
To appear in the proceedings of Formal Methods and Models for Codesign (MEMOCODE), 2007.

Temporal Refinement Using SMT and Model Checking with an Application to
Physical-Layer Protocols

Geoffrey M. Brown
Indiana University, Bloomington
geobrown@cs.indiana.edu

Lee Pike
Galois, Inc.

leepike@galois.com

Abstract

This paper demonstrates how to use a satisfiability mod-
ulo theories (SMT) solver together with a bounded model
checker to prove temporal refinement conditions. The
method is demonstrated by refining a specification of the
8N1 protocol, a widely-used protocol for serial data trans-
mission. A nondeterministic finite-state 8N1 specification
is refined to an infinite-state implementation in which in-
terleavings are constrained by real-time linear inequali-
ties. The refinement proof is via automated induction proofs
over infinite-state transitions systems using SMT and model
checking, as implemented in SRI International’s Symbolic
Analysis Laboratory (SAL).

1 Introduction

A recently-developed formal verification technique com-
bines a satisfiability modulo theories (SMT) solver and a
bounded model checker to prove LTL safety properties over
infinite-state transition systems. The proof technique imple-
mented is k-induction, a generalization of induction over
(infinite-state) transition systems; for brevity, we will call
the verification technique infinite-bmc induction (for infi-
nite-state bounded model checking induction) [4, 13]. One
implementation of infinite-bmc induction is in SRI Interna-
tional’s Symbolic Analysis Laboratory (SAL) [3]. In this
paper, we apply infinite-bmc induction to easily prove the
correctness of a class of real-time protocols.

Traditionally in model checking, a finite-state abstrac-
tion of a real-time protocol is used to model the passage of
time with an asynchronous interleaving semantics. The ben-
efit of such an abstraction is that if the finite-state model is
not too large, it can be verified automatically using standard
model checking techniques (e.g., BDDs). Furthermore, a
finite-state model of the protocol can be composed with a
finite-state model of synchronous hardware, and the com-

position may also be model-checked. However, to ensure
the that safety properties proved of the finite-state model
hold of the infinite-state one, in which the progress of time
is modeled with better fidelity, one must complete a refine-
ment proof from the former to the latter.

In this paper, we describe a simple refinement ap-
proach, derived from the classic Abadi-Lamport refinement
method [1]. We emphasize that the approach described
is one to refine temporal constraints and does not address
other refinements such as data refinement. We demonstrate
how a specification can be formally refined into a more de-
terministic implementation. The refinement ensures that the
safety properties that hold of the finite-state model also hold
of the infinite-state model. As a case-study, we demonstrate
the approach by refining a finite-state model of the 8N1 pro-
tocol, a common physical-layer protocol used for serial data
transmission between independently-clocked hardware (de-
scribed in detail in Section 2.2), into an implementation that
explicitly captures real-time constraints by linear inequali-
ties over the real numbers. To prove the correctness of the
protocol, we use BDDs. To prove the refinement holds,
we use infinite-bmc induction. Besides a method of tem-
poral refinement, this paper introduces a succinct and gen-
eral constraint-based model of physical-layer protocols that
simplifies the proofs and decomposes the model of the envi-
ronment (i.e., the effects of metastability) and the protocol
specification. Specifications and proofs are also available
for refinements of the Biphase Mark protocol and a version
of the 8N1 protocol that includes shift-registers.1

The remainder of the paper is organized as follows. In
Section 2, we describe related work, the 8N1 protocol, and
the SAL model checker. The finite-state specification of the
8N1 protocol and its proof of correctness is presented in
Section 3. The infinite-state implementation of 8N1 is pre-

1The specifications and proofs in SAL associated with this paper
are available at http://www.cs.indiana.edu/∼lepike/pub
pages/refinement.html. SAL can be obtained at http://fm.
csl.sri.com/.

1

sented in Section 4. We verify the refinement of the spec-
ification to the implementation in Section 5. We conclude
with a brief discussion in Section 6.

2 Related Work and Background

In Section 2.1 we highlight previous work in physical-
layer protocol verification. In Section 2.2, we describe the
8N1 protocol, and in Section 2.3, we describe the SAL
model checker.

