

January 2012

NASA/CR–2012-217329

Copilot: Monitoring Embedded Systems

Lee Pike
Galois, Inc., Portland, Oregon

Nis Wegmann
University of Copenhagen, Copenhagen, Denmark

Sebastian Niller and Alwyn Goodloe
National Institute of Aerospace, Hampton, Virginia

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

 The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

� TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

� TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

� CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

� CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

� SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

� TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

 Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

 For more information about the NASA STI
program, see the following:

� Access the NASA STI program home page at
http://www.sti.nasa.gov

� E-mail your question via the Internet to
help@sti.nasa.gov

� Fax your question to the NASA STI Help Desk
at 443-757-5803

� Phone the NASA STI Help Desk at
443-757-5802

� Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL08AD13T

January 2012

NASA/CR–2012-217329

Copilot: Monitoring Embedded Systems

Lee Pike
Galois, Inc., Portland, Oregon

Nis Wegmann
University of Copenhagen, Copenhagen, Denmark

Sebastian Niller and Alwyn Goodloe
National Institute of Aerospace, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

 Acknowledgments

This work is supported by NASA Contract NNL08AD13T. Portions of this report have
been published as a conference paper in Runtime Verification, 2011. We wish to
especially thank the following individuals: Ben Di Vito at the NASA Langley Research
Center (NASA LaRC) monitored this contract, and Paul Miner and Eric Cooper, also at
NASA LaRC, provided valuable input. Robin Morisset developed an earlier version of
Copilot.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Abstract

Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is
imperative. In ultra-critical systems, even if the software is fault-free, because of the in-
herent unreliability of commodity hardware and the adversity of operational environments,
processing units (and their hosted software) are replicated, and fault-tolerant algorithms
are used to compare the outputs. We investigate both software monitoring in distributed
fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV tech-
niques. We describe the Copilot language and compiler, specifically designed for generating
monitors for distributed, hard real-time systems. We also describe two case-studies in which
we generated Copilot monitors in avionics systems.

1

Contents

1 Introduction 4

2 When Ultra-Critical Is Not Ultra-Reliable 4

3 Runtime Monitoring for Embedded Systems: Constraints and Approaches 5
3.1 RV Constraints . 5
3.2 Preliminaries . 6
3.3 Domain . 7
3.4 Language . 7
3.5 Tools . 15

4 Case Studies: Monitoring Avionics 19
4.1 Pitot Tube Fault-Tolerance . 19
4.2 MAVLink Monitoring . 21
4.3 Discussion . 26

5 Conclusions and Remaining Challenges 27

References 29

2

List of Figures

1 A latch. The specification is provided at the left and the implementation is
provided at the right. 9

2 A resettable counter. The specification is provided at the left and the imple-
mentation is provided at the right. 10

3 Implicit sharing (s1) versus explicit sharing (s2). 13
4 The first pass of the majority vote algorithm in Haskell. 13
5 The second pass of the majority vote algorithm in Haskell. 14
6 The first pass of the majority vote algorithm in Copilot. 14
7 The second pass of the majority vote algorithm in Copilot. 14
8 Stack configuration in the Edge 540 aircraft. 19
9 Hardware stack and pitot tube configuration. 20
10 Logged pressure sensor, voted and averaged data. 22
11 Beagle Board executing the MAVLink monitor. 23
12 Flight 1. 27
13 Flight 2. 28

3

1 Introduction

One in a billion, or 10−9, is the prescribed safety margin of a catastrophic fault occurring in
the avionics of a civil aircraft [1]. The justification for the requirement is essentially that for
reasonable estimates for the size of an aircraft fleet, the number of hours of operation per
aircraft in its lifetime, and the number of critical aircraft subsystems, a 10−9 probability
of failure per hour ensures that the overall probability of failure for the aircraft fleet is
“sufficiently small.” Let us call systems with reliability requirements on this order ultra-
critical and those that meet the requirements ultra-reliable. Similar reliability metrics might
be claimed for other safety-critical systems, like nuclear reactor shutdown systems or railway
switching systems.

Neither formal verification nor testing can ensure system reliability. Contemporary ultra-
critical systems may contain millions of lines of code; the functional correctness of approx-
imately ten thousand lines of code represents the state-of-the-art [2]. Nearly 20 years ago,
Butler and Finelli showed that testing alone cannot verify the reliability of ultra-critical
software [3].

Runtime verification (RV), where monitors detect and respond to property violations
at runtime, holds particular potential for ensuring that ultra-critical systems are in fact
ultra-reliable, but there are challenges. In ultra-critical systems, RV must account for both
software and hardware faults. Whereas software faults are design errors, hardware faults
can be the result of random failure. Furthermore, assume that characterizing a system as
being ultra-critical implies it is a distributed system with replicated hardware (so that the
failure of an individual component does not cause system-wide failure); also assume ultra-
critical systems are embedded systems sensing and/or controlling some physical plant and
that they are hard real-time, meaning that deadlines are fixed and time-critical.

2 When Ultra-Critical Is Not Ultra-Reliable

Well-known, albeit dated, examples of the failure of critical systems include the Therac-25
medical radiation therapy machine [4] and the Ariane 5 Flight 501 disaster [5]. However,
more recent events show that critical-system software safety, despite certification and ex-
tensive testing, is still an unmet goal. Below, we briefly overview three examples drawing
from faults in the Space Shuttle, a Boeing 777, and an Airbus A330, all occurring between
2005 and 2008.

Space Shuttle. During the launch of shuttle flight Space Transportation System 124
(STS-124) on May 31, 2008, there was a pre-launch failure of the fault diagnosis software due
to a “non-universal I/O error” in the Flight Aft (FA) multiplexer de-multiplexer (MDM)
located in the orbiter’s aft avionics bay [6]. The Space Shuttle’s data processing system
has four general purpose computers (GPC) that operate in a redundant set. There are
also twenty-three MDM units aboard the orbiter, sixteen of which are directly connected
to the GPCs via shared buses. The GPCs execute redundancy management algorithms
that include a fault detection, isolation, and recovery function. In short, a diode failed on
the serial multiplexer interface adapter of the FA MDM. This failure was manifested as a
Byzantine fault (i.e., a fault in which different nodes interpret a single broadcast message
differently [7]), which was not tolerated and forced an emergency launch abortion.

Boeing 777. On August 1, 2005, a Boeing 777-120 operated as Malaysia Airlines Flight
124 departed Perth, Australia for Kuala Lumpur, Malaysia. Shortly after takeoff, the air-
craft experienced an in-flight upset, causing the autopilot to dramatically manipulate the
aircraft’s pitch and airspeed. A subsequent analysis reported that the problem stemmed

4

from a bug in the Air Data Inertial Reference Unit (ADIRU) software [8]. Previously,
an accelerometer (call it A) had failed, causing the fault-tolerance computer to take data
from a backup accelerometer (call it B). However, when the backup accelerometer failed,
the system reverted to taking data from A. The problem was that the fault-tolerance soft-
ware assumed there would not be a simultaneous failure of both accelerometers. Due to
bugs in the software, accelerometer A’s failure was never reported so maintenance could be
performed.

Airbus A330. On October 7, 2008, an Airbus A330 operated as Qantas Flight QF72
from Singapore to Perth, Australia was cruising when the autopilot caused a pitch-down
followed by a loss of altitude of about 200 meters in 20 seconds (a subsequent less severe
pitch was also made) [9]. The accident required the hospitalization of fourteen people. Like
in the Boeing 777 upset, the source of this accident was an ADIRU. The ADIRU appears
to have suffered a transient fault that was not detected by the fault-management software
of the autopilot system.

3 Runtime Monitoring for Embedded Systems: Con-
straints and Approaches

In this section, we first present constraints to runtime monitoring for real-time embedded
systems, then we present Copilot, our approach for satisfying these constraints.

3.1 RV Constraints

Ideally, the RV approaches that have been developed in the literature could be applied
straightforwardly to ultra-critical systems. Unfortunately, these systems have constraints
violated by typical RV approaches. We summarize these constraints using the acronym
“FaCTS”:

• Functionality: the RV system cannot change the target’s behavior (unless the target
has violated a specification).

