD1 on line 18, and hence execution
will never reach h2.) Similarly, the path 18→ 14→ 7 in the
call-site call-graph is an over-approximation.

A data-flow analysis of the program snippet in Figure 3
might suggest the following property:

“If e calls f and f calls g, then g does not call h2”

We call properties like this trace properties. An execution
trace corresponds to a path through the call-graph of a partic-
ular program. We would like to specify a set of valid traces,
which correspond to descriptions of valid control-stacks. One
way to specify such a set is by using a pair (G,S), where G
is the program’s call-graph, and S is a set of paths through
the graph that are invalid. The program monitor then needs to
check that:

1) a function call corresponds to a valid edge in G (as
before), and

1 void g(int cmd) {
2 switch (cmd) {
3 case CMD1:
4 h1();
5 break;
6 case CMD2:
7 h2();
8 break;
9 ...

10 }
11 }
12

13 void f(int cmd) {
14 g(cmd);
15 }
16

17 void e(void) {
18 f(CMD1);
19 }

e f g

h1

h2

Canonical call-graph

18 14

4

7

Call-site call-graph

Fig. 3. Code fragment demonstrating call-graph over-approximation and two
corresponding call-graph representations.

2) if the edge belongs to a path p in S (the set of invalid
paths), then check the rest of the control stack to ensure
that it does not correspond to p.

Depending on the property, S might be compactly repre-
sented as a collection of pairs (f, g), where f and g are vertices
in the graph. Such a pair describes all paths in the graph that
contain a sub-path from f to g. Thus, (f, g) ∈ S asserts that
the function f should never make a call to g, even through a
transitive closure of f ’s calls. In terms of an implementation,
whenever we make a call to g, we should not only check that
the last transition corresponds to an edge in G but, also, that
f is not present anywhere on the control stack.

The effect of adding (f, g) to S may be stated precisely,
using, for instance, a linear-time temporal logic (LTL) for-
mula [15]:

G(f → X(G ¬g))

stating, “at all program points, if f is called, then henceforth,
no call to g is made”. (The formula is interpreted in a model
which uses call-sites for states and control-stacks for paths.
Function symbols correspond to atomic propositions, such that
a proposition f holds of a state s, if s is a call-site that belongs
to f .)

There are other LTL formulas that correspond to interesting
properties of control stacks. For example, the formula:

¬(¬f U g)

asserts that the function g may be called only by f , or one
of the functions that f called. Using ideas from the model
checking literature, more elaborate (and efficient) checks can
be implemented using these characterizations [16].

During program execution, traces can be recorded to build
a set of traces. The traces might be seeded with a statically-
approximated call-graph, or with a null-graph. If the traces
are recorded during testing using controlled input, then the set
of traces can be used during CFI checks to see if program
violates the traces observed during testing. Recorded traces
can be more informative than statically-generated call-graphs.
Traces correspond to sequences of valid control-stacks, making
it possible to check that functions are called with the expected
nesting as well as expected order. For example, Feng et al.
describe the use of a training phase in their use of CFI for
intrusion detection [13].

IV. IMPLEMENTATIONS

To demonstrate the feasibility and test the performance of
our ideas, we have implemented and tested two tools:

1) Source call-graph (CG) checker: Implements CFI checks
by instrumenting the source-code of a C program using
a canonical call-graph, acting as a front-end to gcc (for
creating executables) and ar (for creating libraries).

2) Assembly call-graph (CG) checker: Implements CFI
checks by instrumenting the (x86) assembly of a pro-
gram using a called-by call-graph.

After reviewing these implementations below, we present their
performance benchmarks.

A. Source CG checker implementation

To implement call-graph conformance checking, we first
need to construct a call-graph for the program. This is done
in multiple phases:

1) When we compile C source to object code, we analyze
the source code to compute an (over-approximated) call
graph for each file using an efficient algorithm known
to work well for many programs involving function
pointers [17], [18]. The result is a canonical call graph,
with function names as the vertices.

2) When we link object files to create an executable, we
also “link” the partial call-graphs into a complete call-
graph, which we render as a C structure that is compiled
and linked with the rest of the program;

3) When we package object files in a library, we also “link”
their corresponding call-graphs into a partial call-graph
that can be distributed with the library.

