
NASA/TM–2004–213278

Model Checking Failed Conjectures in
Theorem Proving: A Case Study

Lee Pike, Paul Miner, and Wilfredo Torres-Pomales
Langley Research Center, Hampton, Virginia

October 2004

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a
key part in helping NASA maintain this
important role.

The NASA STI Program Office is operated
by Langley Research Center, the lead center
for NASA’s scientific and technical
information. The NASA STI Program Office
provides access to the NASA STI Database,
the largest collection of aeronautical and
space science STI in the world. The Program
Office is also NASA’s institutional
mechanism for disseminating the results of
its research and development activities.
These results are published by NASA in the
NASA STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the
STI Program Office’s diverse offerings
include creating custom thesauri, building
customized databases, organizing and
publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621–0134

• Phone the NASA STI Help Desk at (301)
621–0390

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076–1320

NASA/TM–2004–213278

Model Checking Failed Conjectures in
Theorem Proving: A Case Study

Lee Pike, Paul Miner, and Wilfredo Torres-Pomales
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681–2199

October 2004

Acknowledgments

This research was supported, in part, by Research Cooperative Agreement No. NCC-1-02043 awarded to
the National Institute of Aerospace while the first author was a visitor. Additional support came from
NASA’s Vehicle Systems Program. The PVS and SAL tools used were developed by SRI International. We
used PVS theories developed by members of the NASA Langley Formal Methods Group and the National
Institute of Aerospace; in particular, we thank Alfons Geser, Jeffrey Maddalon for their theory
development. As noted, the SAL model was adopted from work by Rushby [1].

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076–1320 Springfield, VA 22161–2171
(301) 621–0390 (703) 605–6000

Abstract

Interactive mechanical theorem proving can provide high assurance of correct design, but
it can also be a slow iterative process. Much time is spent determining why a proof of
a conjecture is not forthcoming. In some cases, the conjecture is false and in others, the
attempted proof is insufficient. In this case study, we use the SAL family of model checkers
to generate a concrete counterexample to an unproven conjecture specified in the mechanical
theorem prover, PVS. The focus of our case study is the ROBUS Interactive Consistency
Protocol. We combine the use of a mechanical theorem prover and a model checker to
expose a subtle flaw in the protocol that occurs under a particular scenario of faults and
processor states. Uncovering the flaw allows us to mend the protocol and complete its
general verification in PVS.

1 Introduction

Although rarely discussed, interactive mechanical theorem proving is inherently an iterative
process. A specification and a set of requirements are modeled in a theorem prover, and then
conjectures that the specification satisfies the requirements are posited. Many times, one is
unable to prove a conjecture. Provided the theorem prover is sound (and the conjecture is
not true but unprovable—a possibility in mathematics), there are two reasons for this. First,
the conjecture may be true, but the user lacks the resources or insight to prove it. Second,
the conjecture may not hold; i.e., the specification fails to satisfy the stated requirement. It
can be difficult to determine which of these is the case.

When mathematicians cannot complete a proof of a conjecture, they begin to seek a
counterexample to it. Mechanical theorem proving can exacerbate this difficult task [2]. This
is due in part to the nature of the objects specified in these systems. Proofs of correctness
for algorithms and protocols often involve nested case-analysis. A proof obligation that
cannot be completed is often deep within the proof, where intuition about the system
behavior—and what would constitute a counterexample—wanes. This is also due to the
nature of mechanical theorem proving. The proof steps issued in such a system are fine-
grained. Formal specifications often make explicit detail that is suppressed in informal
models. The detail and formality of the specification and proof can make the discovery of a
counterexample more difficult.

This paper describes a case study to exploit model checking to facilitate interactive
mechanical theorem proving. We describe the formal verification of a distributed fault-
tolerant protocol in the mechanical theorem prover PVS [3]. A conjecture about the protocol
is partially verified by case-analysis, leaving a single unproven case. The case involves a
complex set of fault statuses and system invariants. To determine whether this case in fact
gives rise to a counterexample to the conjecture, we modeled the single proof obligation in
the recently-developed Symbolic Analysis Laboratory (SAL) [4], a tool that includes the
symbolic and bounded model checkers used in this study. A counterexample is generated in
SAL, suggesting a fix to the protocol. A proof of correctness for the new protocol is then
carried through in PVS.

The protocol investigated is an interactive consistency protocol for use in the Reliable
Optical Bus (ROBUS), a state-of-the-art ultra-reliable communications bus under develop-
ment at the NASA Langley Research Center and the National Institute of Aerospace. It is
being developed as part of the Scalable Processor-Independent Design for Electromagnetic-
Resilience (SPIDER) architectures [5,6]. SPIDER is a family of ultra-reliable architectures
built upon the ROBUS. Currently, ROBUS implementations include both FPGA-based and
software-based prototypes. More sophisticated prototypes are under development.

