
To appear in the Participants’s Proceedings of DCC: the Seventh International
Workshop on Designing Correct Circuits (Satellite Workshop of ETAPS), 2006.

“Easy” Parameterized Verification of Cross
Clock Domain Protocols

Geoffrey M. Brown1 and Lee Pike2?

1 Indiana University, Bloomington
geobrown@cs.indiana.edu
2 Galois Connections, Inc.

leepike@galois.com

Abstract. This paper demonstrates how an off-the-shelf model checker
that utilizes a Satisfiability Modulo Theories decision procedure and k-
induction can be used for verification applications that have traditionally
required special purpose hybrid model checkers and/or theorem provers.
We present fully parameterized proofs of two types of protocols designed
to cross synchronous boundaries: a simple data synchronization circuit
and a serial communication protocol used in UARTs (8N1). The proofs
were developed using the SAL model checker and its ICS decision pro-
cedures.

1 Introduction

This paper uses the bounded model checker and ICS decision procedures of
SAL to develop fully parameterized proofs of two types of protocols designed to
cross synchronous boundaries: a simple data synchronization circuit and a serial
communication protocol, 8N1, used in UARTs.3 Protocols such as these present
challenging formal verification problems because their correctness requires rea-
soning about interacting time events. The proofs discussed in this paper are
parameterized by expressing temporal constraints as a system of linear equa-
tions. The proofs are “easy” in that they require few proof steps. For example,
we have previously presented a proof of the biphase mark protocol [17], which
is structurally similar to, though simpler than, 8N1. Our biphase mark proof re-
quired 5 invariants, whereas a published proof using PVS required 37; our proof
required 5 proof directives (the proof of each invariant is automated), whereas
the PVS proof initially required more than 4000 proof directives [1]. Our proofs
are quick to check – a few minutes computing time, while one published proof of
biphase mark required five hours. Furthermore, our proofs identified a potential
bug: in verifying the 8N1 decoder, we found a significant error in a published
application note that incorrectly defines the relationship between various real
time parameters which, if followed, would lead to unreliable operation [2].
? The majority of this work was completed while this author was a member of the

Formal Methods Group at the NASA Langley Research Center in Hampton, Virginia.
3 The SAL specifications and proofs are available at http://www.cs.indiana.edu/
∼lepike/pub pages/dcc.html.

1

Transm
itter

Receiver

dout

ain

rout

a1

din

r1 rin

aout

tclk

rclk

Fig. 1. Synchronizer Circuit

The synchronizer circuit considered in this paper, illustrated in Figure 1, is
constructed entirely of D-type flip-flops. The circuit, which is commonly used,
allows a transmitter in one clock domain to reliably transmit data to a receiver
in another clock domain irrespective of the relative frequencies of the clocks
controlling the digital circuitry. This circuit allows the transmitter to send a bit
(or in general a word) of data to the receiver through an exchange of “request”
(rout, rin) and “acknowledgment” signals (aout, ain). A temporal illustration
of the exchange between transmitter and receiver is presented in Figure 2. Each
event initiated by the transmitter must propagate to the receiver and a response
must be returned before the transmitter can initiate a new transfer. The protocol
followed by the transmitter and receiver is a simple token passing protocol where
the transmitter has the token and hence is allowed to modify its outputs only
when ain = rout, and the receiver has the token and is allowed to read its
input data din when rin != aout. For example, the transmitter sends data
when rout = ain by setting dout to the value that it wishes to send and by
changing the state of rout. Informally, the circuit satisfies a simple invariant:

rin 6= aout⇒ din = dout (1)

Although the protocol is trivial, there is a fundamental issue that greatly
complicates the behavior of the circuit – metastability. The fact that the two
clocks rclk and tclk are not synchronized and may run at arbitrary relative
rates means that we cannot treat the flip-flops in the circuit as simple delay
elements. In particular, the correct behavior of a flip-flop depends upon assump-
tions about when its input may change relative to its clock. Changes occurring
too soon before a clock event are said to violate the “setup time” requirement
of the flip-flop while changes occurring too soon after a clock event are said to

2

rout,dout

rin,din

aout

ain

~rout,dout
~rin,din
~aout

~ain

rx timetx time

Fig. 2. Synchronizer Circuit Timeline

violate the “hold time” requirement. Either violation may cause the flip-flop to
enter a metastable state in which its output is neither “one” nor “zero” and
which may persist indefinitely. In practice, probabilistic bounds may be calcu-
lated which define how long a metastable state is likely to persist. The illustrated
circuit assumes that the time between two events on a single clock is long enough
to ensure that the metastability resolution time (plus setup time) is shorter that
the clock period with sufficiently high probability. While there have been other
proofs of this circuit, they did not model the effects of metastability [3, 4]. An
alternative approach has been proposed and is evidently used in a commercial
tool to reproduce synchronization bugs by introducing random one-clock jitter
in cross domain signals [5, 6]. A fundamental difference between our work and
those cited is that we explicitly model timing effects and rely upon clearly stated
timing assumptions to verify the circuit.

1 0 0 1 1 1 0 1

start bit stop bit
d0 d7

Frame

Fig. 3. 8N1 Data Transmission

Metastability also is an issue in the behavior of the 8N1 implementation
in which a receiver must sample a changing signal in order to determine the
boundaries between valid data. To motivate the design of the 8N1 protocol,

3

consider Figure 3 which illustrates the encoding scheme utilized by this protocol.
In a synchronous circuit, the data and clock are typically transmitted as separate
signals; however, this is not feasible in most communication systems (e.g., serial
lines, Ethernet, SONET, Infrared) in which a single signal is transmitted. A
general solution to this problem is to merge the clock and data information
using a coding scheme. The clock is then recreated by synchronizing a local
reference clock to the transitions in the received data. In 8N1 a transition is
guaranteed to occur only at the beginning of each frame, a sequence of bits that
includes a start bit, eight data bits, and a stop bit. Data bits are encoded by the
identity function – a 1 is a 1 and a 0 is a 0. Consequently, the clock can only be
recovered once in each frame in which the eight data bits are transmitted.