2.1 Physical-Layer Protocol Verification

The first infinite-bmc induction verification of a real-
time protocol was Dutertre and Sorea’s verification of the
startup protocol for the Time-Triggered Architecture, a
fault-tolerant bus [6]. Subsequently, the reintegration pro-
tocol for NASA Langley’s SPIDER (another fault-tolerant
bus) was verified [11]. Recently, the authors verified two
prominent physical-layer communication protocols: the
Biphase Mark protocol (BMP), which is used in CD-player
decoders, Ethernet, and Tokenring, and the 8N1 proto-
col, which is used in universal asynchronous receiver-
transmitters (UARTs) [2]. The verification of the 8N1 pro-
tocol uncovered a significant error in the temporal con-
straints in an industrial technical note.

To motivate why infinite-bmc induction is of interest in
real-time verification, consider that our verification of BMP
in [2] resulted in an orders-of-magnitude reduction in ef-
fort as compared to the protocol’s previous formal verifi-
cations using mechanical theorem proving. Our verifica-
tion required 5 invariants, whereas a published proof using
the mechanical theorem prover PVS required 37 [14]. Us-
ing infinite-bmc induction, proofs of the 5 invariants were
completely automated, whereas the PVS proof initially re-
quired some 4000 user-supplied proof directives in total.
Another proof using PVS is so large that the tool required
5 hours just to check the manually-generated proof whereas
the SAL proof is generated automatically in seconds [9].
BMP has also been verified by J. Moore using Nqthm, a
precursor to ACL2, requiring him to develop a model of
asynchronous communication in the language of Applica-
tive Common Lisp (Moore cites this as being one of the
“best ideas” of his career, and at the time, it was a signif-
icant advancement in the formal analysis of physical-layer
protocols) [10].2

Partially-parameterized verifications of BMP have also
been done using the Uppaal and Hytech real-time model
checkers [7, 8]. SAL is not specifically a real-time model
checker; time is modeled using the real numbers, and real-

2See http://www.cs.utexas.edu/users/moore/
best-ideas/.

time constraints are captured as formulas (usually linear in-
equalities) over the reals. Real-time model checkers are au-
tomated; in infinite-bmc induction provers, whereas each
proof attempt is automated, the user iteratively builds up in-
variants (by refinement from automatically-generated coun-
terexamples on failed proof attempts) to ensure a proof at-
tempt succeeds. With respect to expressiveness, the theory
that real-time model checkers decide is weaker than the the-
ory decided by contemporary SMT solvers. For example,
SRI’s Yices is a SMT solver for the satisfiability of (pos-
sibly quantified) formulas containing uninterpreted func-
tions, real and integer linear arithmetic, arrays, fixed-size
bit-vectors, recursive datatypes, tuples, records, and lambda
expressions [5].

Finally, we take a moment to delineate the contribution
of this paper beyond the authors’ previous work in physical-
layer protocol verification [2]. There, verifications of real-
time implementations of the 8N1 protocol and BMP were
completed. In this paper, we demonstrate that the same
proof technique can be used to complete a refinement proof,
and that refinement allows for finite-state model composi-
tion. In both papers, we prove the same safety property
holds, albeit in this paper, the property is over a finite-state
model, so its formulation is simpler than its real-time equiv-
alent from the authors’ previous work. Additionally, we
present improvements to the protocol model including (1)
a more efficient model of metastability: rather than having
additional state variables representing metastable states, the
transition relation is made less deterministic, and (2) the ef-
fects of the environment on the protocol’s behavior are de-
composed into a separate environmental constraint module.