• Certifiability: the RV system must not make re-certification (e.g., DO-178B [10]) of
the target onerous.

• Timing: the RV system must not interfere with the target’s timing.

• SWaP: The RV system must not exhaust size, weight, and power (SWaP) tolerances.

The functionality constraint is common to all RV systems, and we will not discuss it fur-
ther. The certifiability constraint is at odds with aspect-oriented programming techniques,
in which source code instrumentation occurs across the code base—an approach classically
taken in RV (e.g., the Monitor and Checking (MaC) [11] and Monitor Oriented Program-
ming (MOP) [12] frameworks). For codes that are certified, instrumentation is not a feasible
approach, since it requires costly reevaluation of the code. Source code instrumentation can
modify both the control flow of the instrumented program as well as its timing properties.
Rather, an RV approach must isolate monitors in the sense of minimizing or eliminating the
effects of monitoring on the observed program’s control flow.

Timing isolation is also necessary for real-time systems to ensure that timing constraints
are not violated by the introduction of RV. Assuming a fixed upper bound on the execution
time of RV, a worst-case execution-time analysis is used to determine the exact timing effects
of RV on the system—doing so is imperative for hard real-time systems.

5

Code and timing isolation require the most significant deviations from traditional RV
approaches. We have previously argued that these requirements dictate a time-triggered
RV approach, in which a program’s state is periodically sampled based on the passage of
time rather than occurrence of events [13]. Other work at the University of Waterloo also
investigates time-triggered RV [14,15].

The final constraint, SWaP, applies both to memory (embedded processors may have
just a few kilobytes of available memory) as well as additional hardware (e.g., processors or
interconnects).

3.2 Preliminaries

Copilot is embedded into the functional programming language Haskell [16]. A working
knowledge of Haskell is necessary to use Copilot effectively; a variety of books and free
web resources introduce Haskell. Copilot uses Haskell language extensions specific to the
Glasgow Haskell Compiler (GHC); hence in order to start using Copilot, you must first
install an up-to-date version of GHC. (The minimal required version is 7.0.) The easiest
way to do this is to download and install the Haskell Platform, which is freely distributed
from here:

http://hackage.haskell.org/platform

After having installed the Haskell Platform, Copilot is downloaded and installed by executing
the following command:

> cabal install copilot

This should, if everything goes well, install Copilot on your system.
Copilot is distributed throughout a series of packages at Hackage:

• copilot-language: Contains the language front-end.

• copilot-core: Contains an intermediate representation for Copilot programs (shared
by all back-ends).

• copilot-c99: A back-end for Copilot targeting C99 (based on Atom, http://hackage.
haskell.org/package/atom).

• copilot-sbv: A back-end for Copilot targeting C99 (based on SBV, http://hackage.
haskell.org/package/sbv).

• copilot-libraries: A set of utility functions for Copilot, including a clock-library, a
linear temporal logic framework, a voting library, and a regular expression framework.

• copilot-cbmc: A driver for proving the correspondence between code generated by the
copilot-c99 and copilot-sbv back-ends.

Many of the examples in this paper can be found at https://github.com/leepike/

Copilot/tree/copilot2.0/Examples.
To use the language, your Haskell module should contain the following import:

import Language.Copilot

To use the back-ends, import, them, respectively:

import Copilot.Compile.C99

import Copilot.Compile.SBV

If you need to use functions defined in the Prelude that are redefined by Copilot (e.g.,
arithmetic operators), import the Prelude as qualified:

import qualified Prelude as P

6

3.3 Domain

Copilot is a domain-specific language tailored to programming runtime monitors for hard
real-time, distributed, reactive systems. Briefly, a runtime monitor is program that runs
concurrently with a target program with the sole purpose of assuring that the target program
behaves in accordance with a pre-established specification. Copilot is a language for writing
such specifications.

A reactive system is a system that responds continuously to its environment. All data
to and from a reactive system is communicated progressively during execution. Reactive
systems differ from transformational systems which transforms data in a single pass and
then terminate, as for example compilers and numerical computation software.

A hard real-time system is a system that has a statically bounded execution time and
memmory usage. Typically, hard real-time systems are used in mission-critical software,
such as avionics, medical equipment, and nuclear power plants; hence, occasional dropouts
in the response time or crashes are not tolerated.

A distributed system is a system which is layered out on multiple pieces of hardware.
The distributed systems we consider are all synchronized, i.e., each component agree on a
shared global clock.

3.4 Language

Copilot is embedded into the functional programming language Haskell [16], and a working
knowledge of Haskell is necessary to use Copilot effectively. Copilot is a pure declarative
language; i.e., expressions are free of side-effects and satisfies referential transparency. A
program written in Copilot, which from now on will be referred to as a specification, has a
cyclic behavior, where each cycle consists of a fixed series of steps:

• Sample external variables, arrays, and functions.

• Update internal variables.

• Fire external triggers. (In case the specification is violated.)

We refer to a single cycle as an iteration.
All transformation of data in Copilot is propagated through streams. A stream is an

infinite, ordered sequence of values which must conform to the same type. E.g., we have the
stream of Fibonacci numbers:

sfib = {0, 1, 1, 2, 3, 5, 8, 13, 21, . . . }
We denote the nth value of the stream s as s(n), and the first value in a sequence s as s(0).
For example, for sfib we have that sfib(0) = 0, sfib(1) = 1, sfib(2) = 1, and so forth.

Constants as well as arithmetic, boolean, and relational operators are lifted to work
pointwise on streams:

x :: Stream Int32

x = 5 + 5

y :: Stream Int32

y = x * x

z :: Stream Bool

z = x == 10 && y < 200

Here the streams x, y, and z are simply constant streams :

x � {10, 10, 10, . . . }, y � {100, 100, 100, . . . }, z � {T, T, T, . . . }

7

Two types of temporal operators are provided, one for delaying streams and one for
looking into the future of streams:

(++) :: [a] -> Stream a -> Stream a

drop :: Int -> Stream a -> Stream a

Here xs ++ s prepends the list xs at the front of the stream s. For example the stream w

defined as follows, given our previous definition of x:

w = [5,6,7] ++ x

evaluates to the sequence w � {5, 6, 7, 10, 10, 10, . . . }. The expression drop k s skips the
first k values of the stream s, returning the remainder of the stream. For example we can
skip the first two values of w:

u = drop 2 w

which yields the sequence u � {7, 10, 10, 10, . . . }.

3.4.1 Streams as Lazy-Lists

A key design choice in Copilot is that streams should mimic lazy lists. In Haskell, the
lazy-list of natural numbers can be programmed like this:

nats_ll :: [Int32]

nats_ll = [0] ++ zipWith (+) (repeat 1) nats_ll

As both constants and arithmetic operators are lifted to work pointwise on streams in
Copilot, there is no need for zipWith and repeat when specifying the stream of natural
numbers:

nats :: Stream Int32

nats = [0] ++ (1 + nats)

In the same manner, the lazy-list of Fibonacci numbers can be specified as follows:

fib_ll :: [Int32]

fib_ll = [1, 1] ++ zipWith (+) fib_ll (drop 1 fib_ll)

In Copilot we simply throw away zipWith:

fib :: Stream Int32

fib = [1, 1] ++ (fib + drop 1 fib)

Copilot specifications must be causal, informally meaning that stream values cannot
depend on future values. For example, the following stream definition is allowed:

f :: Stream Word64

f = [0,1,2] ++ f

g :: Stream Word64

g = drop 2 f

But if instead g is defined as g = drop 4 f, then the definition is disallowed. While
an analogous stream is definable in a lazy language, we bar it in Copilot, since it requires
future values of f to be generated before producing values for g. This is not possible since
Copilot programs may take inputs in real-time from the environment (see Section 3.4.5).

8

xi: yi−1: yi:
F F F
F T T
T F T
T T F

latch :: Stream Bool -> Stream Bool

latch x = y

where

y = if x then not z else z

z = [False] ++ y

Figure 1: A latch. The specification is provided at the left and the implementation is
provided at the right.