Thus, the central design issue for a data decoder is reliably extracting a clock
signal from the combined signal. Once the location of the clock events is known,
extracting the data is relatively simple. Although the clock events have a known
relationship to signal transitions, detecting these transitions precisely is usually
impossible because of distortion in the signal around the transitions due to the
transmission medium, clock jitter, and other effects. A fundamental assumption
is that the transmitter and receiver of the data do not share a common time
base and hence the estimation of clock events is affected by differences in the
reference clocks used. Constant delay is largely irrelevant; however, transition
time and variable delay (e.g., jitter) are not. Furthermore, differences in receiver
and transmitter clock phase and frequency are significant. Any correctness proof
of an 8N1 decoder must be valid over a range of parameters defining limits on
jitter, transition time, frequency, and clock phase. Finally, any errors in detection
can lead to metastable behavior as with the synchronization circuit.

The temporal proofs presented in this paper may be reproducible using spe-
cialized real-time verification tools such as Hytech, TReX and Parameterized
Uppaal (we leave it as an open challenge to these respective communities to
reproduce these models and proofs in the those tools) [7–9]. However, a key
difference is that SAL is a general purpose model checking tool and the real
time verification we performed utilized the standard decision procedures. Fur-
thermore, the proofs are not restricted to finite data representations – in the
case of the data synchronization circuit our proofs are valid for arbitrary integer
data.

The remainder of the paper is organized as follows. In Section 2, we overview
the language and proof technology of SAL. The modeling and verification of the
synchronizer circuit is presented in Section 3. The model of the 8N1 protocol is
presented in Section 4, and its verification is described in Section 5. In Section 6,
we first describe how to derive error bounds on an operational model from a fully-
parameterized one, and then we describe how this the operational model reveals
errors in a published application note. We also mention future work.

4

2 Introduction to SAL

The protocols are specified and verified in the Symbolic Analysis Laboratory
(SAL), developed by SRI, International [10]. SAL is a verification environment
that includes symbolic and bounded model checkers, an interactive simulator,
integrated decision procedures, and other tools.

SAL has a high-level modeling language for specifying transition systems. A
transition system is specified by a module. A module consists of a set of state
variables and guarded transitions. Of the enabled transitions, one is nondeter-
ministically executed at a time. Modules can be composed both synchronously
(||) and asynchronously ([]), and composed modules communicate via shared
variables. In a synchronous composition, a transition from each module is simul-
taneously applied; a synchronous composition is deadlocked if either module has
no enabled transition. In an asynchronous composition, an enabled transition
from one of the modules is nondeterministically chosen to be applied.

The language is typed, and predicate sub-typing is possible. Types can be
both interpreted and uninterpreted, and base types include the reals, naturals,
and booleans; array types, inductive data-types, and tuple types can be defined.
Both interpreted and uninterpreted constants and functions can be specified.
This is significant to the power of these models: the parameterized values are
uninterpreted constants from some parameterized type.

Bounded model checkers are usually used to find counterexamples, but they
can also be used to prove invariants by induction over the state space [11].
SAL supports k-induction, a generalization of the induction principle, that can
prove some invariants that may not be strictly inductive. By incorporating a
satisfiability modulo theories decision procedure, SAL can do k-induction proofs
over infinite-state transition systems.4

Let (S, I, →) be a transition system where S is a set of states, I ⊆ S is a set
of initial states, and → is a binary transition relation. If k is a natural number,
then a k-trajectory is a sequence of states s0 → s1 → . . .→ sk (a 0-trajectory is a
single state). Let k be a natural number, and let P be property. The k-induction
principle is then defined as follows:

– Base Case: Show that for each k-trajectory s0 → s1 → . . . → sk such that
s0 ∈ I, P (sj) holds, for 0 ≤ j < k.

– Induction Step: Show that for all k-trajectories s0 → s1 → . . .→ sk, if P (sj)
holds for 0 ≤ j < k, then P (sk) holds.

The principle is equivalent to the usual transition-system induction principle
when k = 1. In SAL, the user specifies the depth at which to attempt an induc-
tion proof, but the attempt itself is automated. The main mode of user-guidance
in the proof process is in iteratively building up inductive invariants. While ar-
bitrary LTL safety formulas can be verified in SAL using k-induction, only state
predicates may be used as lemmas in a k-induction proof. Lemmas strengthen
4 We use SRI’s ICS decision procedure [12], the default SAT-solver and decision pro-

cedure in SAL, but others can be plugged in.

5

the invariant. We have more to say about the proof methodology for k-induction
in Section 5.

3 Modeling and Verification of the Synchronizer Circuit

In this section we use a simple synchronizer circuit to illustrate the various
modeling techniques used in this paper through the creation of successively more
accurate models of the synchronizer circuit utilizing the transition language of
SAL. In order to make the problem slightly more interesting, we generalize the
data transfered by the circuit (din, dout) to arbitrary integers. Our initial model
for the system of Figure 1 consists of two asynchronous processes – a transmitter
(tx) and a receiver (rx).

system : MODULE = rx [] tx;

Thus, the transmitter and receiver execute in an interleaved fashion and at arbi-
trary rates; however, each is made up from several processes that are composed
synchronously (i.e., operate in lock step). For example, the transmitter is com-
posed of an “environment”, which follows the basic protocol described above,
and two instantiated flip-flops modules (described below) with their inputs and
outputs suitably renamed.

tx : MODULE = ((RENAME d TO aout, q TO a1 IN FF)
|| (RENAME d TO a1, q TO ain IN FF)
|| tenv);

Our initial flip-flop model in Figure 4 has no provision for capturing timing
constraints. Indeed, its behavior is simply an assignment that copies input d to
output q without any reference to an underlying clock. Our models depend upon
synchronous composition to force the flip-flops comprising the transmitter (and
receiver) to execute in lock step.