The counterexample was initially discovered by one of the authors by “engineering in-

1

sight.” We believed the subtlety of the counterexample provided a good basis for this case
study. The counterexample is of particular interest to practitioners of formal methods: we
present a “second-order bug” in a fault-tolerant distributed protocol. The bug’s existence
depends on two Byzantine faults [7,8] to simultaneously occur in the system. The system is
designed to tolerate such a fault scenario. However, the subtlety of the scenario likely means
it would likely escape detection during fault-injection testing [9]. Safety-critical systems of-
tentimes must have a failure rate no higher than 10−9 to 10−12 per hour of operation [10–12].
A design error that escapes testing could adversely affect a system’s reliability. We believe
that if our engineer had not discovered the bug, we would have discovered it via the formal
methods being used in the development process for SPIDER.

The bug arises from the interaction between the system’s fault assumptions and the
local diagnoses made by nodes in the system. Local diagnoses are used in a fault-tolerant
system to increase reliability and to maintain group membership, a group of mutually-trusted
non-faulty nodes [13]. In a sense, the bug is due to the interplay of system operation (i.e.,
executing the protocol) and system survival (i.e., maintaining group membership). These
concerns apply to variety of fault-tolerant embedded systems [10].

Contributions We make the following contributions in this case study. First, we de-
scribe how to enhance the efficiency of interactive mechanical theorem proving by using
model checking to extract counterexamples from incomplete proof obligations. Second, we
describe an interesting design error arising from the complex relationship between local di-
agnostic information and faults in the system. This sort of error has the potential to arise
in other protocols that make use of continuous diagnostic data, and its subtlety suggests
the importance of formal methods for design assurance.

Organization We describe the ROBUS Interactive Consistency Protocol as well as the
architecture on which it is intended to execute, in Sect. 2. In Sect. 3, we describe the
kinds and number of faults under which the ROBUS IC Protocol should correctly execute.
Section 4 states the correctness requirements for the protocol as well as the state invariants
that must hold for the ROBUS IC Protocol to satisfy them. In Sect. 5, we informally
describe the counterexample, discuss its origins, and provide a “fix” for it. In Sect. 6 we
describe the conjecture attempted in PVS and then our generation of a counterexample
using SAL. Related work and concluding remarks are in Sect. 7.

2 The ROBUS IC Protocol

After describing the architecture of the ROBUS, on which the ROBUS IC Protocol is de-
signed to execute, we describe the behavior of the protocol itself.

Architecture The architecture of the ROBUS is a fully-connected bipartite graph of two
sets of nodes, Bus Interface Units (BIUs) and Redundancy Management Units (RMUs).
BIUs provide the interface between the bus and hosts running applications that communicate
over the bus. The RMUs provide fault-tolerance redundancy. The architecture for the
special case of three BIUs and three RMUs is shown in Fig. 1. There must be a minimum
of one BIU and one RMU in the architecture.

Diagnostic Data Understanding the protocol behavior requires a preliminary under-
standing of the diagnostic data collected by nodes. The protocol has a greater chance
of succeeding if good nodes ignore faulty ones. Consequently, nodes maintain diagnoses

2

BMUs RMUs

Figure 1. The ROBUS Architecture

against other nodes. These diagnoses result from mechanisms to monitor the messages re-
ceived during protocol execution. Diagnostic data is accumulated over multiple protocol
executions.

Each node maintains a diagnostic function assigning each node (including itself) to one
of the following three classifications: trusted, accused, and declared. We call the node being
labeled the defendant. Every (non-faulty) node assigns every other node to exactly one
class. If a node labels a defendant as trusted, then the node has insufficient evidence that
the defendant is faulty. If it labels a defendant as accused, then it has local evidence that
the defendant is faulty, but does not know whether other good nodes have similar evidence.
Once a defendant is declared, all good nodes know that they share the declaration.

Periodically, the RMUs and BIUs execute a Distributed Diagnosis Protocol in which the
nodes submit the diagnoses accumulated thus far [13]. If enough good nodes have accused a
defendant, then the defendant is declared. The Distributed Diagnosis Protocol ensures that
all good nodes agree on which nodes have been declared.

2.1 Protocol Description

Distinguish one BIU as the General. The ROBUS IC Protocol is a synchronous protocol
designed to reliably transmit the General’s message despite faults in the system (the formal
requirements are provided in Sect. 4). In the following, a benign message is one that all
nonfaulty nodes can detect came from a faulty node (see Sect. 3). The ROBUS IC Protocol
is as follows:

1. The General, G, broadcasts its message, v, to all RMUs.

2. For each RMU, if it receives a benign message from G, then it broadcasts the special
message source error to all BIUs. Otherwise it relays the message it received.

3. For each BIU b, if b has declared G, then b outputs the special message source error.
Otherwise, if i received a benign message from an RMU, then that RMU is accused.
b performs a majority vote over the values received from those RMUs it trusts. If no
majority exists, source error is outputted; otherwise, the majority value is outputted.

3 Faults

Fault Classifications Faults result from innumerable occurrences including physical dam-
age, electromagnetic interference, and “slightly-out-of-spec” communication [7]. We collect
these fault occurrences into fault types according to their effects in the system.