3.4.2 Functions on Streams

Given that constants and operators work pointwise on streams, we can use Haskell as a
macro-language for defining functions on streams. The idea of using Haskell as a macro
language is powerful since Haskell is a general-purpose higher-order functional language.

Example 1:

We define the function, even, which given a stream of integers returns a boolean stream
which is true whenever the input stream contains an even number, as follows:

even :: Stream Int32 -> Stream Bool

even x = x ‘mod‘ 2 == 0

Applying even on nats (defined above) yields the sequence {T, F, T, F, T, F, . . . }.
If a function is required to return multiple results, we simply use plain Haskell tuples:

Example 2:

We define complex multiplication as follows:

mul_comp

:: (Stream Double, Stream Double)

-> (Stream Double, Stream Double)

-> (Stream Double, Stream Double)

(a, b) ‘mul_comp‘ (c, d) = (a * c - b * d, a * d + b * c)

Here a and b represent the real and imaginary part of the left operand, and c and d represent
the real and imaginary part of the right operand.

3.4.3 Stateful Functions

In addition to pure functions, such as even and mul comp, Copilot also facilitates stateful
functions. A stateful function is a function which has an internal state, e.g. as a latch (as
in electronic circuits) or a low/high-pass filter (as in a DSP).

Example 3:

We consider a simple latch, as described in [17], with a single input and a boolean state.
Whenever the input is true the internal state is reversed. The operational behavior and the
implementation of the latch is shown in Figure 1.1

Example 4:

We consider a resettable counter with two inputs, inc and reset. The input inc increments
the counter and the input reset resets the counter. The internal state of the counter, cnt,
represents the value of the counter and is initially set to zero. At each cycle, i, the value of
cnti is determined as shown in the left table in Figure 2.

1In order to use conditionals (if-then-else’s) in Copilot specifications, as in Figures 1 and 2, the GHC
language extension RebindableSyntax must be set on.

9

inci: reseti: cnti:
F F cnti−1

* T 0
T F cnti−1 + 1

counter :: Stream Bool -> Stream Bool

-> Stream Int32

counter inc reset = cnt

where

cnt = if reset then 0

else if inc then z + 1

else z

z = [0] ++ cnt

Figure 2: A resettable counter. The specification is provided at the left and the imple-
mentation is provided at the right.

3.4.4 Types

Copilot is a typed language, where types are enforced by the Haskell type system to ensure
generated C programs are well-typed. Copilot is strongly typed (i.e., type-incorrect function
application is not possible) and statically typed (i.e., type-checking is done at compile-time).
The base types are Booleans, unsigned and signed words of width 8, 16, 32, and 64, floats,
and doubles. All elements of a stream must belong to the same base type. These types have
instances for the class Typed a, used to constrain Copilot programs.

We provide a cast operator

cast :: (Typed a, Typed b) => Stream a -> Stream b

that casts from one type to another. The cast operator is only defined for casts that do not
lose information, so an unsigned word type a can only be cast to another unsigned type at
least as large as a or to a signed word type strictly larger than a. Signed types cannot be
cast to unsigned types but can be cast to signed types at least as large.

3.4.5 Interacting With the Target Program

All interaction with the outside world is done by sampling external symbols and by evoking
triggers. External symbols are symbols that are defined outside Copilot and which reflect
the visible state of the target program that we are monitoring. They include variables,
arrays, and functions (with a non-void return type). Analogously, triggers are functions
that are defined outside Copilot and which are evoked when Copilot needs to report that
the target program has violated a specification constraint.

Sampling. A Copilot specification is open if defined with external symbols in the sense
that values must be provided externally at runtime. To simplify writing Copilot specifica-
tions that can be interpreted and tested, constructs for external symbols take an optional
environment for interpretation.

External variables are defined by using the extern construct:

extern :: Typed a => String -> Maybe [a] -> Stream a

It takes the name of an external variable, a possible Haskell list to serve as the environment
for the interpreter, and generates a stream by sampling the variable at each clock cycle. For
example,

sumExterns :: Stream Word64

sumExterns = let ex1 = extern "e1" (Just [0..])

ex2 = extern "e2" Nothing

in ex1 + ex2

is a stream that takes two external variables e1 and e2 and adds them. The first exter-
nal variable contains the infinite list [0,1,2,...] of values for use when interpreting a

10

Copilot specification containing the stream. The other variable contains no environment
(sumExterns must have an environment for both of its variables to be interpreted).

Sometimes, type inference cannot infer the type of an external variable. For example, in
the stream definition

extEven :: Stream Bool

extEven = e0 ‘mod‘ 2 == 0

where e0 = externW8 "x" Nothing

the type of extern "x" is ambiguous, since it cannot be inferred from a Boolean stream
and we have not given an explicit type signature. For convenience, typed extern functions
are provided, e.g., externW8 or externI64 denoting an external unsigned 8-bit word or
signed 64-bit word, respectively. In general it is best practice to define external symbols
with top-level definitions, e.g.,

e0 :: Stream Word8

e0 = extern "e0" (Just [2,4..])

so that the symbol name and its environment can be shared between streams.
Besides variables, external arrays and arbitrary functions can be sampled. The external

array construct has the type

externArray :: (Typed a, Typed b, Integral a)

=> String -> Stream a -> Int

-> Maybe [[a]] -> Stream b

The construct takes (1) the name of an array, (2) a stream that generates indexes for the
array (of integral type), (3) the fixed size of the array, and (4) possibly a list of lists that
is the environment for the external array, representing the sequence of array values. For
example,

extArr :: Stream Word32

extArr = externArray "arr1" arrIdx size

(Just $ repeat (permutations [0,1,2]))

where

arrIdx :: Stream Word8

arrIdx = [0] ++ (arrIdx + 1) ‘mod‘ size

size = 3

extArr is a stream of values drawn from an external array containing 32-bit unsigned words.
The array is indexed by an 8-bit variable. The index is ensured to be less than three by
using modulo arithmetic. The environment provided produces an infinite list of all the
permutations of the list [0,1,2].2

Example 5:

Say we have defined a lookup-table (in C99) of a discretized continuous function that we
want to use within Copilot:

double someTable[42] = { 3.5, 3.7, 4.5, ... };

We can use the table in a Copilot specification as follows:

lookupSomeTable :: Stream Word16 -> Stream Double

lookupSomeTable idx =

externArray "someTable" idx 42 Nothing

Given the following values for idx, {1, 0, 2, 2, 1, . . . }, the output of lookupSomeTable idx

would be
{3.7, 3.5, 4.5, 4.5, 3.7, . . . }

2The function permutations comes from the Haskell standard library Data.list.

11

Finally, the constructor externFun takes (1) a function name, (2) a list of arguments,
and (3) a possible list of values to provide its environment.

externFun :: Typed a => String -> [FunArg]

-> Maybe [a] -> Stream a

Each argument to an external function is given by a Copilot stream. For example,

func :: Stream Word16

func = externFun "f" [funArg e0, funArg nats] Nothing

where

e0 = externW8 "x" Nothing

nats :: Stream Word8

nats = [0] ++ nats + 1

samples a function in C that has the prototype

uint16_t f(uint8_t x, uint8_t nats);

Both external arrays and functions must, like external variables, be defined in the target
program that is monitored. Additionally, external functions must be without side effects, so
that the monitor does not cause undesired side-effects when sampling functions. Finally, to
ensure Copilot sampling is not order-dependent, external functions cannot contain streams
containing other external functions or external arrays in their arguments, and external arrays
cannot contain streams containing external functions or external arrays in their indexes.
They can both take external variables, however.

Triggers. Triggers, the only mechanism for Copilot streams to effect the outside world,
are defined by using the trigger construct:

trigger :: String -> Stream Bool -> [TriggerArg] -> Spec

The first parameter is the name of the external function, the second parameter is the guard
which determines when the trigger should be evoked, and the third parameter is a list of
arguments which is passed to the trigger when evoked. Triggers can be combined into a
specification by using the do-notation:

spec :: Spec

spec = do

trigger "f" (even nats) [arg fib, arg (nats * nats)]

trigger "g" (fib > 10) []

let x = externW32 "x" Nothing

trigger "h" (x < 10) [arg x]

The order in which the triggers are defined is irrelevant.