FF : MODULE = BEGIN
INPUT d : BOOLEAN
OUTPUT q : BOOLEAN

INITIALIZATION
q = FALSE

TRANSITION
q’ = d

END;

Fig. 4. Flip Flop

As mentioned, the transmitter’s environment, shown in Figure 5, is con-
strained to obey the underlying protocol. There are two subtle points in this
definition – we allow the data transmitted to take any randomly selected integer

6

value, and we allow the transmitter to “stutter” indefinitely when it is allowed
to transmit a new value (stuttering is expressed by guard --> where guard is
a boolean expression). The syntax var IN range defines a non-deterministic
choice chosen from the set range. The infinite state model checker of SAL that
enables our verification of timing constraints also enables verification with un-
bounded variables.

tenv : MODULE = BEGIN
INPUT ain : BOOLEAN
OUTPUT rout : BOOLEAN
OUTPUT dout : INTEGER

INITIALIZATION
dout IN { x : INTEGER | TRUE };
rout = FALSE

TRANSITION
[TRUE -->
[] rout = ain --> rout’ = NOT rout;

dout’ IN {x : INTEGER | TRUE };
] END;

Fig. 5. Transmitter’s Environment

The receiver is similarly composed of an environment, flip-flops, and a data
latch (the flipflop module in which the input and output variables are generalized
to arbitrary integers).

rx : MODULE =
((RENAME d TO rout, q TO r1 IN FF)

|| (RENAME d TO r1, q TO rin IN FF)
|| (RENAME d TO dout, q TO din IN LATCH)
|| renv);

The receiver environment module non-deterministically stutters or echos rin.

renv : MODULE =
BEGIN

INPUT rin : BOOLEAN
OUTPUT aout : BOOLEAN

INITIALIZATION
aout = FALSE

TRANSITION
aout’ IN {aout, rin}

END;

The defined circuit can be verified by induction over the (infinite) state space
using the bounded model checking capabilities of SAL. In its current form, this
circuit requires only straight induction (k = 1) for verification. Because the
circuit implements a token passing protocol, a token counting lemma like the one
in Figure 6 is key to its verification. Here, a “token” exists where the input and
output to a flip-flop differ or where the receiver or transmitter environments are
enabled to receive or send a value respectively; the syntax is the LTL temporal

7

logic where the G operator denotes that its argument holds in all states in a
trajectory through the transition system. This lemma is used to prove the key
theorem using simple induction:

changing(i : BOOLEAN, o : BOOLEAN) : [0..1] =
IF (i /= o) THEN 1 ELSE 0 ENDIF;

l1 : LEMMA system |- G(changing(rin, r1) +
changing(r1, rout) +
changing(rout,ain) +
changing(ain, a1) +
changing(a1, aout) +
changing(aout,NOT rin)
<= 1);

Fig. 6. Counting Lemma

Sync_Thm : THEOREM system |- G((rout /= ain) => (dout = din));

Not surprisingly, both l1 and Sync Thm can be verified quickly by SAL; how-
ever, the model as given does not capture any of the flip-flop timing requirements
nor does it model any of the negative effects due to violating these requirements.
In the following, we present a model that captures some of these requirements
and allows us to verify the circuit even in the face of failures to meet these
requirements.

We begin by modeling clocks. The transmitter and receiver are each com-
posed with a local clock that regulates when that component may execute. The
system we are developing has the following form:

(rx || rclock) [] (tx || tclock)

The basic idea, described as timeout automata by Dutertre and Sorea, is that
the progress of time is enforced cooperatively (but nondeterministically) [13, 14].
The receiver and transmitter have timeouts, rclk and tclk, that mark the real-
time at which they will respectively make transitions (timeouts are always in
the future and may be updated nondeterministically). Each respective module
representing the receiver and transmitter is allowed to execute only if its timeout
equals the value of time(rclk, tclk), which is defined to be the minimum of
all timeouts.

time(t1 : TIME, t2: TIME): TIME =

IF t1 <= t2 THEN t1 ELSE t2 ENDIF;

The receiver clock is defined in Figure 7. The transmitter clock is identical
except for signal and constant names. As might be expected, the proof for the
untimed model continues to work without change for this timed model since
the addition of the timeout modules can only restrict the possible behaviors of

8

RPERIOD : { x : TIME | 0 < x};

rclock : MODULE = BEGIN
INPUT tclk : TIME
OUTPUT rclk : TIME
INITIALIZATION

rclk IN { x : TIME | time(rclk,tclk) <= x }
TRANSITION

time(rclk,tclk) = rclk -->
rclk ’ IN { x : TIME | time(tclk,rclk) + RPERIOD <= x }

END;

Fig. 7. Receiver Clock

the system and hence does not effect the safety property we are interested in
verifying.

Our final refinement is to add a mechanism for defining timing constraints
and for introducing behaviors that model the effect of violating these constraints.
The approach we take is inspired by by a recent paper by Seshia et. al. describing
the use of ”Generalized Relative Timing ”[15]. Briefly, we modify the described
circuit elements to allow the aberrant behaviors that may arise due to violation
of timing constraints and add “constraint” processes to regulate the conditions
under which these aberrant behaviors may occur.

As mentioned previously, the behavior we wish to capture is due to metasta-
bility occurring when the inputs to a flip-flop do not satisfy timing requirements.
The circuit design implicitly assumes that the period of the receiver and trans-
mitter clocks are sufficiently long that metastability occurring at the beginning
of a clock period will have been resolved prior to the next clock period. Thus, in
the circuit described, the only signals which may exhibit metastability are din,
r1, and a1. It is easy to demonstrate that the circuit will fail if this assumption
is not met. Furthermore, the value of a signal after resolution of a metastable
state is non-deterministic. We model this by replacing the key circuit elements
with non-deterministic versions of the existing elements. For example, we define
a non-deterministic flip-flop module in Figure 8. Similarly, we can define a non-
deterministic latch which randomly selects its next output. The transmitter and
receiver respectively are defined by appropriately renaming input and output
variables, as shown in Figure 9.