We adopt the hybrid fault model of Thambidurai and Park [14]. All non-faulty nodes are
also said to be good. A node is called benign, or manifest, if it sends only benign messages.

3

Benign messages abstract various sorts of misbehavior. A message that is sufficiently garbled
during transmission may be caught by an error-checking code and deemed benign. In
synchronized systems with global communication schedules, they also abstract messages not
sent (i.e., a message is expected by a receiver but is absent on a communication channel) at
unscheduled times. A node is called symmetric if it sends every receiver the same message,
but these messages may be incorrect. A node is called asymmetric, or Byzantine [15], if it
arbitrarily sends different messages to different receivers.

The Fault Assumptions A fault-tolerant protocol is designed to tolerate a certain num-
ber of faults of each kind of fault type. For a protocol, this is specified by its maximum fault
assumption (MFA). A proof of correctness of a protocol is of the form, “If the MFA holds,
then the protocol satisfies property P,” where P is a correctness condition for the protocol.
The probability that a MFA holds is determined by reliability analysis [16].

We call the MFA for the ROBUS IC Protocol the Interactive Consistency Dynamic
Maximum Fault Assumption (IC DMFA). ‘Dynamic’ emphasizes that the fault assumption
is parameterized by the local diagnoses of nodes, which change over time.

Definition 1 (IC DMFA). Let GB, SB, and AB denote the sets of BIUs that are good,
symmetrically-faulty, and asymmetrically-faulty, respectively. Let GR, SR, and AR repre-
sent the corresponding sets of RMUs, respectively. For good BIU b, let Tb denote the set of
RMUs b trusts. This is b’s trusted set. Define Tr similarly—it is the set of BIUs that RMU
r trusts. The following formulas together make up the IC DMFA. G is the General. For all
BIUs b and RMUs r,

1. |GR ∩ Tb| > |SR ∩ Tb|+ |AR ∩ Tb| ;

2. G ∈ AB ∩ Tr implies |AR ∩ Tb| = 0 .

The first clause ensures that a good BIU b contains strictly more good RMUs in Tb than it
does symmetrically-faulty or asymmetrically-faulty RMUs. The second clause ensures that
either no good RMU r trusts an asymmetrically-faulty General, or no good BIU b trusts an
asymmetrically-faulty RMU.

4 The ROBUS IC Protocol Correctness

We begin by stating the requirements for the ROBUS IC Protocol. We then state invariants
that must hold in a system executing the ROBUS IC Protocol in order for it to meet these
requirements.

Requirements Two requirements must hold.

Definition 2 (Agreement). All good BIUs compute the same value.

Definition 3 (Validity). If the General is good and broadcasts message v, then the value
computed by a good BIU is v.

Diagnostic Assumptions In addition to constraining the number of and kind of faults,
the correctness of the ROBUS IC Protocol depends on the diagnostic mechanisms satisfying
certain constraints. Let b1 and b2 be good BIUs, and let n be either a BIU or RMU of any
fault classification.

Definition 4 (Good Trusted). b1 trusts n if n is good.

4

asymmetric

good

BIUs RMUs BIUs

good

asymmetric asymmetric

good

good

G 1

2

3

1

2

1

2

G
v

output = v

output = u

v

u

v

u

v

v

u

u

asymmetric

Figure 2. An Instance of the ROBUS IC Protocol Violating Agreement

Definition 5 (Symmetric Agreement). If n is not asymmetrically-faulty, b1 accuses n
if and only if b2 accuses n.

Definition 6 (Conviction Agreement). b1 declares n if and only if b2 declares n.

These properties similarly hold for any two good RMUs with respect to a defendant n.
Conviction Agreement also holds between good BIUs and good RMUs.

Intuitively, Good Trusted ensures that diagnostic mechanisms never lead a good node
to accuse another good node. Symmetric Agreement ensures that all good nodes that re-
ceive the same data make the same diagnosis. Note, however, that Symmetric Agreement
allows a good BIU and a good RMU to make different diagnoses about a node that is
asymmetrically-faulty. Finally, Conviction Agreement is a correctness requirement of the
Distributed Diagnosis Protocol [13], and it is a precondition for the correctness of the pro-
tocol under investigation in this paper. Together, these three assumptions are called the
Diagnostic Assumptions.

5 The Counterexample

We describe the counterexample informally and briefly describe its origins. We then describe
a protocol that does not suffer from the flaw.

A Counterexample Instance The following instance of the ROBUS IC Protocol violates
Agreement. Consider an architecture containing three BIUs, G, b1, and b2, and three RMUs
r1, r2, and r3. Let the General be asymmetrically-faulty. Let RMU r1 be asymmetrically-
faulty, too, and let all other nodes be good. Suppose b1 and b2 either accuse or trust G (it
does not matter which), and they trust all RMUs. Furthermore, suppose b1 and b2 trust
r1, but no good RMU trusts G. These hypotheses satisfy the IC DMFA and the Diagnostic
Assumptions. Agreement is violated if the following instance of the ROBUS IC Protocol
transpires, as illustrated in Fig. 2.