Example 6:

We consider an engine controller with the following property: If the temperature rises more
than 2.3 degrees within 0.2 seconds, then the fuel injector should not be running. Assuming
that the global sample rate is 0.1 seconds, we can define a monitor that surveys the above
property:

propTempRiseShutOff :: Spec

propTempRiseShutOff =

trigger "over_temp_rise"

(overTempRise && running) []

where

max = 500 -- maximum engine temperature

temps :: Stream Float

temps = [max, max, max] ++ temp

12

temp = extern "temp" Nothing

overTempRise :: Stream Bool

overTempRise = drop 2 temps > (2.3 + temps)

running :: Stream Bool

running = extern "running" Nothing

Here, we assume that the external variable temp denotes the temperature of the engine
and the external variable running indicates whether the fuel injector is running. The
external function over temp rise is called without any arguments if the temperature rises
more than 2.3 degrees within 0.2 seconds and the engine is not shut off. Notice there is a
latency of one tick between when the property is violated and when the guard becomes true.

3.4.6 Explicit Sharing

s1 = let x = nats + nats

in x * x

s2 = local (nats + nats) $

\ x -> x * x

Figure 3: Implicit sharing (s1) versus explicit sharing (s2).

Copilot facilitates sharing in expressions by the local -construct:

local

:: (Typed a, Typed b)

=> Stream a

-> (Stream a -> Stream b)

-> Stream b

The local construct works similar to let-bindings in ordinary Haskell. From a semantic point
of view, the streams s1 and s2 from Figure 3 are identical. As we will see in Section 3.4.7,
however, certain advanced Copilot programs may force the compiler to build syntax trees
that blow up exponentially. In such cases, using explicit sharing helps to avoid this problem.

3.4.7 Extended Example: The Boyer-Moore Majority-Vote Algorithm

In this section we demonstrate how to use Haskell as an advanced macro language on top
of Copilot by implementing an algorithm for solving the voting problem in Copilot.

Reliability in mission critical software is often improved by replicating the same compu-
tations on separate hardware and by doing a vote in the end based on the output of each
system. The majority vote problem consists of determining if in a given list of votes there
is a candidate that has more than half of the votes, and if so, of finding this candidate.

majorityPure :: Eq a => [a] -> a

majorityPure [] = error "majorityPure: empty list!"

majorityPure (x:xs) = majorityPure’ xs x 1

majorityPure’ [] can _ = can

majorityPure’ (x:xs) can cnt =

let

can’ = if cnt == 0 then x else can

cnt’ = if cnt == 0 || x == can then succ cnt else pred cnt

in

majorityPure’ xs can’ cnt’

Figure 4: The first pass of the majority vote algorithm in Haskell.

13

aMajorityPure :: Eq a => [a] -> a -> Bool

aMajorityPure xs can = aMajorityPure’ 0 xs can > length xs ‘div‘ 2

aMajorityPure’ cnt [] _ = cnt

aMajorityPure’ cnt (x:xs) can =

let

cnt’ = if x == can then cnt+1 else cnt

in

aMajorityPure’ cnt’ xs can

Figure 5: The second pass of the majority vote algorithm in Haskell.

The Boyer-Moore Majority Vote Algorithm [18,19] solves the problem in linear time and
constant memory. It does so in two passes: The first pass chooses a candidate; and the
second pass asserts that the found candidate indeed holds a majority.

Without going into details of the algorithm, the first pass can be implemented in Haskell
as shown in Figure 4. The second pass, which simply checks that a candidate has more than
half of the votes, is straightforward to implement and is shown in Figure 5. E.g. applying
majorityPure on the string AAACCBBCCCBCC yields C, which aMajorityPure can confirm is
in fact a majority.

majority :: (Eq a, Typed a) => [Stream a] -> Stream a

majority [] = error "majority: empty list!"

majority (x:xs) = majority’ xs x 1

majority’ [] can _ = can

majority’ (x:xs) can cnt =

local

(if cnt == 0 then x else can) $

\ can’ ->

local (if cnt == 0 || x == can then cnt+1 else cnt-1) $

\ cnt’ ->

majority’ xs can’ cnt’

Figure 6: The first pass of the majority vote algorithm in Copilot.

aMajority :: (Eq a, Typed a) => [Stream a] -> Stream a -> Stream Bool

aMajority xs can = aMajority’ 0 xs can > (fromIntegral (length xs) ‘div‘ 2)

aMajority’ cnt [] _ = cnt

aMajority’ cnt (x:xs) can =

local

(if x == can then cnt+1 else cnt) $

\ cnt’ ->

aMajority’ cnt’ xs can

Figure 7: The second pass of the majority vote algorithm in Copilot.

When implementing the majority vote algorithm for Copilot, we can use reuse almost all
of the code from the Haskell implementation. However, as functions in Copilot are macros
that are expanded at compile time, care must be taken in order to avoid an explosion in the
code size. Hence, instead of using Haskell’s built-in let-blocks, we use explicit sharing, as
described in Section 3.4.6. The Copilot implementations of the first and the second pass are
given in Figure 6 and Figure 7 respectively. Comparing the Haskell implementation with
the Copilot implementation, we see that the code is almost identical, except for the type
signatures and the explicit sharing annotations.

14

3.5 Tools

Copilot comes with a variety of tools, including a pretty-printer, an interpreter, two compil-
ers targeting C, and a verifier front-end. In the following section, we will demonstrate some
of these tools and their usage.

3.5.1 Pretty-Printing

Pretty-printing is straightforward. For some specification spec,

prettyPrint spec

returns the specification after static macro expansion. Pretty-printing can provide some
indication about the complexity of the specification to be evaluated. Specifications that are
built by recursive Haskell programs (e.g., the majority voting example in Section 3.4.7) can
generate expressions that are large. Large expressions can take significant time to interpret
or compile.

3.5.2 Interpreting Copilot

The copilot interpreter is invoked as follows (e.g. within GHCI, the GHC compiler’s inter-
preter for Haskell):

GHCI> interpret 10 propTempRiseShutOff

The first argument to the function interpret is the number of iterations that we want to
evaluate. The third argument is the specification (of type Spec) that we wish to interpret.

The interpreter outputs the values of the arguments passed to the trigger, if its guard is
true, and -- otherwise. For example, consider the following Copilot program:

spec = do

trigger "trigger1" (even nats) [arg nats, arg $ odd nats]

trigger "trigger2" (odd nats) [arg nats]

where nats is the stream of natural numbers, and even and odd are functions that take a
stream and return whether the point-wise values are even or odd, respectively. The output
of

interpret 10 spec

is as follows:

trigger: trigger2:

(0,false) --

-- (1)

(2,false) --

-- (3)

(4,false) --

-- (5)

(6,false) --

-- (7)

(8,false) --

-- (9)

Sometimes it is convenient to observe the behavior of a stream without defining a trigger.
We can do so declaring an observer. For example:

spec :: Spec

spec = observer ‘‘obs’’ nats

can be interpreted using

15

interpret 5 spec

as usual. Observers can be combined in larger Copilot programs. For example, consider the
following:

spec :: Spec

spec = do

let x = externW8 "x" (Just [0..])

trigger "trigger" true [arg $ x < 3]

observer "debug_x" x

Interpreting spec as follows

interpret 10 spec

yields

trigger: debug_x:

(true) 0

(true) 1

(true) 2

(false) 3

(false) 4

(false) 5

(false) 6

(false) 7

(false) 8

(false) 9

3.5.3 Compiling Copilot

Compiling the engine controller from Example 6 is straightforward. First, we pick a back-end
to compile to. Currently, two back-ends are implemented, both of which generate constant-
time and constant-space C code. One back-end is called copilot-c99 and targets the Atom
language,3 originally developed by Tom Hawkins at Eaton Corp. for developing control
systems. The second back-end is called copilot-sbv and targets the SBV language4, originally
developed by Levent Erkök. SBV is primarily used as an interface to SMT solvers [20] and
also contains a C-code generator. Both languages are open-source.