Clearly, the circuit no longer satisfies its basic invariant. Our final step is
to add processes that execute in parallel with the this system to constrain the
outputs of the non-deterministic circuit elements. In particular, we assume that
whenever rout, aout, or dout change state there is a settling period during
which attempts to latch the new value will lead to metastability and hence a non-
deterministic next state. As we shall show, the constraint processes that we add
force the non-deterministic circuit elements to behave in a conventional manner
outside these settling periods. The length of the settling period is implementation
dependent and may be the result of a combination of factors such as signal
propagation and circuit element setup time. In order to simplify the presentation,

9

FFnd : MODULE =
BEGIN

INPUT d : BOOLEAN
OUTPUT q : BOOLEAN

INITIALIZATION
q = FALSE

TRANSITION
q’ IN {TRUE, FALSE}

END;

Fig. 8. Nondeterministic Flip Flop

tx2 : MODULE = ((RENAME d TO aout, q TO a1 IN FFnd)
|| (RENAME d TO a1, q TO ain IN FF)
|| tclock || tenv);

rx2 : MODULE = ((RENAME d TO rout, q TO r1 IN FFnd)
|| (RENAME d TO r1, q TO rin IN FF)
|| (RENAME d TO dout, q TO din IN LATCHnd)
|| rclock || renv);

Fig. 9. Transmitter and Receiver Modules

we have chosen to ignore hold time requirements. In practice, it is feasible to
design flip-flops with zero-hold time requirements by inserting delays at the flip-
flop input (at the cost of additional setup time). Furthermore, in an acyclic
system such as 8N1 described in Section 4, one can simply shift the perspective
of where the clock edge occurs to justify combining the setup and hold time
requirements.

The system model, with the addition of the necessary constraints, has the
form:

system : MODULE = (rx2 [] tx2) || constraints

Synchronous composition means that rx2 and tx2 can only execute when the
necessary constraints are satisfied. Consider a flip-flop with input d and output
q. We need a constraint module that monitors the d input for changes and con-
strains the q output to meet the requirements for “normal” behavior outside the
settling period that follows a change, as shown in Figure 10 (note the module is
a parameterized module; its parameter, stime, acts as a constant in the module).
Consider the following constraint module, with appropriately renamed input and
output variables.

(RENAME d TO rout, q to r1, dclk TO rclk, qclk TO tclk, ts TO r1ts IN

Constraint[TSETTLE])

Whenever rout changes value and rclk preserves its value (i.e., tx2 executes),
the local timer r1ts is set to a value equal to the current time plus the settling
constant TSETTLE. Whenever rclk changes value (i.e., rx2 takes a step) either

10

Constraint [stime : REAL] : MODULE =
BEGIN

INPUT dclk : TIME
INPUT qclk : TIME
INPUT d : BOOLEAN
INPUT q : BOOLEAN
OUTPUT ts : TIME

INITIALIZATION
ts = 0;

TRANSITION
[

dclk /= dclk’ AND (ts > time(dclk,qclk) OR q’ = d) -->
[] dclk = dclk’ AND d /= d’ --> ts’ = time(dclk,qclk) + stime
[] dclk = dclk’ AND d = d’ -->
]

END;

Fig. 10. Constraint Module

r1 is assigned rout or the local timer must be active. Finally, if neither condition
occurs, the constraint module allows tx2 to execute. To constrain the three pos-
sible sources of non-deterministic behavior, there are three constraint modules
with the local timers r1ts, a1ts, and d1ts monitoring changes on rout, aout,
and dout, respectively.

The three constraint modules utilize two settling constants TSETTLE (for rout
and dout) and RSETTLE (for aout). In verifying the circuit, we found that correct
behavior depends on establishing a relationship between settling times and clock
periods. In particular, the settling time of the transmitter must be less than the
clock period of the receiver (and vice versa). Violating these assumptions has
the effect of “injecting” additional tokens into the circuit whenever metastability
occurs. Thus, we performed verification under the following assumptions.

TSETTLE : { x : TIME | 0 <= x AND x < RPERIOD AND x < TPERIOD };

RSETTLE : { x : TIME | 0 <= x AND x < RPERIOD AND x < TPERIOD };

With the changes described above, verification of the circuit behavior is more
challenging, requiring k-induction over a modified token counting lemma and an
additional helper lemma. To make the k-induction proof technique feasible, it is
helpful to constrain the state space whenever possible. Hence, we developed the
lemma shown in Figure 11 to assert certain obvious facts about system timing.

It was necessary to augment the counting lemma with additional addends to
account for the possible spontaneous creation of tokens due to metastability, as
shown in Figure 12.

Lemmas l0 and l1 can be proved at depth 1 (straight induction) with l1 using
l0 as an assumption. The main theorem, Sync Thm, can be verified at depth 3
using l0 and l1 as assumptions.

