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Introduction and Scope Automotive cyber-physical systems (CPS) encompass nearly every re-
search challenge offered by high-confidence computing. To scope this position paper, I will focus on
open research questions in the design and assurance of fault-tolerant real-time automotive commu-
nication buses. An example of a fault-tolerant automotive bus in development today is FlexRayTM,
and there are a variety of fault-tolerant buses being researched and developed for avionics sys-
tems [4]. Such buses provide the intra-vehicle communications network for the most safety-critical
applications, such as drive-by-wire, brake-by-wire, and throttle-by-wire systems. That said, I con-
sider bus architectures in this paper broadly: this includes the buses themselves, bus interface units,
and the interacting processing units driving the sensors, actuators, and other CPS applications.

In the following, I describe three broad research agendas I believe to be paramount to the success
of high-confidence CPS systems. The first of these is a community effort to specify and build an
open bus architecture to act as a springboard for future research efforts. The second describes
research challenges in formally specifying and verifying bus architectures for automotive CPSes.
The safety-critical and security-critical nature of these systems, coupled with their complexity and
multiple layers of abstraction, suggest that mathematically-rigorous specification and verification
is necessary to have confidence in their correctness. Finally, I describe the research challenges in
building bus architectures that at once integrate applications while providing needed partitioning.

A Open High-Assurance Automotive Bus Architecture A variety of open problems exist
in the design of a bus architecture suitable for next-generation automotive CPSes. To spur research
in this area, we need an open-source bus architecture that is suitable for use in education, academic
research, and industrial research and development. The availability of such an architecture would
provide a basis for researchers to make rapid advances and to explore design trade-offs for specific
aspects without having to design an entire communications infrastructure from the ground-up. It
would aid in concretizing research ideas in fault-tolerance, real-time systems, distributed systems,
control systems, etc.

To serve the needs of the community, the architecture should be highly-parameterizable on
the following dimensions: the extent and kind of fault-tolerance it provides, the number of nodes
and interconnects supported, middleware and operating-system requirements, transmission medium
requirements, (e.g., fiber optic, coaxial cable, etc.), and node requirements (e.g., FPGAs, ASICs,
co-processors, etc.). Ideally, a variety of open-source implementations derived from the open design
would be made available.
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Some progress has already been made in the related area of high-confidence avionic buses.
The Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) is a fault-tolerant
real-time bus designed and developmented at the NASA Langley Research Center with a publicly-
available design and open-source VHDL code for one implementation [5].1 SPIDER is a platform
built from a novel ultra-fault-tolerant design to research the use of formal verification in the design
and development of bus architectures. Its design may not be suitable for automotive research since,
for example, its fault-tolerance is at the cost of additional hardware and mandated time-triggered
behavior [1]. However, lessons can be learned from the design of SPIDER (and avionics buses, in
general), and we should be inspired to have a similarly open platform for research.

Cross Abstraction-Layer Specification and Verification An exciting research challenge of-
fered by automotive CPSes is to overcome the following paradox: the safety-critical and security-
critical nature of automotive CPSes dictates the need for mathematical certainty of correctness.
This need is exacerbated by their complexity, and it is this very complexity that makes formal
analysis difficult. Much of the complexity arises from the multitude of abstraction layers; thus, a
research challenge is to come up with new models and verification techniques that cut across and
map between traditional abstraction layers. To give a more concrete idea about these layers and
their challenges, I give two examples below:

• From distributed protocols to distributed code: Beyond a few research efforts, the current state-
of-the-art in protocol verification is to verify the distributed fault-tolerant protocols at the
algorithmic level. However, these protocols are implemented (say on FPGAs) as individual
communicating state-machines. Furthermore, the hardware implementations may compose or
pipeline protocols, perform other computations concurrently, and deal with implementation-
specific timing and data issues. The upshot is little assurance that (the formally-verified) algo-
rithmic specifications are implemented correctly, thereby partially undermining the increased
assurance gained from the algorithmic verification. Research to refine formally distributed
fault-tolerant protocols into distributed state-machines is needed, including theoretical break-
throughs as well as tools, such as compilers and domain-specific languages. Indeed, I imagine
fertile grounds for collaboration with seemingly-unrelated research, such as the current inter-
ests in multi-core computation.

• From real-time constraints to hardware schedules : The physical world imposes constraints and
uncertainties on an implementation that make it difficult to meet hard real-time constraints.
These uncertainties include, for example, clock jitter and skew, wire delays, signal settling
error, sensor latency, and so forth. Despite these uncertainties, we wish to guarantee hard
real-time performance. New models and techniques for proving timing bounds are met is
needed. Realistic timing characteristics often involve many tedious calculations on real-time
and clock-time variables; recently-developed techniques in decision procedures (also known
as satisfiability modulo theories) may lead to higher confidence that timing constraints have
been met [3]. One upshot is that with provable bounds, “fudge-factors” may be eliminated,
yielding better throughput.

Integrated yet separated applications Two desiderata of automotive bus architectures ini-
tially seem to be at odds. On the one hand, bus architectures are supposed to integrate applications—
for example, a brake-by-wire and steer-by-wire system execute on the same processing unit and
communicate over the same bus. The integration has numerous advantages including providing
“off-the-shelf” fault-tolerance and hard real-time guarantees for the applications.

On the other hand, a bus architecture must also separate applications—two separate applica-

1Publications relating to SPIDER can be found at http://shemesh.larc.nasa.gov/fm/spider/ (formal speci-
fications and proofs of its protocols are also available here). Open-source VHDL code for SPIDER’s bus is available,
too: http://opensource.arc.nasa.gov/software/robus-2/.
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tions should not interfere with one another. This is particularly relevant in automotive systems that
may serve applications with a broad range of safety and security criticality. For example, some ap-
plications may introduce risks due to accepting, for example, extra-bus communication mechanisms,
like Bluetooth R©. My steer-by-wire system should not be susceptible to Bluetooth attacks!

Real-time partitioning operating systems can provide high-assurance separation between appli-
cations. However, we do not always wish to have complete time and space partitioning; rather,
we want to have controlled communication. For example, a brake-by-wire system may deliver
real-time data to a diagnostics system, but we may want to ensure information flow occurs only
in one direction (from the braking system to the diagnostics system) if the diagnostics system is
of lower-confidence. Possible solutions may be borrowed from the security world: for example, a
high-assurance multilevel file-server (such as Galois’s Trusted Service Engine [2]) on a partitioning
operating system may be sufficient. How to balance separation and integration requirements within
physical constraints (e.g., weight, size, performance) is an open problem.

Conclusions I have outlined three broad research agendas I believe to be essential to next-
generation automotive CPS systems. While a high-confidence bus architecture is only one com-
ponent in a full high-confidence automotive CPS, it is an essential one, and I believe answering
early the research questions outlined above will naturally shed light onto other open problems in
automotive cyber-physical systems.
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