The two back-ends are installed with Copilot, and they can be imported, respectively,
as

import Copilot.Compile.C99

and

import Copilot.Compile.SBV

After importing a back-end, the interface for compiling is as follows:5

reify spec >>= compile defaultParams

(The compile function takes a parameter to rename the generated C files; defaultParams
is the default, in which there is no renaming.)

The compiler now generates two files:

• “copilot.c” —

3http://hackage.haskell.org/package/atom
4http://hackage.haskell.org/package/sbv
5Two explanations are in order: (1) reify allows sharing in the expressions to be compiled [21], and >>=

is a higher-order operator that takes the result of reification and “feeds” it to the compile function.

16

• “copilot.h” —

The file named “copilot.h” contains prototypes for all external variables, functions, and
arrays, and contains a prototype for the “step”-functions which evaluates a single iteration.

/* Generated by Copilot Core v. 0.1 */

#include <stdint.h>

#include <stdbool.h>

/* Triggers (must be defined by user): */

void over_temp_rise();

/* External variables (must be defined by user): */

extern float temp;

extern bool running;

/* Step function: */

void step();

Using the prototypes in “copilot.h” we can build a driver as follows:

/* driver.c */

#include <stdio.h>

#include "copilot.h"

bool running = true;

float temp = 1.1;

void over_temp_rise()

{

printf("The trigger has been evoked!\n");

}

int main (int argc, char const *argv[])

{

int i;

for (i = 0; i < 10; i++)

{

printf("iteration: %d\n", i);

temp = temp * 1.3;

step();

}

return 0;

}

Running “gcc copilot.c driver.c -o prop” gives a program “prop”, which when executed
yields the following output:

iteration: 0

iteration: 1

iteration: 2

iteration: 3

iteration: 4

iteration: 5

iteration: 6

iteration: 7

The trigger has been evoked!

iteration: 8

The trigger has been evoked!

iteration: 9

The trigger has been evoked!

17

3.5.4 QuickCheck

QuickCheck [22] is a library originally developed for Haskell such that given a property, it
generates random inputs to test the property. We provide a similar tool for checking Copilot
specifications. Currently, the tool is implemented to check the copilot-c99 back-end against
the interpreter. The tool generates a random Copilot specification, and for some user-defined
number of iterations, the output of the interpreter is compared against the output of the
compiled C program. The user can specify weights to influence the probability at which
expressions are generated.

The copilot QuickCheck tool is installed with Copilot and assuming the binary is in the
path, it is executed as

copilot-c99-qc

3.5.5 Verification

“Who watches the watchmen?” Nobody. For this reason, monitors in ultra-critical systems
are the last line of defense and cannot fail. Here, we outline our approach to generate high-
assurance monitors. First, as mentioned, the compiler is statically and strongly typed, and
by implementing an eDSL, much of the infrastructure of a well-tested Haskell implementa-
tion is reused. We have described our custom QuickCheck engine. We have tested millions
of randomly-generated programs between the compiler and interpreter with this approach.

Additionally, Copilot includes a tool to generate a driver to prove the equivalence between
the copilot-c99 and copilot-sbv back-ends that each generate C code (similar drivers are
planned for future back-ends). To use the driver, first import the following module:

import qualified Copilot.Tools.CBMC as C

(We import it using the qualified keyword to ensure no name space collisions.) Then in
GHCI, just like with compilation, we execute

reify spec >>= C.genCBMC C.defaultParams

This generates two sets of C sources, one compiled through the copilot-c99 back-end and
one through the copilot-sbv back-end. In addition, a driver (that is, a main function) is
generated that executes the code from each back-end. The driver has the following form:

int main (int argc, char const *argv[])

{

int i;

for (i = 0; i < 10; i++)

{

sampleExterns();

atm_step();

sbv_step();

assert(atm_i == sbv_i);

}

return 0;

}

This driver executes the two generated programs for ten iterations, which is the default
value. That default can be changed; for example:

reify spec >>=

C.genCBMC C.defaultParams {C.numIterations = 20}

18

The above executes the generated programs for 20 executions.
The verification depends on an open-source model-checker for C source-code originally

developed at Carnegie Mellon University [23]. A license for the tool is available. 6 CBMC
must be downloaded and installed separately; CBMC is actively maintained at the time of
writing, and is available for Windows, Linux, and Mac OS.

CBMC symbolically executes a program. With different options, CBMC can be used
to check for arithmetic overflow, buffer overflow/underflow, floating-point NaN results, and
division by zero. Additionally, CBMC can attempt to verify arbitrary assert() statements
placed in the code. In our case, we wish to verify that on each iteration, for the same input
variables, the two back-ends have the same state.

CBMC proves that for all possible inputs, the two programs have the same outputs
for the number of iterations specified. The time-complexity of CBMC is exponential with
respect to the number of iterations. Furthermore, CBMC cannot guarantee equivalence
beyond the fixed number of iterations.

After generating the two sets of C source files, CBMC can be executed on the file
containing the driver; for example,

cbmc cbmc_driver.c

4 Case Studies: Monitoring Avionics

We describe two case studies in which we have used Copilot monitors below.

4.1 Pitot Tube Fault-Tolerance

Figure 8: Stack configuration in the Edge 540 aircraft.

In commercial aircraft, airspeed is commonly determined using pitot tubes that measure
air pressure. The difference between total and static air pressure is used to calculate airspeed.
Pitot tube subsystems have been implicated in numerous commercial aircraft incidents and
accidents, including the 2009 Air France crash of an A330 [24], motivating our case study.

6http://www.cprover.org/cbmc/LICENSE. It is the user’s responsibility to ensure their use conforms to
the license.

19

STM32
Node 1

STM32
Node 2

STM32
Node 3

SD
Card

STM32
Node 4

Power,
Pressure Sensors
Signal conditioning

max. 500mA
16.8 VDC

N
od

es
 c

om
m

un
ic

at
e

th
ro

ug
h

se
ri

al
 c

on
ne

ct
io

ns

Static and dynamic
air pressure from

5 pitot tubes

Pi tot tube 5 with
MPXV5004DP

STM32
Node 1

STM32
Node 2

STM32
Node 3

STM32
N o d e 4

Pi tot tube 1 with
MPXV7002DP

Pitot tube 2 with
MPXV7002DP

Pitot tube 3 with
MPXV7002DP

Pitot tube 4 wi th
MPXV7002DP

Figure 9: Hardware stack and pitot tube configuration.

We have developed a platform resembling a real-time air speed measuring system with
replicated processing nodes, pitot tubes, and pressure sensors to test distributed Copilot
monitors with the objective of detecting and tolerating software and hardware faults, both
of which are purposefully injected. The platform and its inclusion in an Edge 540 test
aircraft, is depicted in Figure 8.

The high-level procedure of our experiment is as follows: (1) we sense and sample air
pressure from the aircraft’s pitot tubes; (2) apply a conversion and calibration function
to accommodate different sensor and analog-to-digital converter (ADC) characteristics; (3)
sample the C variables that contain the pressure values on a hard real-time basis by Copilot-
generated monitors; and (4) execute Byzantine fault-tolerant voting and fault-tolerant av-
eraging on the sensor values to detect arbitrary hardware component failures and keep
consistent values among good nodes.

We sample five pitot tubes, attached to the wings of an Edge 540 subscale aircraft.
The pitot tubes provide total and static pressure that feed into one MPXV5004DP and
four MPXV7002DP differential pressure sensors (Figure 9). The processing nodes are four
STM 32 microcontrollers featuring ARM Cortex M3 cores which are clocked at 72 Mhz
(the number of processors was selected with the intention of creating applications that can
tolerate one Byzantine processing node fault [7]). The MPXV5004DP serves as a shared
sensor that is read by each of the four processing nodes; each of the four MPXV7002DP
pressure sensors is a local sensor that is only read by one processing node.