11

l0 : LEMMA system |- G((r1ts <= time(rclk,tclk) OR
(r1ts + TPERIOD - TSETTLE <= tclk)) AND

(d1ts <= time(rclk,tclk) OR
(d1ts + TPERIOD - TSETTLE <= tclk)) AND

(a1ts <= time(rclk,tclk) OR
(a1ts + RPERIOD - RSETTLE <= rclk)) AND
(a1ts <= time(rclk,tclk) + RSETTLE) AND
(d1ts <= time(rclk,tclk) + TSETTLE) AND
(r1ts <= time(rclk,tclk) + TSETTLE) AND
(time(rclk,tclk) <= rclk) AND
(time(rclk,tclk) <= tclk));

Fig. 11. Lemma l0

l1 : LEMMA system |- G(changing(rout, r1) +
changing(r1, rin) +
changing(rin,aout) +
changing(aout, a1) +
changing(a1,ain) +
changing(ain,NOT rout) +
if (rout=r1 AND rclk < r1ts) THEN

1 ELSE 0 ENDIF +
if (aout=a1 AND tclk < a1ts) THEN

1 ELSE 0 ENDIF
<= 1);

Fig. 12. Lemma l1

4 Modeling the 8N1 Protocol

In this section we discuss the model of the 8N1 protocol – its proof is deferred to
Section 5. We model the protocol using two processes asynchronously composed
– a transmitter (tx) and a receiver (rx). The general arrangement of the two
major modules is illustrated in Figure 13. 5

system : MODULE = rx [] tx;

As with the synchronizer circuit of Section 3, the transmitter and receiver
each have a local clock module to manage their timeout. Recall that time is
advanced whenever the module with the minimum timeout value executes and
that the current time is always equal to the minimum timeout.

In addition to its local clock (tclock), the transmitter consists of an en-
coder (tenc) that implements the basic protocol, and an environment (tenv)
that generates the data to be transmitted. These modules are synchronously
composed.

tx : MODULE = tclock || tenc || tenv;

5 Not shown are the shared variables used by the clock modules to compute the global
“time”.

12

tclock

tenv tenc
tbit

tready
tdata

tx rx
rclock

rdec rbit

Fig. 13. System Block Diagram

Similarly, the receiver consists of its local clock (rclock) and and a decoder
(rdec) that implements the protocol.

rx : MODULE = rdec || rclock;

The system is defined by the asynchronous composition of the transmitter
and receiver which are then composed synchronously with a “constraint” module
that models uncertainty in signal propagation as well as timing constraints. For
the moment, we postpone discussion of the constraint module.

system : MODULE = (rx [] tx) || constraint;

The clock and environment modules for the transmitter are illustrated in Fig-
ure 14. The environment determines when new input data should be generated
and is regulated by tenc. Whenever tready is true, a random boolean datum is
selected; otherwise the old datum is preserved.

The timing model for the transmitter is similar to that for the synchro-
nizer circuit. We assume an arbitrary clock period consisting of a settling phase
(TSETTLE) and a stable phase (TSTABLE). The settling phase captures both setup
requirements for the receiver as well as propagation delay. We will assume that
reading the output of the transmitter tdata during the settling phase yields a
non-deterministic result. As with the synchronizer, we assume that the receiver
is implemented in such a manner that any metastability is resolved within the
minimum clock period of the receiver. TSETTLE and TSTABLE are uninterpreted
constants; however they are parameterized, which allows us to verify the model
for any combination of settling time and receiver clock error (described subse-
quently). The transmitter settling time can be used to capture the effects of jitter
and dispersion in data transmission as well as jitter in the transmitter’s clock.
In the case of the settling period, the model can be viewed as less determinis-
tic than an actual implementation which might reach stable transmission values
sooner. This means we verify the model under more pessimistic conditions than
an actual implementation would face. As with the synchronization circuit, we do
not actually model non-boolean values, rather we model a receiver that detects

13

TPERIOD : { x : TIME | 0 < x};
TSETTLE : { x : TIME | 0 <= x AND x < TPERIOD};

% function to compute current time

time(t1 : TIME, t2 : TIME) : TIME = IF t1 <= t2 THEN t1 ELSE t2 ENDIF;

tclock : MODULE =
BEGIN

INPUT rclk : TIME
OUTPUT tclk : TIME

INITIALIZATION

tclk IN {x : TIME | 0 <= x AND x <= TSTABLE};

TRANSITION
[tclk = time(tclk, rclk) --> tclk’ = tclk + TPERIOD;]

END;

tenv : MODULE =
BEGIN

INPUT tready : BOOLEAN
OUTPUT tbit : BOOLEAN

TRANSITION
[

tready --> tbit’ IN {TRUE, FALSE}
[] ELSE -->
]

END;

Fig. 14. Transmitter Environment and Clock

random values for signals that are not stable (as determined by the separate
“constraint” module).

The transmitter encoder is defined as a simple state machine – state 0 cor-
responds to the start bit, states 1-8 correspond to the 8 data bit transmission
states, and state 9 is the stop state. The encoder model is illustrated in Figure 15.
Notice that the model allows the transmitter to stutter at state 9 indefinitely.
The output tdata is either current value of tbit (states 1-8), FALSE (state 0),
or TRUE (state 9).

The receiver clock is more complicated than the transmitter because of the
manner in which a UART is implemented. Consider Figure 3. There may be an
arbitrary “idle” period between frames during which the signal is high (TRUE).
The behavior of a UART receiver is to “scan” for the high-to-low transition that
marks the beginning of a frame. Once this transition is detected, the receiver
predicts, based upon its local time reference, the middle of the 8 data and 1 stop
bit times. There are two different intervals used for this prediction – the time
between the detected “start” transition and the middle of the first data bit and
the “period” between successive data samples. In an implementation, the bit
period is generally an integer multiple of the scan time and the start interval is
1.5 times the bit period. Generally the bit time of the receiver is approximately
that of the transmitter; however, in practice jitter and frequency errors mean

14

tenc : MODULE =
BEGIN

OUTPUT tdata : BOOLEAN
OUTPUT tstate : [0..9]
OUTPUT tready : BOOLEAN
INPUT tbit : BOOLEAN

INITIALIZATION
tdata = TRUE;
tstate = 9;

DEFINITION
tready = tstate < 8

TRANSITION
[

tstate = 9 -->
[] tstate = 9 --> tdata’ = FALSE;

tstate’ = 0;
[] tstate < 9 --> tdata’ = (tbit’ OR tstate = 8);

tstate’ = tstate + 1;
]

END;

Fig. 15. Transmitter Encoder

that each measurement interval is subject to error. In our model we associate
all errors with the receiver and assume that the transmitter runs at a constant
rate.