1. G sends message v to r1 and r2, and it sends message u to r3, where v 6= u.

2. r1 sends message v to b1 and u to b2. r2 sends message v to both b1 and b2. r3 sends
message u to both b1 and b2.

3. b1 outputs v whereas b2 outputs u.

5

Origins of the Flaw The flaw in the ROBUS IC Protocol was introduced when an
earlier version of the protocol was amended to allow for the reintegration of transiently-
faulty nodes. A node becomes transiently-faulty when its state is disrupted (due, e.g., to
exposure to high-intensity radiation), but the node is not permanently damaged. A node
that suffers a transient fault has the potential to reintegrate with the good nodes in the
system by restoring consistent state with them.

In the earlier version of the ROBUS IC Protocol, an RMU would only relay a message
from the General if it trusted the General. Otherwise, the source error message was relayed.
To allow for reintegration, the messages from a previously-declared General needed to be
relayed by RMUs so that the BIUs can determine whether it is fit for reintegration. However,
the flaw in the ROBUS IC Protocol arose when the earlier protocol was changed so that
RMUs relayed the message from the General regardless of its diagnostic status, so long as
it did not send a benign message.

A New ROBUS IC Protocol In retrospect, a fix to the protocol is simple. Step 2
of the protocol description in Sect. 2.1 is changed so that an RMU r relays the message
source error if it receives a benign message or if r accuses the General. If the General is
declared, its message is relayed to allow BIUs to gather diagnostic data about the General.
An accused General implies that the General recently suffered a fault (assuming the accuser
is good), so there is no need to relay its message for reintegration purposes. The correctness
of the protocol, proved in PVS, is described in [17].

6 Formally Deriving the Counterexample

In this section, we describe the unfinished proof obligation generated in our attempt to
formally prove a conjecture about the ROBUS IC Protocol. We then describe our use of a
model checker to derive a counterexample to the conjecture.

6.1 Generating the Proof Obligation

In this study, we use the PVS theorem proving system developed by SRI International [3].
We have used PVS to specify and verify other ROBUS protocols [13,17]. The specification
language of PVS is a strongly-typed higher-order logic. The proof system is the classical
sequent calculus.

Various details about the construction of the underlying theories used to model the algo-
rithm and ROBUS are irrelevant.1 A discussion of the abstractions used in this verification
project can be found in [18], and a description of the theories developed for this verification
can be found at [13, 19]. A discussion of how to specify an Oral Messages protocol as a
higher-order recursive function can be found in [20]; our more complex model is in the same
spirit (additional complexity is introduced by specifying a hybrid fault model and the IC
DMFA, which requires modeling local diagnoses). PVS files are available on-line [21]. The
following notation is used in the formal statements of the Agreement Conjecture and the
unproved sequent.

Variables and Parameters Let B and R be natural numbers. The set of BIUs and
RMUs are indexed from 0 to B - 1 and 0 to R - 1, respectively. These sets of indicies
are denoted below(B) and below(R), respectively. Let b1, b2, G ∈ below(B), where G
is used to designate the General. F is a higher-order diagnostic function such that F‘BR
denotes the collection of the BIUs’ diagnoses against the RMUs, F‘BB denotes the BIUs’

1The PVS models were designed to model fault-tolerant protocols other than the ROBUS IC Protocol.

6

Agreement: CONJECTURE

good?(b_status(b1)) AND

good?(b_status(b2)) AND

all_correct_accs?(b_status, r_status, F) AND

IC_DMFA(b_status, r_status, F)

=>

robus_ic(b_status, r_status, F‘BB(b1)(G), F‘RB(b1))

(G, msg, b1) =

robus_ic(b_status, r_status, F‘BB(b2)(G), F‘RB(b2))

(G, msg, b2)

Figure 3. The Agreement Conjecture

diagnoses against the BIUs, and similarly for F‘RB and F‘RR. F‘RB(b1)(r) denotes b1’s
diagnosis of r, and similarly for the other functions. F‘RB(b1)(r) yields a value from the
set {trusted, accused, declared}. The function b status is a function mapping BIUs to
some fault class—one of good, benign, symmetric, and asymmetric, and similarly, r status
maps RMUs to a fault class.

Constants The following functions and relations are used:

• good? is a predicate that takes the fault status of a node and is true if the status is
good. benign?, symmetric?, and asymmetric? are similarly defined.

• all correct accs? is a predicate formally stating the Diagnostic Assumptions defined
in Sect. 4.

• declared? is a predicate that takes the diagnosis made by one node against a defen-
dant node and is true if the defendant is declared. Similarly, trusted? is true if the
defendant is trusted.

• IC DMFA is a formal statement of the IC DMFA described in Sect. 3.