Monitors communicate over dedicated point-to-point bidirectional serial connections.
With one bidirectional serial connection between each pair of nodes, the monitor bus and
the processing nodes form a complete graph. All monitors on the nodes run in synchronous
steps; the clock distribution is ensured by a master hardware clock. (The clock is a single
point of failure in our prototype hardware implementation; a fully fault-tolerant system
would execute a clock-synchronization algorithm.)

Each node samples its two sensors (the shared and a local one) at a rate of 16Hz.
The microcontroller’s timer interrupt that updates the global time also periodically calls a
Copilot-generated monitor which samples the ADC C-variables of the monitored program,
conducts Byzantine agreements, and performs fault-tolerant votes on the values. After a
complete round of sampling, agreements, and averaging, an arbitrary node collects and logs
intermediate values of the process to an SD-card.

We tested the monitors in five flights. In each flight we simulated one node having a
permanent Byzantine fault by having one monitor send out pseudo-random differing values
to the other monitors instead of the real sampled pressure. We varied the number of injected
benign faults by physically blocking the dynamic pressure ports on the pitot tubes. In

20

addition, there were two “control flights”, leaving all tubes unmodified.
The executed sampling, agreement, and averaging is described as follows:

1. Each node samples sensor data from both the shared and local sensors.

2. Each monitor samples the C variables that contain the pressure values and broadcasts
the values to every other monitor, then relays each received value to monitors the
value did not originate from.

3. Each monitor performs a majority vote (as described in Section 3.4.7) over the three
values it has for every other monitor of the shared sensor (call this maji(S) for node
i) and the local sensor (call this maji(L) for node i).

4. Copilot-generated monitors then compute a fault-tolerant average. In our implementa-
tion, we remove the least and greatest elements from a set, and average the remaining
elements. For each node i and nodes j �= i, fault-tolerant averages are taken over four-
element sets: (1) ftAvg(S) = {Si} ∪ {majj(S)} where Si is i’s value for the shared
sensor.

5. Another fault-tolerant average is taken over a five-element set, where the two least
and two greatest elements are removed (thus returning the median value). The set
contains the fault-tolerant average over the shared sensor described in the previous
step (ftAvg(S)), the node’s local sensor value Li, and {majj(L)}, for j �= i. Call
this final fault-tolerant average ftAvg.

6. Finally, time-stamps, sensor values, majorities and their existences are collected by
one node and recorded to an SD card for off-line analysis.

The graphs in Figure 10 depict four scenarios in which different faults are injected.
In each scenario, there is a software-injected Byzantine faulty node present. What varies
between the scenarios are the number of physical faults. In Figure 10(a), no physical faults
are introduced; in Figure 10(b), one benign fault has been injected by putting a cap over
the total pressure probe of one local tube.7 In Figure 10(c), in addition to the capped tube,
sticky tape is placed over another tube, and in Figure 10(d), sticky tape is placed over two
tubes in addition to the capped tube.

The graphs depict the air pressure difference data logged at each node and the voted and
averaged outcome of the 3 non-faulty processing nodes. The gray traces show the recorded
sensor data S1, . . . , S4, and the calibrated data of the local sensors L1, . . . , L4. The black
traces show the final agreed and voted values ftAvg of the three good nodes.

In every figure except for Figure 10(d), the black graphs approximate each other, since
the fault-tolerant voting allows the nodes to mask the faults. This is despite wild faults; for
example, in Figure 10(b), the cap on the capped tube creates a positive offset on the dynamic
pressure as well as turbulences and low pressure on the static probes. At 1.2E7 clock ticks,
the conversion and calibration function of the stuck tube results in an underflowing value.
In Figure 10(d), with only two non-faulty tubes out of five left, ftAvg is not able to choose a
non-faulty value reliably anymore. All nodes still agree on a consistent—but wrong—value.

4.2 MAVLink Monitoring

The MAVLink (Micro Air Vehicle Link8) protocol consists of a set of messages to be sent
between small air vehicles and ground stations. Althought it can be used to send messages

7Tape left on the static pitot tube of Aeroperú Flight 603 in 1996 resulted in the death of 70 passengers
and crew [25].

8http://qgroundcontrol.org/mavlink/start

21

(a) (b)

(c) (d)

Figure 10: Logged pressure sensor, voted and averaged data.

on parameters like wind speed or attitude, the usual applications of MAVLink are in avionic
systems with an autopilot. MAVLink is used by several ground-station software packages,
like QGroundControl, Happy Killmore Ground Control Station, the Ardupilot Mega Planner
and autopilot systems like PIXHAWK or the Ardupilot Mega. MAVLink commands and
messages of version 2 of the protocol are specified in XML files that contain common and
groundstation/autopilot specific packet definitions.

We have implemented portions of the common set MAVLink protocol as Copilot monitors
and have executed them on binary MAVLink log files. Additionally, we have executed the
monitor in real-time on three flights of an Edge R540T subscale aircraft to analyze MAVLink
packets from an Ardupilot Mega. The configuration in the Edge is depicted in Figure 11.
In the center is a Beagleboard xM that executes the monitors described below. On the
right-hand side, inside the silver box, is an Arduino Mega board that runs the Ardupilot
autopilot. The red board below the silver box is a Seeeduino, that is used as a serial hub
that connects the XBee radio to the groundstation, the Beagleboard and the Ardupilot.

The layout of a packet frame in MAVLink version is listed in Table 1. The example
column lists a packet of the MAVLink heartbeat type (message id 0x00 and payload length
three) as it was captured from a ZigBee link between an ArduPilot Mega and an ArduPilot
Mega Planner groundstation. Heartbeat messages are sent in regular intervals and are used
to keep track of different vehicles as they appear and leave the visibility of receiving nodes.
The three payload bytes stand for the type of aircraft (0x01 - fixed wing), the type of the
autopilot (0x03 - Ardupilot) and the MAVLink version (0x02).

According to Table 1, we define some protocol specific sizes and limits, next to their
constant Copilot stream versions:

startSequenceSize = 1

22

Figure 11: Beagle Board executing the MAVLink monitor.

Byte Index Content Value Example
0 Packet start sign 0x55, ASCII: U 0x55
1 Payload length n 0− 255 0x03
2 Packet sequence 0− 255 0x13
3 System ID 1− 255 0x01
4 Component ID 0− 255 0x01
5 Message ID 0− 255 0x00

6 to n+ 6 Payload data 0− 255 per byte 0x01, 0x03, 0x02
n+ 7 to n+ 8 Checksum over 0− 65535 0x32, 0xb7

bytes 1..(n+6)

Table 1. MAVLink packet fields.

startSequenceSize’ = constant startSequenceSize

headerSize = 6

headerSize’ = constant headerSize

crcSize = 2

crcSize’ = constant crcSize

maxPayloadLength = 255

maxPayloadLength’ = constant maxPayloadLength

maxPacketLength = headerSize + maxPayloadLength + crcSize

maxPacketLength’ = headerSize’ + maxPayloadLength’ + crcSize’

To analyze incoming packets, we define an input stream that has a long enough initial
array to keep one MAVLink packet of maximum length.9 In each tick, the next MAVLink

9At the time of this writing, Copilot did not handle streams of arrays. Modeling the protocol as a stream
of Word32s, as we explain herein, is inefficient, resulting in a large specification.