The various receiver clock periods are expressed in terms of linear equations
that define lower and upper bounds for “SCAN”, “START”, and “PERIOD”.
The details of these equations can be viewed as part of the proof – we verify the
protocol subject to these bounds – and are postponed to Section 5. The receiver
clock along with the various is illustrated in Figure 16. The specific timeout
interval depends upon the state of the decoder; i.e., whether the decoder is
scanning, sampling the first data bit, or sampling subsequent data bits.

The decoder is illustrated in Figure 17. There are three transitions – the
first two model the non-deterministic choice that occurs when scanning for the
start bit and a third models sampling the data bits. The receiver has 10 states
(numbered [0..9]) where the 8 data bits are received in states 0-7, the stop bit is
received in state 8, and scanning for a new start bit occurs in state 9.

As with the synchronizer, the value of the bit read is always chosen non-
deterministically, though the next state may depend upon the specific choice.
Furthermore, the choice is constrained by a separate module that determines
when the sampled value should reflect the input (tdata) and when the sampled
value may be random. The constraint module is also presented in Figure 17. The
only significant difference between this and the constraint modules used with the
synchronizer is the extra output stable which is used in developing the proof.

15

timeout (min : TIME, max : TIME) : [TIME -> BOOLEAN] =
{ x : TIME | min <= x AND x <= max};

rclock : MODULE =
BEGIN

INPUT tclk : TIME
INPUT rstate : [0..9]
OUTPUT rclk : TIME

INITIALIZATION
rclk IN { x : TIME | 0 <= x AND x < RSCANMAX };

TRANSITION
[
rclk = time(rclk, tclk) -->

rclk’ IN IF (rstate’ = 9) THEN
timeout(rclk + RSCANMIN, rclk + RSCANMAX)

ELSIF (rstate’ = 0) THEN
timeout(rclk + RSTARTMIN, rclk + RSTARTMAX)

ELSE
timeout(rclk + RPERIODMIN, rclk + RPERIODMAX)

ENDIF;
]
END;

Fig. 16. Receiver Clock

5 Verification of the 8N1 Protocol

Our main goal is to prove that the 8N1 decoder reliably extracts the data from
the signal it receives.

Uart_Thm : THEOREM system |- G(rstate < 9 AND

rstate > 0 AND

rclk >= tclk => ((tstate = rstate) AND

(rbit = tbit)));

Briefly, the theorem states that immediately after the receiver executes each
of its 8 bit receive states (0..7), the received bit is equal to the currently transmit-
ted bit. This interpretation of the theorem depends upon the knowledge that the
states of the transmitter and receiver obey the following sequence. This sequence
is verified with theorem t0 to be discussed subsequently.

(tstate, rstate) = (9, 9), (0, 9), (0, 0), (1, 0), (1, 1), ...(9, 8), (9, 9) (2)

As mentioned previously, an important component of the proof is the set of
bounds on the various time constants utilized in the decoder model. We derived
the bounds by assuming worst case (minimum or maximum) and then deter-
mining how temporal errors accumulate by the 10th bit time (the stop bit).
Informally, the correct behavior of the protocol requires that all samples other
than the initial scan fall during the “stable” portion of the transmitter clock.
We derived these bounds by considering the execution sequence described and
with the knowledge that the correct behavior of the receiver requires that in
receiver states 0..8, we require the clock events fall during the “stable” period

16

rdec : MODULE =
BEGIN

INPUT tdata : BOOLEAN
OUTPUT rstate : [0..9]
OUTPUT rbit : BOOLEAN

INITIALIZATION
rbit = TRUE;
rstate = 9;

TRANSITION
[

rstate = 9 --> rbit’ = TRUE
[] rstate = 9 --> rbit’ = FALSE;

rstate’ = 0
[] rstate /= 9 --> rbit’ IN {FALSE, TRUE};

rstate’ = rstate + 1
]

END;

constraint : MODULE =
BEGIN

INPUT tclk : TIME
INPUT rclk : TIME
INPUT rbit : BOOLEAN
INPUT tdata : BOOLEAN
OUTPUT stable : BOOLEAN
LOCAL changing : BOOLEAN

DEFINITION
stable = (NOT changing OR (tclk - rclk < TSTABLE));

INITIALIZATION
changing = FALSE

TRANSITION
[

rclk’ /= rclk AND (stable => rbit’ = tdata) -->
[] tclk’ /= tclk --> changing’ = (tdata’ /= tdata)
]

END;

Fig. 17. Receiver Decoder and Constraint Module

of the transmitter. Consider the case of the “scan” operation. In order to detect
the start bit, we must guarantee that the receiver sample tdata with a period
that is no longer that the stable period – if the interval were longer, then the
start bit might might be missed because two successive samples by the receiver
fall outside the stable interval.

RSCANMIN : { x : TIME | 0 < x };

RSCANMAX : { x : TIME | RSCANMIN <= x AND x < TSTABLE };

Once the start bit is detected, the receiver waits for a “start” time before
reading the first data bit. Reading this data bit must fall in the stable region for
transmitter state 1.

RSTARTMIN : { x : TIME | TPERIOD + TSETTLE < x };

RSTARTMAX : { x : TIME | RSTARTMIN <= x AND

TSETTLE + RSCANMAX + x < 2 * TPERIOD };

17

In subsequent states the receiver clock error accumulates. Thus, the con-
straint on the receiver “period” depends upon the accumulated error at the
point of sampling the stop bit.