• robus ic is a higher-order function that functionally models the ROBUS IC Protocol,
as described in Sect. 2.1. It takes as arguments the fault statuses of the BIUs and
RMUs, the diagnoses a BIU makes of G, as well as the set of its other diagnoses. It
returns another function that takes the General’s identifier, the message it sends, and a
BIU identifier. The function returns the message the BIU outputs after the execution
of the ROBUS IC Protocol.

The conjecture to be proved is stated in Fig. 3. Assuming that b1 and b2 are both good,
that the Diagnoses Assumptions hold, and that the IC DMFA holds, we attempt to prove
that the result of robus ic is the same when applied to b1 and b2.

Every branch of the conjecture in Fig. 3 is discharged except for the branch ending in the
single sequent in Fig. 4 (irrelevant formulas have been omitted). PVS labels the formulas
in the antecedent with negative integers, while those in the consequent are labeled with
positive integers. It is also the convention of PVS to denote skolem constants with a trailing
“!n,” where n is some integer.

6.2 Model Checking the Sequent

We use the Symbolic Analysis Laboratory (SAL) [4,22], also developed by SRI International,
to model check the protocol against the undischarged sequent. SAL is a family of state-of-
the-art model checkers that includes symbolic, bounded, and explicit-state model checkers,

7

[-1] good?(r_status!1(r!1))

[-2] asymmetric?(b_status!1(G!1))

[-3] IC_DMFA(b_status!1, r_status!1, F!1)

[-4] all_correct_accs?(b_status!1, r_status!1, F!1)

|-------

[1] trusted?(F!1‘BR(r!1)(G!1))

[2] declared?(F!1‘BB(b2!1)(G!1))

{3} (FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b1!1)(p_1)) =>

NOT asymmetric?(r_status!1(p_1))))

&

(FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b2!1)(p_1)) =>

NOT asymmetric?(r_status!1(p_1))))

[4] declared?(F!1‘BB(b1!1)(G!1))

[5] robus_ic(b_status!1, r_status!1,

F!1‘BB(b1!1)(G!1), F!1‘RB(b1!1))

(G!1, msg!1, b1!1)

=

robus_ic(b_status!1, r_status!1,

F!1‘BB(b2!1)(G!1), F!1‘RB(b2!1))

(G!1, msg!1, b2!1)

Figure 4. The Unproven PVS Sequent

among other tools. The SAL language includes many high-level constructs such as recursive
function definition, synchronous and asynchronous composition operators, and quantifiers.
We particularly exploit the quantifier, recursive function, and synchronous composition
constructs.

Our SAL model builds on the model of Oral Messages that is explained in detail in
Rushby’s SAL tutorial [1]. Our model differs as we must represent the local diagnoses data
of each node, the Diagnosis Assumptions, and the IC DMFA, which is parametrized by the
local diagnoses. Furthermore, we state these constraints explicitly rather than embedding
them into the system model. We found this makes our model more perspicuous. The model
is available on-line [21].

To formulate the unproven sequent in the model checking logic LTL, we use the fact
that a sequent can be read as stating that if the conjunction of the antecedent statements
is true, then the disjunction of the consequent statements is true. That is, if A is the set of
antecedents and C is the set of consequents, a sequent is equivalent to the conditional∧

A =⇒
∨

C . (1)

This formulation is used to express the sequent in SAL and appears in Fig. 5. There,
SYSTEM denotes the model of the ROBUS IC Protocol developed in the model checker,
the symbol |- denotes the purported satisfaction relation between the model and G is the
global-state operator of LTL (not to be confused with the denotation of the General).

SAL has an imperative language, so some of the predicates in the PVS sequent have
been expressed equationally. Some of the functions of PVS have been converted to arrays
in SAL, giving rise to the bracket notation.

Two additional statements in the LTL formulation are artifacts of how the protocol is
modeled in the model checker. First, there is a program counter pc that represents which
round of the protocol is currently executing. These rounds correspond to the three rounds
described in Sect. 2.1. When pc = 4, the last round has completed. The second artifact
is the imperative definition of the result of the ROBUS IC Protocol using the array called

8

counterex: THEOREM SYSTEM |-

G((pc = 4 AND

r_status[1] = good AND

G_status = asymmetric AND

IC_DMFA(r_status, F_RB, F_BR, G_status) AND

all_correct_accs(r_status, F_RB,

G_status, F_BR, F_BB))

=>

(F_BR[1] = trusted OR

F_BB[2] = declared OR

(FORALL (r: RMUs): F_RB[1][r] = trusted =>

r_status[r] /= asymmetric AND

FORALL (r: RMUs): F_RB[2][r] = trusted =>

r_status[r] /= asymmetric) OR

F_BB[1] = declared OR

robus_ic[1] = robus_ic[2]));

Figure 5. The SAL Formulation of the Undischarged Sequent

robus ic.
Thus, the conjecture in Fig. 5 can be read as stating that in every state reachable from

the initial state of SYSTEM, the formulation of the unproven sequent described above is true.
A counterexample to the formula in Fig. 5 is a reachable state in which the formula is

false. As mentioned, that formula is derived from the conditional interpretation of a sequent
in (1). The negation of (1) is equivalent to∧

(A ∪
−
C) , (2)

where
−
C denotes the negation of each formula in C. A counterexample is therefore a reachable

state in which (2) is true. In this state, all the antecedents are true, and every consequent
is false, matching the informal description of the counterexample in Sect. 5.