At run time, we support two modes of execution: manual
and automatic. A manual call-graph check may be initiated by
the programmer by invoking a function—linked in with the
original program—which traverses the current control-stack
and checks it against the pre-computed call graph. Program-
mers may insert calls to this function at critical program points,
to ensure that the current function was called in accordance
to the overall program call-graph. With just a few carefully-
placed insertions, the overhead of the tool becomes practically
negligible.

When used in the automatic mode, the prologue or the
epilogue—as specified by the user—of each function is in-

strumented with code that will check that there is an edge in
the call-graph from the call-site to the current function.

We have also implemented the source CG checker to be self-
checking when used in the automatic mode, by instrumenting
its own source-code.

If we are using the canonical call-graph representation, then
we need to map return addresses to vertices in the call-graph
to perform the check. We do this with a hash-table which maps
return addresses to the corresponding nodes in the canonical
call-graph. This hash-table is computed using the binary file
descriptor (BFD) library,1, which searches through the debug-
ging information associated with the program. Once we have
found the nodes for a function and its caller, we check that
there is a corresponding edge in the call graph. For simplicity,
our implementation constructs the hash-table at run-time. This
has a significant overhead, which shows in the performance
results reported in Section IV-C. A more practical solution
should construct the hash-table mapping return addresses to
nodes in the graph statically, before executing the program.

One significant advantage of this particular approach is that
it is platform-independent, at least as far as gcc itself is.
(Our implementation can be thought of as a front-end to gcc.)
Furthermore, it easily integrates with build systems, requiring
only a few small changes to typical Makefile based code
bases.

The drawback to our implementation is that some compiler
optimizations may invalidate the computed call-graph. For
example, consider a situation where a function f may call
a function g, and g may call h:

f // g // h

• If the compiler inlines the definition of g at the call-site
in f, then we need to add an additional edge from f to
h because now f may call h directly,

f // ++g // h

• If the compiler decides to use a tail-call for the call from
g to h, then we need to add an edge from f to h, and
remove the edge from g to h because h will reuse g’s
stack frame.

f // ++g h

Therefore, these optimizations need to be turned off for correct
construction of the call-graph when using our source CG
implementation. Ideally, the call-graph construction would use
gcc itself, using the plugin library [19].

By default, our call-graph checking implementations, the
source CG checker and the assembly CG checker that we
shall describe below, check only that the most recent function
call conforms to a transition in the call-graph. An alternative
is to check the entire control-stack on each function call.
Unsurprisingly, checking the entire control-stack generally
incurs too much performance overhead. However, on multi-
core systems, performance of full call-graph checking can be

1http://sourceware.org/binutils/docs/bfd/index.html

improved using parallel threads to perform the CFI checks on
cores unused by the instrumented program. The idea can of
course be generalized to multiple checking threads as well. A
new CFI check occurs when the previous check has finished.
The implementation introduces some degree of randomness for
CFI checks, since when the next check is scheduled depends
on the scheduling of the threads.

B. Assembly CG checker implementation

Our second implementation, the assembly CG checker,
computes a called-by call graph by analyzing the assembly
code generated by the compiler.

We use the called-by call-graph relation to generate a
custom validation function for each function in the program.
(We have not implemented analysis for indirect function calls
in the assembly CG checker. Currently, the only way to avoid
false positives is by dynamically improving the call-graph as
described in Section III-A.) These functions are generated just
before we link the executable, at which point all the call sites
in the program are known.

Sample code that we generate when compiling the bzip2
compression program [20] is given in Figure 4. Variables with
CS in the name are labels for the different call-sites in the
program, while the variable ret is the address of the caller
of the function.2

1 void cg_bzlib_BZ2_indexIntoF
2 (void* this, void* ret) {
3

4 if (ret == &decompress_CS_6) return;
5 if (ret == &bzlib_CS_75) return;
6 ...
7

8 MSG("On entering function")
9 MSG("BZ2_indexIntoF:bzlib.s:\n");

10 MSG("Unexpected caller %p\n", ret);
11 MSG("Expected callers:\n");
12 MSG(" %p\n", &decompress_CS_6);
13 MSG(" %p\n", &bzlib_CS_75);
14 ...
15 abort();
16 }

Fig. 4. Sample generated code while compiling bzip2.