RPERIODMIN : { x : TIME | 9 * TPERIOD + TSETTLE < RSTARTMIN + 8 * x };

RPERIODMAX : { x : TIME | RPERIODMIN <= x AND

TSETTLE + RSCANMAX + RSTARTMAX + 8 * x < 10 * TPERIOD };

The proofs of t0 and Uart Thm require supporting lemmas. In general, when
a k-induction proof attempt fails, two options are available to the user: the
proof can be attempted at a greater depth, or supporting lemmas can be added
to restrict the state-space. A k-induction proof attempt is automated, but if the
attempt is not successful for a sufficiently small k (i.e., the attempt takes too long
or too much memory), additional invariants are necessary to reduce the necessary
proof depth. The user must formulate the supporting invariants manually, but
their construction is facilitated by the counterexamples returned by SAL for
failed proof attempts. If the property is indeed invariant, the counterexample is a
trajectory that fails the induction step but lies outside the set of reachable states,
and the state-space can be appropriately constrained by an auxiliary lemma
based on the counterexample. The following lemmas are built by examining the
counterexamples returned from proof attempts for the main theorem and the
successive intermediary lemmas.

Once it is determined what property the states fail to have that makes them
unreachable, this property can be stated (and proved) as an additional predicate.
This predicate is used as a lemma to support the proof original of the original
property. The following lemmas capture some simple facts about the relation-
ships between the two clocks. Of these, l1, is the least obvious and was derived
along with theorem t0 in order to reduce the required induction depth. Each of
these lemmas is inductive and hence can be proved at depth 1.

l1 : LEMMA system |- G(tclk <= (rclk + TPERIOD) OR stable);

l2 : LEMMA system |- G(rclk <= tclk + RSTARTMAX OR

rclk <= tclk + RSCANMAX OR

rclk <= tclk + RPERIODMAX);

The key part of our proof of 8N1 is an invariant that describes the relationship
between the transmitter and receiver. We must relate them both temporally and
with respect to their discrete state (e.g., tstate with rstate and tdata with
rbit). The number of and the complexity of the supporting lemmas necessary
to prove the main results is significantly reduced by proving a disjunctive in-
variant [16]. A disjunctive invariant has the form

∨
i∈I Pi where each Pi is a

state predicate (predicates Pi and Pj need not be disjoint for i 6= j). Disjunc-
tive invariants are easier to generate iteratively than conjunctive invariants. If a
disjunctive invariant fails to cover the reachable states, additional disjuncts can
be incrementally added to it (in a conjunctive invariant, additional conjunctions
must hold in all the reachable states). Although this is a general proof technique,

18

it is particularly easy to build a disjunctive invariant in SAL. The counterex-
amples SAL returns can be used to iteratively weaken the disjunction until it is
invariant.

Theorem t0 has 20 disjuncts corresponding to the 20 unique states in equa-
tion 2. Of the disjuncts, 18 follow a simple pattern and are defined in SAL with
a recursive function. The following defines theorem t0.

t0 : THEOREM system |- G(
% idle
((rstate = 9) AND
(tstate = 9) AND
(tdata AND rbit) AND
stable AND
(rclk - tclk <= RSCANMAX))

OR % start bit sent, not detected
((rstate = 9) AND
(tstate = 0) AND
(NOT tdata AND rbit) AND
(rclk - tclk <= RSCANMAX - TSTABLE))

OR % --- unwind all the other cases
rec_states(8, tstate, rstate, tdata, rbit, rclk, tclk, stable));

The recursively defined disjuncts use the following pattern for n = 0..8.

((tstate = n + 1) AND
(rstate = n) AND
(rclk - tclk <=

mult(n, RPERIODMAX) - mult(n+1, TPERIOD) + RMAX - TSTABLE) AND
(rclk - tclk >=

mult(n, RPERIODMIN) - mult(n+1, TPERIOD) + RSAMPMIN - TPERIOD))
OR
((tstate = n) AND

(rstate = n) AND
stable AND

(tdata = rbit) AND
(rclk - tclk <=

mult(n, RPERIODMAX) - mult(n, TPERIOD) + RMAX - TSTABLE) AND
(rclk - tclk >=

mult(n, RPERIODMIN) - mult(n+1, TPERIOD) + RSAMPMIN));

In general, each disjunct defines the control state (tstate and rstate),
the constraints on the data signals if any, and describes the relative difference
between tclk and rclk. A bug in ICS which involved multiplication of unin-
terpreted constants required a work-around in which we defined multiplication
recursively. This theorem can be proved at depth 3, while the main theorem
(Uart Thm) can then be proved at depth 2 with t0 as a lemma.

19

6 Discussion

Our proof of the 8N1 protocol is verified with respect to bounds on the var-
ious timing constants. In a practical implementation, the receiver scan period
is defined relative to the nominal transmitter bit period and the receiver start
and bit periods are integer multiples of this. What an implementor ultimately
cares about is the the trade off between settling time (in general due to signal
dispersion over a given transmission medium) and frequency error.

In the following, we show how the bounds that we have verified can be used
to derive error and settling time bounds in a form that is more convenient for
a protocol implementer. These derived bounds are somewhat more restrictive
than what we have verified since we require the maximum allowable frequency
error to be symmetric about the nominal frequency. As before, let TPERIOD be
the nominal period duration. We introduce another uninterpreted constant in
the operational model representing the nominal duration the receiver waits for
the start bit (“START”).