We used SAL’s symbolic model checker with no optimizing command-line arguments on
a system with one gigabyte of memory and an AMD Athlon 2000+ processor. A counterex-
ample like the one described in Sect. 5 was discovered in about 16 seconds for three RMUs
and three BIUs, including the General.

One may wonder whether this counterexample arises from the system having too few
RMUs to relay messages. Increasing the number of RMUs quickly overwhelms the symbolic
model checker. However, we obtain a similar counterexample using SAL’s bounded model
checker for seven RMUs in a little over two minutes on the same system.

These concrete counterexamples demonstrate that the unproved sequent cannot be dis-
charged because the protocol itself has an error. Changing the PVS and SAL models to
include the fix suggested in Sect. 5 allows the Agreement proof to be completed (see [17]),
and SAL verifies the formula in Fig. 5 in a sufficiently small model (the fix is included as
commented code in the SAL model available on-line [21]).

6.3 Remarks on the Approach

In our case study, we manually modeled the protocol and the requirements, both in PVS
and SAL. This was simultaneously advantageous and disadvantageous. Having to model
the protocol and requirements in distinct languages provided an additional guard against
modeling errors in each language. Such mistakes are easy to make; in particular, we found
it was easy to generate a false negative in SAL (i.e., return no counterexample when the

9

actual protocol does not satisfy the actual requirement). For example, we initially omitted
the second universal quantifer in the third disjunct of the consequent of the LTL formula in
Fig. 5:

FORALL (r: RMUs):

F_RB[1][r] = trusted => r_status[r] /= asymmetric AND

F_RB[2][r] = trusted => r_status[r] /= asymmetric

No counterexample was discovered. This is because conjunction evidently binds tighter
than implication in SAL, changing the meaning of the formula. Had we only employed a
model checker to check the protocol against the requirements (and had the counterexample
not already be known), it might have been overlooked. This is less of a danger in a theorem
prover. Due to their interactive nature, false negatives are harder to produce in a mechanical
theorem prover (that is sound). A formal proof in a theorem prover can be reviewed for
correctness, but a “model checking proof” cannot.

A disadvantage is the additional work required to model the protocol and requirements
in two tools. Additionally, had the unproved proof obligation been the result of an er-
roneous PVS model, it may not have appeared in the SAL model. Of course, finding no
counterexample in SAL would have led us to reexamine the model in PVS. SRI International
has stated that future work includes developing interpreters from SAL to PVS [22]. Once
implemented, one will have the choice of specifying a system and its requirements in both
tools manually or to use the interpreter.

Some limitations of this approach to generate counterexamples to unproven proof obli-
gations are inherent to the limitations of model checking in general. A model checker is
useful when the system can be modeled as a state machine, and the requirements to be
proved can be modeled in a temporal logic. Mechanical theorem provers are routinely used
to specify and verify mathematical objects that do not lend themselves to these restrictions.
As well, a counterexample may exist, but be beyond the computational limits of the model
checker and the computer on which it is hosted. The power of the SAL model checkers and
the expressiveness of its language (particularly, its synchronous operators), made this work
feasible.

7 Conclusions and Related Work

We have described a case study of our use of mechanical theorem proving and model checking
to turn a failed proof into a concrete counterexample revealing a substantial and interesting
bug.

Protocols like the one described in this paper are fault-tolerant consensus algorithms
and are known as “interactive consistency” or “oral messages” protocols. The protocol
presented here is based on a protocol designed by Davies and Wakerly [17, 23]. Lynch’s
textbook provides a modern introduction to these sort of protocols as well as pointers into
the literature [24]. Many of these protocols have been formally verified, both by theorem
proving [25–27] and by model checking [1].

Mechanical theorem proving and model checking have been combined in a number of
studies [2]. Most of these studies have focused on either using theorem proving in abstract-
ing systems for model checking or using model checking to facilitate theorem proving. In
fact, PVS has an embedded model checker that can be used to model check state-machine
specifications with requirements stated in the mu-calculus. In [28], Havelund and Shankar
develop a methodology to use theorem proving to derive a finite abstraction of a protocol
that can be model checked for correctness.

As far as we know, little work has been done to use model checking to understand
failed proofs in a mechanical theorem prover. Research applying other techniques to “non-
theorems” can be found in [29,30]. Most related to this case study is [31], in which resolution-

10

based theorem proving and model checking are used to discover counterexamples to proof
obligations. Our work differs in that we present a reasonably intricate protocol for an
actively-developed system (a small illustrative example is presented in [31]). As well, the
focus therein is on automated theorem proving; our focus is on using model checking to
facilitate interactive theorem proving.