Analyzing the assembly (instead of the source) has the
following benefits:

1) The assembly CG checker is fully compatible with
compiler optimizations because the analysis is done
post-optimizations,

2) The tool is not restricted to programs written in C, and
3) Call-sites are directly referenced in the call-graph by

adding labels to the assembly code.

2The parameter this is not used. It is used to ensure compatibility with
gcc’s -finstrument-functions flag.

The main disadvantage of this implementation is that, while
it is not language-specific, it is platform-specific as it directly
works on compiler generated assembly programs.

C. Performance benchmarks

We performed benchmark performance tests using bzip2, a
commonly-used compression program,3 an open-source AES
implementation,4 and a small program representing an upper-
bound on the performance penalty incurred (by repeatedly
making 10 billion function calls), the results of which are
captured in Figure 5. The experiments were performed on a
3GHz Intel Pentium machine, running Xen/Linux compiled
with gcc. We report the performance overhead as a multiplier
of the execution times of the uninstrumented programs. The
column “-O2” denotes whether the particular configuration
is optimized—a configuration is either optimized with the
-O2 flag or it is unoptimized. (Recall that optimizations may
interfere with the Source CG checker but not the assembly
checker.)

For bzip2, the source code is about 6.2k LOCs. There are
201 functions (including libc functions). The benchmarks are
generated by compressing a 100MB text file. (In this case, we
did not have to turn off optimizations since they did not affect
the validity of the call-graph.)

In our benchmarks using AES, we execute Rijndael Monte-
Carlo tests at the key lengths 128, 192, and 256 (the tests are
included with the distribution) 10 times each. The program
itself is approximately 700 lines (not including white space),
containing 63 functions, including libc calls. In the case
of AES, the source CG checker tool has particularly high
overhead when compared to the uninstrumented program since
in that configuration, the program is unoptimized.

The final test executes a small program in which two
functions iteratively call each other 10 billion times. Because
the program does negligible computation (decrementing an
integer i and checking whether i < 0) other than function
calls, the program represents an upper-bound on the overhead
of the implementations. The actual overhead of a typical
program is typically far lower.

The assembly CG checker’s overhead is quite low—2% in
the case of bzip2 and AES. (Remember though that indirect
function calls are ignored the implementation of the assembly
CG checker.)

V. CONCLUSIONS, LESSONS LEARNED, AND FUTURE
WORK

We have described practical approaches and two implemen-
tations for control-flow integrity monitoring. Our approach
allows us to detect a different class of malicious control-flow
modifications than previous work, and may be combined with
existing techniques to increase the confidence that a program
is executing as intended. More generally, our work provides
an efficient framework upon which to build more fine-grained
run-time monitors.

3http://www.bzip.org/
4http://www.aescrypt.com/

Some lessons-learned from our experience:
• As alluded to in our discussion, our implementations do

much of the work that a compiler already does, includ-
ing aspects of parsing, linking, and determining return
addresses at runtime. An “industrial-strength” implemen-
tation of a call-graph checking tool should be integrated
into gcc, and facilities have recently been developed for
doing so [19]. As stand-alone tools, their ease of use
ranged from changing a couple of lines in a Makefile to
substantive rewriting.

• We implemented the compile-time aspects of our im-
plementations in the functional language Haskell [21].
Modern high-level languages, like Haskell, are well-
suited to language analysis tasks and make prototyping
new tools easy. We particularly relied on Haskell libraries,
such as Language-C, which provides C parsing and C
code generation.5

• Although BFD (described in Section IV-A) works well,
its performance overhead is too high to use in production
systems. Although it is natural for a programmer to think
in terms of canonical call-graphs, that representation is
too expensive for CFI, unless it can be done statically.

There are a number of directions for future work. Develop-
ing a property specification language for monitoring control-
flow properties along the lines we described in Section III-D
would be a useful addition. Moreover, we have described
various trade-offs throughout this paper, but we have not
investigated all of them. Another direction would be applying
these approaches to programs written in other languages or to
specific domains, e.g., embedded systems code.

ACKNOWLEDGMENTS

We thank George Coker, Andy White, and Grant Wagner
for advice and feedback in the development of the research
presented here. Aaron Tomb developed the call-graph con-
struction library used. Xeno Kovah advised us about related
research.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information System Security, vol. 13, no. 1, pp. 1–40, 2009.