2.2 The 8N1 Protocol

1 0 0 1 1 1 0 1

start bit stop bit
d0 d7

Frame

Figure 1. 8N1 Data Transmission

The 8N1 protocol is a physical-layer protocol commonly
used in UARTs for serial communication between two
independently-clocked and unsynchronized hardware units.
Figure 1 illustrates the 8N1 encoding scheme implemented
by the sender’s UART. A frame is a sequence of bits that
includes a start bit, eight data bits, and a stop bit. Data bits
are encoded by the identity function – a 1 is a 1 and a 0 is a
0. The receiver must estimate the transmitter’s clock based

2

upon the transitions in the data stream which are guaranteed
to occur only once per frame. The central design issue for
a data decoder is reliably extracting a clock signal from the
data stream. Once the location of the clock events is known,
extracting the data is relatively simple. Although the clock
events have a known relationship to signal transitions, de-
tecting these transitions precisely is usually impossible be-
cause of distortion in the signal around the transitions due to
the transmission medium, clock jitter, and other effects. A
fundamental assumption is that the transmitter and receiver
of the data do not share a common time base and hence the
estimation of clock events is affected by differences in the
reference clocks used. Constant delay is largely irrelevant;
however, transition time and variable delay (e.g., jitter) are
not. Furthermore, differences in receiver and transmitter
clock phase and frequency are significant. A correctness
proof of an 8N1 decoder must be valid over a range of pa-
rameters defining limits on jitter, transition time, frequency,
and clock phase.

2.3 The Symbolic Analysis Laboratory
(SAL)

SAL has a high-level modeling language for specifying
transition systems. A transition system is specified by a
module. A module consists of a set of state variables (de-
clared to be input, output, or local) and guarded transitions.
A transition is enabled if its guard is true. Of the enabled
transitions in a state, one is nondeterministically executed.
When a transition is exercised, the next-state values are as-
signed to variables; for example, in the guarded transition,
G --> a’ = a - 1; b’ = a, if the guard G holds
and the transition is exercised, then in the next state, the
variable a is decremented by 1 and the variable b is up-
dated to the previous value of a. In the language of SAL,
“;” denotes statement separation, not sequential composi-
tion (thus, variable assignments can be written in any order);
furthermore, in a variable assignment, next-state variable
values of other variables can be referenced. If no variables
are updated in a transition (i.e., G -->), the state idles.

Modules can be composed both synchronously (||) and
asynchronously ([]), and composed modules communicate
via shared variables. In a synchronous composition, a tran-
sition from each module is simultaneously applied; a syn-
chronous composition is deadlocked if either module has
no enabled transition. In an asynchronous composition, an
enabled transition from exactly one of the modules is non-
deterministically applied.

The language is typed, and predicate sub-types can be
declared. Types can be both interpreted and uninterpreted,
and base types include the reals, naturals, and booleans;
array types, inductive data-types, and tuple types can be
defined. Both interpreted and uninterpreted constants and

functions can be specified. Parameterized values are repre-
sented as uninterpreted constants from some parameterized
type.

Bounded model checkers are usually used to find coun-
terexamples, but they can also be used to prove invariants
by induction over the state space [3]. SAL supports k-
induction, a generalization of the induction principle, which
can prove some invariants that may not be strictly induc-
tive. Let (S, I, →) be a transition system where S is a set
of states, I ⊆ S is a set of initial states, and → is a bi-
nary transition relation. If k is a natural number, then a
k-trajectory is a sequence of states s0 → s1 → . . . → sk (a
0-trajectory is a single state). Let k be a natural number, and
let P be property. The k-induction principle is then defined
as follows:

• Base Case: Show that for each k-trajectory s0 →
s1 → . . . → sk such that s0 ∈ I , P (sj) holds, for
0 ≤ j < k.

• Induction Step: Show that for all k-trajectories s0 →
s1 → . . . → sk, if P (sj) holds for 0 ≤ j < k, then
P (sk) holds.

The principle is equivalent to the usual transition-system in-
duction principle when k = 1. In SAL, the user specifies
the depth at which to attempt an induction proof, but the at-
tempt itself is automated. The main mode of user-guidance
in the proof process we use is in iteratively building up
disjunctive invariants [12] by strengthening a conjectured
invariant based on the counterexamples returned by SAL
in a failed proof attempt [2]. The conjectured invariant is
strengthened by adding additional disjuncts, based on the
returned counterexamples, representing a configuration of
the system not covered by the original invariant. Disjunctive
invariants contrast to the traditional approach of strengthen-
ing an invariant by adding a conjunct. The benefit of dis-
junctive invariants is that each disjunct need only cover a
“special case” of the system, while each conjunct needs to
hold in every configuration of the system’s state. We de-
scribe in more detail its application to the refinement proof
in Section 5.2.