Practitioners have long desired better tool integration, but have faced a number of
obstacles [32]. Our work is made possible by the expressiveness and power of the PVS and
SAL tools, but as mentioned in Sect. 6.3, obstacles to complete integration remain.

References

1. Rushby, J.: SAL Tutorial: Analyzing the Fault-Tolerant Algorithm OM(1). CSL Tech-
nical Note, SRI International, 2004. Available at http://www.csl.sri.com/users/
rushby/abstracts/om1.

2. Rushby, J.: Integrated Formal Verification: Using Model Checking With Automated
Abstraction, Invariant Generation, and Theorem Proving. Theoretical and Practical
Aspects of SPIN Model Checking: 5th and 6th International SPIN Workshops, D. Dams,
R. Gerth, S. Leue, and M. Massink, eds., Springer-Verlag, Trento, Italy, and Toulouse,
France, vol. 1680 of Lecture Notes in Computer Science, July/Sept 1999. Available at
http://www.csl.sri.com/papers/spin99/.

3. Owre, S.; Rusby, J.; Shankar, N.; and von Henke, F.: Formal Verification for Fault-
Tolerant Architectures: Prolegomena to the Design of PVS. IEEE Transactions on
Software Engineering , vol. 21, no. 2, February 1995, pp. 107–125.

4. SRI International: Symbolic Analysis Laboratory SAL. 2004. Available at http://sal.
csl.sri.com/.

5. NASA Formal Methods Group: SPIDER Homepage. Website, 2004. Available at http:
//shemesh.larc.nasa.gov/fm/spider/.

6. Miner, P. S.; Malekpour, M.; and Torres, W.: Conceptual Design of a Reliable Optical
Bus (ROBUS). 21st AIAA/IEEE Digital Avionics Systems Conference DASC , Irvine,
CA, October, 2002.

7. Driscoll, K.; Hall, B.; Sivencrona, H.; and Zumsteg, P.: Byzantine Fault Tolerance, from
Theory to Reality. Computer Safety, Reliability, and Security , G. Goos, J. Hartmanis,
and J. van Leeuwen, eds., Lecture Notes in Computer Science, The 22nd International
Conference on Computer Safety, Reliability and Security SAFECOMP, Springer-Verlag
Heidelberg, September 2003, pp. 235–248.

8. Pease, M.; Shostak, R.; and Lamport, L.: Reaching Agreement in the Presence of Faults.
Journal of of the ACM , vol. 27, no. 2, 1980, pp. 228–234.

9. Hsueh, M.-C.; Tsai, T. K.; and Iyer, R. K.: Fault Injection Techniques and Tools.
IEEE Computer , vol. 30, no. 4, 1997, pp. 75–82. Available at citeseer.ist.psu.edu/
hsueh97fault.html.

10. Rushby, J.: Bus Architectures For Safety-Critical Embedded Systems. EMSOFT 2001:
Proceedings of the First Workshop on Embedded Software, T. Henzinger and C. Kirsch,
eds., Springer-Verlag, Lake Tahoe, CA, vol. 2211 of Lecture Notes in Computer Science,
Oct. 2001, pp. 306–323.

11. Koptez, H.: Real-Time Systems. Kluwer Academic Publishers, 1997.

11

12. Littlewood, B.; and Strigini, L.: Validation of ultrahigh dependability for software-based
systems. Communications of the ACM , November 1993, pp. 69–80.

13. Geser, A.; and Miner, P.: A Formal Correctness Proof of the SPIDER Diagnosis Pro-
tocol. NASA/CP-2002-211736, NASA Langley Research Center, Hampton, Virginia,
August 2002. Technical Report contains the Track B proceedings from Theorem Prov-
ing in Higher Order Logics (TPHOLSs).

14. Thambidurai, P.; and Park, Y.-K.: Interactive Consistency With Multiple Failure
Modes. 7th Reliable Distributed Systems Symposium, October 1988, pp. 93–100.

15. Lamport; Shostak; and Pease: The Byzantine Generals Problem. ACM Transactions
on Programming Languages and Systems, vol. 4, July 1982, pp. 382–401. Available at
http://citeseer.nj.nec.com/lamport82byzantine.html.

16. Butler, R. W.: The SURE Approach to Reliability Analysis. IEEE Transactions on
Reliability , vol. 41, no. 2, June 1992, pp. 210–218.

17. Miner, P.; Geser, A.; Pike, L.; and Maddalon, J.: A Unified Fault-Tolerance Proto-
col. Formal Techniques, Modeling and Analysis of Timed and Fault-Tolerant Systems
(FORMATS-FTRTFT), Y. Lakhnech and S. Yovine, eds., Springer, vol. 3253 of Lecture
Notes in Computer Science, 2004, pp. 167–182.

18. Pike, L.; Maddalon, J.; Miner, P.; and Geser, A.: Abstractions for Fault-Tolerant
Distributed System Verification. Theorem Proving in Higher Order Logics (TPHOLs),
K. Slind, A. Bunker, and G. Gopalakrishnan, eds., Springer, vol. 3223 of Lecture Notes
in Computer Science, 2004, pp. 257–270.