TSTART : TIME;

RSTARTMAX : TIME = TSTART * (1 + ERROR);
RSTARTMIN : TIME = TSTART * (1 - ERROR);
RSCANMAX : TIME = 1 + ERROR;
RSCANMIN : TIME = 1 - ERROR;
RPERIODMAX : TIME = TPERIOD * (1 + ERROR);
RPERIODMIN : TIME = TPERIOD * (1 - ERROR);

Fig. 18. Receiver Parameters Defined with respect to Error

Now, let ERROR be an uninterpreted constant from TIME, and then the constants
in Figure 10 are defined in terms of ERROR. By replacing these defined terms
in the parameterization of the types in Sec 5, we compute the bound on the
error. For example, RSTARTMAX is an uninterpreted constant from the following
parameterized type:

RSTARTMAX : { x : TIME | RSTARTMIN <= x AND

TSETTLE + RSCANMAX + x < 2 * TPERIOD };

Replacing RSTARTMIN and RSCANMAX by their definitions from Figure 18, we get

RSTARTMAX : { x : TIME | TSTART * (1 - ERROR) <= x AND

TSETTLE + 1 + ERROR + x < 2 * TPERIOD };

By replacing each term with its definition, the type parameters are defined com-
pletely in terms of TPERIOD, TSETTLE, and ERROR. Isolating ERROR in the system
of inequalities gives bounds on ERROR. For the 8N1 protocol, ERROR is thus pa-
rameterized as follows:

20

ERROR : { x : TIME | 0 <= x AND

(9 * TPERIOD + TSETTLE <

8 * TPERIOD * (1-x) + TSTART * (1-x)) AND

((8 * TPERIOD * (1+x) + TSTART * (1+x) + (1+x) + TSETTLE) <

10 * TPERIOD) };

This derived model can be verified using the same invariants proved at the same
depth as in the verification described in Section 5.

As mentioned in Section 1, we discovered significant errors in the analysis
in an application note for UARTs [2]. For TPERIOD = 16 and TSTART = 23,
the authors suggest that if TSTABLE is TPERIOD/2 (they call this the “nasty”
scenario), then a frequency error of ±2% is permissible. In fact, even with zero
frequency mismatch, the stable period is too short – if we assume “infinitely”
fast sampling, it is possible to show that the settling time must be less than
50% of TPERIOD. In other words, the type parameterizing ERROR is empty when
TSTABLE is TPERIOD/2 (this can be shown using SAL or by a simple calculation).
With our choice of time constants, the longest settling time must be less than 7
(43.75%). In reading the article, it becomes clear that the authors neglected the
temporal error introduced by sampling the start bit. They describe a “normal”
scenario with TSETTLE = TPERIOD/4 and assert that a frequency error of ±3.3%
is permissible. As our derivation above illustrates, the frequency error in this
case is limited to ±3/151 ≈ ±1.9%.

This paper describes the use of SAL to model and verify a data synchro-
nization circuit and the 8N1 protocol. We show, by example, how models of
these can be refined in the language of SAL to capture timing constraints and
environmental effects such as metastability and settling. Future work includes
extending this framework to other cross domain protocols as well as developing
the theory for refinement.

Acknowledgments

We thank Leonardo de Moura, John Rushby, and anonymous reviewers for a
recent paper [17] for their suggestions and corrections.

References

1. F. W. Vaandrager and A. L. de Groot. Analysis of a Biphase Mark Protocol with
Uppaal and PVS. Technical Report NIII-R0455, Nijmegen Institute for Computing
and Information Science, 2004.

2. Maxim Integrated Products, Inc. Determining Clock Accuracy Requirements for
UART Communications, June 2003. Available at http://www.maxim-ic.com/

appnotes.cfm/appnote number/2141.
3. Tsachy Kapschitz and Ran Ginosar. Formal verification of synchronizers. In

CHARME 2005 – to appear, 2005.
4. Tsacky Kapschitz, Ran Ginosar, and Richard Newton. Verifying synchronization

in multi-clock domain SoC. In DVCon 2004, 2004.

21

5. Tai Ly, Neil Hand, and Chris Ka-Kei Kwok. Formally verifiying clock domain
crossing jitter using assertion-based verification. In DVCon 2004, 2004.

6. Karen Yorav, Sagi Katz, and Ron Kiper. Reproducing synchronization bugs with
model checking. In CHARME, pages 98–103, 2001.

7. T. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the Hytech ex-
perience. In Proceedings of the 40th Annual Conference on Decision and Control,
pages 2887–2892, 2001.

8. Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX: A tool for
reachability analysis of complex systems. In Computer-Aided Verification, CAV’01,
pages 368–372, London, UK, 2001. Springer-Verlag.

9. F. W. Vaandrager and A. L. de Groot. Analysis of a biphase mark protocol with
Uppaal and PVS. Technical Report NIII-R0445, Radboud University Nijmegen,
2004.

10. Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria
Sorea, and Ashish Tiwari. SAL 2. In Computer-Aided Verification, CAV’04, volume
3114 of LNCS, pages 496–500, Boston, MA, July 2004. Springer-Verlag.

11. Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking
and induction: From refutation to verification. In Computer-Aided Verification,
CAV’03, volume 2725 of LNCS, 2003.

12. Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, and N. Shankar.
The ICS decision procedures for embedded deduction. In 2nd International Joint
Conference on Automated Reasoning (IJCAR), volume 3097 of LNCS, pages 218–
222, Cork, Ireland, July 2004. Springer-Verlag.

13. Bruno Dutertre and Maria Sorea. Timed systems in SAL. Technical Report SRI-
SDL-04-03, SRI International, 2004.

14. Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant real-
time startup protocol using calendar automata. In FORMATS/FTRTFT, pages
199–214, 2004.

15. Sanjit A. Seshia, Randal E. Bryant, and Kenneth S. Stevens. Modeling and veri-
fying circuits using generalized relative timing. In ASYNC, pages 98–108, 2005.

16. John Rushby. Verification diagrams revisited: Disjunctive invariants for easy ver-
ification. In Computer-Aided Verification, CAV’00, volume 1855 of LNCS, pages
508–520, Chicago, IL, July 2000. Springer-Verlag.

17. Geoffrey M. Brown and Lee Pike. Easy parameterized verification of biphase mark
and 8N1 protocols. In The Proceedings of the 12th International Conference on
Tools and the Construction of Algorithms (TACAS’06), 2006. To appear. Available
at http://www.cs.indiana.edu/∼lepike/pub pages/bmp.html.

22