[2] N. Oh, P. P. Shirvani, and E. J. Mccluskey, “Control-flow checking by
software signatures,” IEEE Transactions on Reliability, vol. 51, pp. 111–
122, 2002.

[3] A. Rosiello, “The basics of shellcoding,” White paper, September
2004, available online http://www.infosecwriters.com/text resources/
pdf/basics of shellcoding.pdf. Retreived January 2010.

[4] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: generalizing return-oriented programming to RISC,”
in CCS ’08: Proceedings of the 15th ACM Conference on Computer and
Communications Security. ACM, 2008, pp. 27–38.

[5] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: automatic adaptive
detection and prevention of buffer-overflow attacks,” in SSYM’98:
Proceedings of the 7th conference on USENIX Security Symposium.
USENIX Association, 1998.

5http://hackage.haskell.org/package/language-c

Benchmark Checker -O2 Run-time (sec) × Uninstrumented

bzip2
Uninstrumented Yes 23.56 1.00
Source CG Yes 41.59 1.77
Assembly CG Yes 24.13 1.02

AES
Uninstrumented Yes 56.08 1.00
Source CG No 81.25 1.45
Assembly CG Yes 57.13 1.02

Upper-bound
Uninstrumented No 50.76 1.00
Source CG No 798.72 15.74
Assembly CG No 119.15 2.35

Fig. 5. Performance benchmark results

[6] M. Frantzen and M. Shuey, “Stackghost: Hardware facilitated stack
protection,” in SSYM’01: Proceedings of the 10th conference on USENIX
Security Symposium. USENIX Association, 2001.

[7] H. Etoh, “GCC extension for protecting applications from stack-
smashing attacks (ProPolice),” 2003, available at http://www.trl.ibm.
com/projects/security/ssp/. Retrieved January 2010.

[8] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in CCS ’04:
Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security. ACM, 2004, pp. 298–307.

[9] K. Avijit, P. Gupta, and D. Gupta, “TIED, Libsafeplus: tools for
runtime buffer overflow protection,” in SSYM’04: Proceedings of the
13th conference on USENIX Security Symposium. Berkeley, CA, USA:
USENIX Association, 2004, pp. 4–4.

[10] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security, ser. CCS ’10. ACM, 2010, pp. 559–572.

[11] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in CCS ’05: Proceedings of the 12th ACM Conference on
Computer and Communications Security. ACM, 2005, pp. 340–353.

[12] N. L. Petroni, Jr. and M. Hicks, “Automated detection of persistent
kernel control-flow attacks,” in CCS ’07: Proceedings of the 14th ACM
Conference on Computer and Communications Security. ACM, 2007,
pp. 103–115.

[13] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly
detection using call stack information,” in In Proceedings of the 2003
IEEE Symposium on Security and Privacy, 2003.

[14] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and C. D. McDonell,
“Linux kernel integrity measurement using contextual inspection,” in
STC ’07: Proceedings of the 2007 ACM workshop on Scalable trusted
computing. New York, NY, USA: ACM, 2007, pp. 21–29.

[15] M. Huth and M. Ryan, Logic in Computer Science: reasoning about
systems. Cambridge University Press, 2004.

[16] E. M. C. Jr., O. Grumberg, and D. A. Peled, Model Checking. The
MIT Press, 1999.

[17] A. Milanova, A. Rountev, and B. G. Ryder, “Precise call graphs for
C programs with function pointers,” Automated Software Engineering,
vol. 11, no. 1, pp. 7–26, 2004.

[18] S. Zhang, B. G. Ryder, and W. Landi, “Program decomposition for
pointer aliasing: A step toward practical analyses,” in In Symposium on
the Foundations of Software Engineering, 1996, pp. 81–92.

[19] J. Seyster, K. Dixit, X. Huang, R. Grosu, K. Havelund, S. A. Smolka,
S. D. Stoller, and E. Zadok, “Aspect-oriented instrumentation with
GCC,” in Proc. of the 1st International Conference on Runtime Veri-
fication (RV 2010), ser. Lecture Notes in Computer Science. Springer,
November 2010.

[20] J. Seward, “bzip2 and libbzip2,” avaliable at http://www.bzip.org/.
[21] S. Peyton Jones et al., “The Haskell 98 language and libraries: The

revised report,” Journal of Functional Programming, vol. 13, no. 1, pp.
0–255, Jan 2003, http://www.haskell.org/definition/.