19. Miner, P.; and Geser, A.: A New On-Line Diagnosis Protocol for the SPIDER Family
of Byzantine Fault Tolerant Architectures., April 2003. Available at http://shemesh.
larc.nasa.gov/fm/spider/spider_pubs.html.

20. Rushby, J.: Systematic Formal Verification for Fault-Tolerant Time-Triggered Algo-
rithms. IEEE Transactions on Software Engineering , vol. 25, no. 5, September 1999,
pp. 651–660. Available at http://www.csl.sri.com/papers/tse99/.

21. NASA Formal Methods Group: PVS Proof Files. Website, 2004. Available at http:
//shemesh.larc.nasa.gov/fm/spider/counterex/.

22. SRI Computer Science Laboratory: Formal Methods Roadmap: PVS, ICS, and SAL.
SRI-CSL-03-05, SRI International, Menlo Park, CA 94025, November 2003.

23. Davies, D.; and Wakerly, J. F.: Synchronization and Matching in Redundant Systems.
IEEE Transactions on Computers, vol. 27, no. 6, June 1978, pp. 531–539.

24. Lynch, N. A.: Distributed Algorithms. Morgan Kaufmann, 1996.

25. Young, W. D.: Comparing Verification Systems: Interactive Consistency in ACL2. IEEE
Transactions on Software Engineering , vol. 23, no. 4, April 1997, pp. 214–223.

26. Bevier, W.; and Young, W.: The proof of correctness of a fault-tolerant circuit design.
Second IFIP Conference on Dependable Computing For Critical Applications, 1991.
Available at citeseer.ist.psu.edu/bevier91proof.html.

27. Lincoln, P.; and Rushby, J.: Formal Verification of an Interactive Consistency Al-
gorithm for the Draper FTP Architecture Under a Hybrid Fault Model. Compass
’94 (Proceedings of the Ninth Annual Conference on Computer Assurance), IEEE
Washington Section, Gaithersburg, MD, June 1994, pp. 107–120. Available at http:
//www.csl.sri.com/papers/compass94/.

12

28. Havelund, K.; and Shankar, N.: Experiements in Theorem Proving and Model Checking
for Protocol Verification. Proceedings of Formal Methods Europe FME’96 , Lecture Notes
in Computer Science, Springer, 1996.

29. Steel, G.; Bundy, A.; and Denney, E.: Finding Counterexamples to Inductive Conjec-
tures and Discovering Security Protocol Attacks. Foundations of Computer Security ,
I. Cervesato, ed., DIKU Technical Report, Copenhagen, Denmark, 25–26 July 2002, pp.
49–58. Available at homepages.inf.ed.ac.uk/s9808756/papers/.

30. Ahrendt, W.; Baumgartner, P.; and de Nivelle, H., eds.: Workshop on Disproving: Non-
Theorems, Non-Validity, Non-Provability . Second International Joint Conference on Au-
tomated Reasoning, July 2004. Available at http://www.cs.chalmers.se/~ahrendt/
ijcar-ws-disproving/.

31. Bicarregui, J. C.; and Matthews, B. M.: Proof and Refutation in Formal Software
Development. 3rd Irish Workshop on Formal Methods (IWFM’99), July 1999.

32. Johnson, S. D.: View from the Fringe of the Fringe. 11th Advanced Research Working
Conference on Correct Hardware Design and Verification Methods, T. Margaria and
T. Melham, eds., Springer-Verlag, vol. 2144 of Lecture Notes in Computer Science,
2001, pp. 1–12.

13

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-10-2004

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Model Checking Failed Conjectures in Theorem Proving: A Case Study

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
23-762-65-AD

6. AUTHOR(S)

Pike, Lee; Miner, Paul; Torres-Pomales, Wilfredo

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center

Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–18390

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration

Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2004–213278

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 64
Availability: NASA CASI (301) 621-0390 Distribution: Nonstandard

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://techreports.larc.nasa.gov/ltrs/ or http://ntrs.nasa.gov.

14. ABSTRACT

Interactive mechanical theorem proving can provide high assurance of correct design, but it can also be a slow iterative process. Much
time is spent determining why a proof of a conjecture is not forthcoming. In some cases, the conjecture is false and in others, the
attempted proof is insufficient. In this case study, we use the SAL family of model checkers to generate a concrete counterexample to an
unproven conjecture specified in the mechanical theorem prover, PVS. The focus of our case study is the ROBUS Interactive Consistency
Protocol. We combine the use of a mechanical theorem prover and a model checker to expose a subtle flaw in the protocol that occurs
under a particular scenario of faults and processor states. Uncovering the flaw allows us to mend the protocol and complete its general
verification in PVS.

15. SUBJECT TERMS

formal methods, theorem proving, model checking, tool integration, byzantine faults, distributed consensus, fault-tolerance

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

18

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