23

byte is sampled from the C varible extern input and shifted into the array from the right:

-- The input stream, allows dropping up to the maximum packet length

inputStream :: Stream Word32

inputStream = replicate maxPacketLength 0 ++ externInput

-- The actual MAVLink input

externInput :: Stream Word32

externInput = extern "extern_input" Nothing

Further, we define where in a packet to access header fields and payload, according to
Table 1:

payloadLength = drop 1 inputStream

packetLength = headerSize’ + payloadLength + crcSize’

packetSequenceNumber = drop 2 inputStream

systemID = drop 3 inputStream

componentID = drop 4 inputStream

messageID = drop 5 inputStream

payload = drop 6 inputStream

The MAVLink checksum is a modification of the checksum used in the X.25 protocol; it
uses the same calculation as the X.25 cyclic redundancy check, but does not invert the final
remainder. A Copilot function that takes an initial remainder r and 8 bit of the input stream
d, then calculates a new remainder by dividing d by the X.25 polynomial x16+x12+x5+1,
is listed below:

mavlinkCrcUpdate :: Stream Word32 -> Stream Word32 -> Stream Word32

mavlinkCrcUpdate r d =

let d’ = d .&. 0xff

tmp = d’ .^. (r .&. 0xff)

tmp’ = tmp .^. (shiftL 4 tmp .&. 0xff)

in foldl1 (.^.) [shiftR 8 r, shiftL 8 tmp’

, shiftL 3 tmp’, shiftR 4 tmp’]

Left-folding the mavlinkCrcUpdate function with an initial value crcInit = 0xffff

into the initial array, starting from the second packet byte up to the maximum packet
length (and keeping the intermediate CRC results), is achieved by the Copilot nscanl

library function.10

crcStreams :: [Stream Word32]

crcStreams = nscanl

(maxPacketLength - startSequenceSize)

mavlinkCrcUpdate crcInit

(drop 1 inputStream)

The crcStreams list contains the CRC values of all prefixes of a possible packet. The
CRC over all values of a valid packet, excluding the start sign and including a valid CRC
at the end of the packet, will be zero:

crcIndex :: Stream Word32

crcIndex = headerSize’ + payloadLength - startSequenceSize’ + crcSize’

crc :: Stream Word32

crc = crcStreams !! crcIndex

crcValid :: Stream Bool

crcValid = crc == 0

10Copilot’s nscanl is a fixed-length (of n) analogue of the Haskell scanl function in Haskell, such that
scanl f z [x1, x2, ...] == [z, z ‘f‘ x1, (z ‘f‘ x1) ‘f‘ x2, ...].

24

Given the definitions to check the CRC values of a packet, we can now check for valid
packets:

startMatch = inputStream == 0x55

validPacket = startMatch && crcValid

The communication between an autopilot and a ground-station runs over a ZigBee link.
In case of dropped radio packets, there is no guarantee a receiver will not (on reconnection of
the radio link) interpret a wrong packet, i.e. the start sign 0x55 may appaer anywhere in a
packet and a following length/CRC pair can form a valid “ghost packet” (i.e., a packet that
is contained within an actually sent packet or that spans multiple actually sent packets).

We define a stream called analyzingPacket, that signals a running analysis of a valid
packet as:

-- The analyzingPacket function signals if we recognized

-- a valid packet and have not reached the end yet

analyzingPacket = analyzingPacket’ > 1

where analyzingPacket’ = [0] ++ mux

(validPacket && not analyzingPacket)

-- set the counter

((drop 1 inputStream

+ headerSize’

+ crcSize’)

-- count down the packet length

(mux (analyzingPacket’ == 0)

0

(analyzingPacket’ - 1))

We then can recognize ghost packets by checking for valid packets that appear while we
are in the process of analyzing a packet, provided that analyzingPacket starts out on an
actually sent packet and not on a ghost packet:

ghostPacket = analyzingPacket && validPacket

We ran the ghostPacket monitor on about 660 megabytes of binary MAVLink logs
recorded during several months of hardware-in-the-loop testing of an Ardupilot Mega in an
Edge 540T subscale model. The ghostPacket monitor fired a trigger 32 times.

On a lost radio connection that sets in after the dropout, the receiver has a chance
to misinterpret such a ghost packet. For a receiver not to accept a ghost packet, it can
relate the sequence numbers of packets to its actual system time. If such measures are
not implemented, an autopilot may receive commands over MAVLink that might lead to
unexpected behaviors.

MAVLink carries a number of sensor values. We wrote a simple monitor that analyses
the payload of GLOBAL POSITION INT messages to retrieve a trajectory of flight:

packet mId = validPacket && messageID == mId

packetWithLength mId pLen = packet mId && payloadLength == pLen

-- the global position in integer values has message id 73

-- and payload length 18

globalPositionINT = packetWithLength 73 18

The first 12 bytes of the payload of a GLOBAL POSITION INT messages are interpreted as
three Word32 values of latitude, longitude and altitude 11. Reconstruction of the position is
done by 3 streams, globalPositionIntLat, globalPositionIntLon and globalPositionIntAlt:

11Latitude and longitude in degrees, altitude in meters.

25

s3 = (.<<. (constant 24 :: Stream Word32))

s2 = (.<<. (constant 16 :: Stream Word32))

s1 = (.<<. (constant 8 :: Stream Word32))

globalPositionIntLat :: Stream Word32

globalPositionIntLat = let l1 = drop 0 payload

l2 = drop 1 payload

l3 = drop 2 payload

l4 = drop 3 payload

in s3 l1 + s2 l2 + s1 l3 + l4

globalPositionIntLon :: Stream Word32

globalPositionIntLon = let l1 = drop 4 payload

l2 = drop 5 payload

l3 = drop 6 payload

l4 = drop 7 payload

in s3 l1 + s2 l2 + s1 l3 + l4

globalPositionIntAlt :: Stream Word32

globalPositionIntAlt = let l1 = drop 8 payload

l2 = drop 9 payload

l3 = drop 10 payload

l4 = drop 11 payload

in s3 l1 + s2 l2 + s1 l3 + l4

The streams become parameters of a globalPositionInt trigger:

trigger "globalPositionINT" globalPositionINT [arg globalPositionIntLat

, arg globalPositionIntLon

, arg globalPositionIntAlt]

The globalPositionINT trigger C function logs each set of three values. We ran the
monitors on three flights and plotted the trajectories.

Consider the two graphs shown in Figure 12 and 13, respectively, which graph the latitude,
longitude, and altitude of the aircraft during two flights. Comparing the graphs, in Figure 13,
the graph has small discrete “steps” resulting from the quantization error that is caused by
the GPS receiver losing tracking, updating positions at a lower rate. (The disturbance was
caused by an unknown condition, but we were nonetheless able to monitor its effect.) The
MAVLink GLOBAL POSITION INT packet type we analyzed contains latitude and longitude as
given by the GPS and altitude as a combination of barometric altitude and GPS altitude.
Because the latitude and longitude are not updated at the usual rate, the most recently-seen
values together with the changed altitude (the altitude changes because–while GPS altitude
are not updated–barometric altitude is) and causes the stair effect.

4.3 Discussion

The purpose of the case studies is to test the feasibility of using Copilot-generated monitors
in a realistic setting to “bolt on” fault-tolerance to a system that otherwise lacks that
capability.

To give a sense of code-sizes, in the pitot tube monitoring case-study, the Copilot agree-
ment monitor is around 200 lines, and the generated real-time C code is nearly 4,000 lines.
In the MAVLink case-study, the Copilot monitor is around 300 lines, with an additional
350 lines of support C code, implementing triggers and the CRC.12 The Copilot monitor
generates about 2500 lines of real-time C code.

12When streams of arrays are implemented in Copilot, the CRC can be derived from a Copilot specification.

26

 37.017
 37.018

 37.019
 37.02

 37.021
 37.022

 37.023
 37.024-76.5935

-76.593
-76.5925

-76.592
-76.5915

-76.591
-76.5905

-76.59
-76.5895

-76.589
-76.5885

 0

 50

 100

 150

 200

 250

 300

altitude (meters)

Oct 25 2011, Flight 1

latitude (decimal degrees)

longitude (decimal degrees)

altitude (meters)

Figure 12: Flight 1.

5 Conclusions and Remaining Challenges

Ultra-critical systems need RV. Our primary goals in this paper are to (1) motivate this need,
(2) describe one approach for RV in the ultra-critical domain, (3) and present evidence for
its feasibility.

The approach we have described in this report is not without shortcomings, which present
opportunities for future research.

eDSL efficiency. First, we have demonstrated that the embedded DSL approach is quite
powerful, turning regular programming on its head: while Copilot is quite simple, its macro
language is a higher-order functional language! One disadvantage of this approach is that
particularly with a powerful macro language, it is easy to build up very large expressions—
much larger than would be built in a conventional programming language. For example, the
Boyer-Moore voting algorithm described in Section 3.4.7 is compiled into a single Copilot
expression. The use of explicit sharing (Section 3.4.6) reduces the cost of computation by en-
suring sub-expressions are not needlessly recomputed, but if the sub-expressions themselves
are expensive to compute, the entire expression becomes expensive.

Techniques to improve the efficiency of evaluating eDSLs are needed. Fortunately, mon-
itoring code is relatively terse, in general.

Scheduling monitors. In the experiments described in Section 4, we use hardware in-
terrupts to ensure monitors run at fixed intervals. This technique works in practice and

27

 37.017
 37.018

 37.019
 37.02

 37.021
 37.022

 37.023
 37.024

 37.025-76.594

-76.593

-76.592

-76.591

-76.59

-76.589

-76.588

 0

 50

 100

 150

 200

 250

 300

altitude (meters)

Oct 25 2011, Flight 3

latitude (decimal degrees)

longitude (decimal degrees)

altitude (meters)

Figure 13: Flight 2.

obviates the need for an underlying operating system to handle scheduling. However, we
must ensure that monitors execute quickly (so that the monitored system does not miss
other interrupts), and we need to ensure that the monitor has been given sufficient time
to execute. With the current set of code generators, worst-case execution time is easy to
compute, as there is just one control-path through the code (that is, worst-case execution
time is equal to nominal execution time).

The only model of time in Copilot monitors, like other synchronous languages, is the
tick. The tick is an abstract model of time that gets mapped to a real-time duration by
the underlying hardware. The duration of a tick matters when specifying monitors: the
property

The value of x must satisfy -0.5 <= x - x’ <= 0.5, where x’ is the value of
x exactly one second ago.

requires building a stream of values. If a tick is one second long, then the specification

prop = (x - x’) <= 5 && (x - x’) <= (-5)

where

x = [0] ++ e0

x’ = drop 1 x

e0 = externI32 "x" Nothing

If a tick is a half-second, we must use drop 2 ..., and so on. Thus, monitors may be
hardware/scheduler dependent. It would help the specifier to lift the abstraction level, so
she can write properties in terms of real-time.

28

Other language features. In analyzing protocol streams, reconstructing values of out
of the payload of a packet from incoming bytes is necessary. Copilot currently lacks casting
operations to do this. Adding a general set of casting functions that includes different byte
orders, bit orders and number representations would help on monitoring protocols.

Steering. We have not addressed the steering problem of how to address faults once they
are detected. Steering is critical at the application level; for example, if an RV monitor
detects that a control system has violated its permissible operational envelop.

Faults. We have built a system to detect both hardware and software (logical) faults.
Stochastic methods might be used to distinguish random hardware faults from systematic
faults, as the steering strategy for responding to each differs [26].

Conclusions. Research developments in RV have potential to improve the reliability of
ultra-critical systems. Research into runtime monitoring for hard real-time distributed sys-
tems has been under-represented in the community, but we hope a growing number of RV
researchers address this application domain.

References

1. John Rushby. Software verification and system assurance. In Intl. Conf. on Software
Engineering and Formal Methods (SEFM), pages 3–10. IEEE, November 2009. 4

2. Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel.
Communications of the ACM (CACM), 53(6):107–115, June 2010. 4

3. R. W. Butler and G. B. Finelli. The infeasibility of quantifying the reliability of life-
critical real-time software. IEEE Transactions on Software Engineering, 19:3–12, Jan-
uary 1993. 4

4. Nancy G. Leveson and Clark S. Turner. An investigation of the Therac-25 accidents.
Computer, 26:18–41, 1993. 4

5. Bashar Nuseibeh. Soapbox: Ariane 5: Who dunnit? IEEE Software, 14(3):15–16, 1997.
4

6. Chris Bergin. Faulty MDM removed. NASA Spaceflight.com, May
18 2008. Available at http://www.nasaspaceflight.com/2008/05/

sts-124-frr-debate-outstanding-issues-faulty-mdm-removed/. (Downloaded
Nov 28, 2008). 4

7. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems, 4:382–401, July 1982. 4, 20

8. Australian Transport Safety Bureau. In-flight upset event 240 Km North-West of Perth,
WA Boeing Company 777-200, 9M-MRG 1 August 2005. ATSB Transport Safety In-
vestigation Report, 2007. Aviation Occurrace Report - 200503722. 5

9. Kerryn Macaulay. ATSB preliminary factual report, in-flight upset, Qantas Airbus
A330, 154 Km West of Learmonth, WA, 7 October 2008. Australian Transport Safety
Bureau Media Release, November 14 2008. Available at http://www.atsb.gov.au/

newsroom/2008/release/2008_45.aspx. 5

29

10. RTCA. Software considerations in airborne systems and equipment certification. RTCA,
Inc., 1992. RCTA/DO-178B. 5

11. M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and O. Sokolsky. For-
mally specified monitoring of temporal properties. In 11th Euromicro Conference on
Real-Time Systems, pages 114–122, 1999. 5

12. F. Chen and G. Roşu. Java-MOP: a monitoring oriented programming environment for
Java. In 11th Intl. Conf. on Tools and Algorithms for the construction and analysis of
systems (TACAS’05), volume 3440 of LNCS, pages 546–550. Springer, 2005. 5

13. Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard real-
time runtime monitor. In Runtime Verification (RV), volume 6418, pages 345–359.
Springer, 2010. 6

14. S. Fischmeister and Y. Ba. Sampling-based program execution monitoring. In ACM
International conference on Languages, compilers, and tools for embedded systems
(LCTES), pages 133–142, 2010. 6

15. Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Sampling-
based runtime verification. In 17th Intl. Symposium on Formal Methods (FM), 2011.
6

16. Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
http://haskell.org/, 2002. 6, 7

17. H.A. Farhat. Digital design and computer organization. Number v. 1 in Digital Design
and Computer Organization. CRC Press, 2004. 9

18. Strother J. Moore and Robert S. Boyer. MJRTY - A Fast Majority Vote Algorithm.
Technical Report 1981-32, Institute for Computing Science, University of Texas, Febru-
ary 1981. 14

19. Wim H. Hesselink. The boyer-moore majority vote algorithm, 2005. 14

20. Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiability Mod-
ulo Theories, chapter 26, pages 825–885. Frontiers in Artificial Intelligence and Appli-
cations. IOS Press, 2009. 16

21. Andy Gill. Type-safe observable sharing in Haskell. In Proceedings of the 2009 ACM
SIGPLAN Haskell Symposium, September 2009. 16

22. Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing of
haskell programs. In ACM SIGPLAN Notices, pages 268–279. ACM, 2000. 18

23. Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C pro-
grams. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
LNCS, pages 168–176. Springer, 2004. 19

24. Aviation Today. More pitot tube incidents revealed. Aviation Today,
February 2011. Available at http://www.aviationtoday.com/regions/usa/

More-Pitot-Tube-Incidents-Revealed_72414.html. 19

25. Peter B. Ladkin. News and comment on the Aeroperu b757 accident; AeroPeru Flight
603, 2 october 1996, 2002. Online article RVS-RR-96-16. Available at http://www.rvs.
uni-bielefeld.de/publications/Reports/aeroperu-news.html. 21

30

26. U. Sammapun, I. Lee, and O. Sokolsky. RT-MaC: runtime monitoring and checking of
quantitative and probabilistic properties. In Proceedings of the 11th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, pages
147–153, 2005. 29

31

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Contractor Report

 4. TITLE AND SUBTITLE

Copilot: Monitoring Embedded Systems

5a. CONTRACT NUMBER

NNL08AD13T

 6. AUTHOR(S)

Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 NASA Langley Research Center
Hampton, Virginia 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

 Langley Technical Monitor: Benedetto L. Di Vito

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 64
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems,
even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational
environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the
outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance
mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating
monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in
avionics systems.

15. SUBJECT TERMS

Distributed systems; Fault tolerance; Real-time systems; Reliability; Run-time monitoring

18. NUMBER
 OF
 PAGES

36
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

645846.02.07.07.07.15.02

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2012-217329

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
01 - 201201-