By incorporating a SMT solver, SAL can do k-induction
proofs over infinite-state transition systems. Finally, SAL
also has finite-state BDD-based and bounded model check-
ers as well as other tools such as a finite-state deadlock
checker and simulator.

3 A Finite-State Specification of the 8N1 Pro-
tocol

We begin by presenting a generic cross clock-domain
protocol model. Its components are illustrated in Figure 2.
There is a transmitter (tx) and a receiver (rx), each of

3

tclock

tenv tenc
tbit

tready
tdata

tx rx
rclock

rdec
rbit

rready

Figure 2. System Block Diagram

which contains subcomponents. The transmitter contains
an encoder (tenc) that encodes data according to the pro-
tocol, an environment (tenv) that supplies data, and a local
clock (tclock). The receiver contains a decoder (rdec)
that decodes the data according to the protocol and a local
clock (rclock).

Each block is modeled as a module in SAL, and the
transmitter’s modules are synchronously composed with
each other, as are the receiver’s modules. The entire sys-
tem is the asynchronous composition of the transmitter and
receiver:

tx : MODULE = tclock || tenv || tenc;
rx : MODULE = rclock || rdec;
system : MODULE = tx [] rx;

The modules tclock and rclock are instantiated for the
8N1 protocol in Section 3.1, and the modules tenv, tenc,
and rdec are instantiated in Section 3.2. The verification of
the finite-state 8N1 specification is presented in Section 3.3.

3.1 The Clocks

Following Figure 1, the transmitter and receiver specifi-
cations each have 10 states, labeled 0 – 9, corresponding to
the phases of data transmission in a frame. The transmit-
ter is idle (repeatedly transmitting the stop bit) in state 9,
transmits the start bit in state 0, and transmits data bits in
states 1-8. Likewise, the receiver begins in state 9 awaiting
a start bit, decodes data in states 1-8, and scans for the stop
bit in state 0. An execution is therefore correct if it has the
following sequence of states, where “. . .” denotes indefinite
idling and “· · ·” denotes the removal of a finite number of
states in the sequence for readability:

(tstate,rstate) =
(9, 9), (9, 9), . . . , (0, 9), . . . , (0, 0), (1, 0), (1, 1), · · · ,
(8, 7), (8, 8), (9, 8), (9, 9), . . .

Thus, the transmitter may transition between states
whenever the states of the transmitter and receiver are equal.
We capture this requirement with the tclock module in

STATE : TYPE = [0..9];

tclock : MODULE =
BEGIN
INPUT rstate : STATE
INPUT tstate : STATE
TRANSITION
[tstate = rstate -->]

END;

Figure 3. Transmitter Clock (Finite-State)

rclock : MODULE =
BEGIN
INPUT tstate : STATE
INPUT rstate : STATE
TRANSITION
[rstate /= tstate
OR tstate = 9 -->]

END;

Figure 4. Receiver Clock (Finite-State)

Figure 3. The receiver’s clock in Figure 4 is similarly mod-
eled, although it is allowed to transition only when the states
of the transmitter and receiver are unequal or the transmitter
has not yet sent a start bit. The two clocks serve to constrain
the interleavings of the sender and receiver. The clocks con-
strain both in the finite-state and infinite-state models (see
Section 4.1), and the refinement principally involves refin-
ing the clock modules, which determine the interleavings of
the transmitter and receiver.

3.2 The Environment, Encoder and De-
coder

tenv : MODULE =
BEGIN
INPUT tready : BOOLEAN
OUTPUT tbit : BOOLEAN
TRANSITION
[

tready --> tbit’ IN {TRUE, FALSE}
[] ELSE -->

]
END;

Figure 5. Transmitter Environment (Finite-
State)

4

The transmitter’s environment tenv (Figure 5) repre-
sents an arbitrary data source. The module has a single in-
put tready and a single output tbit (see Section 6 for
a description of a model that has shift registers producing
data). Whenever tready is true, the environment gener-
ates a new (random) output.

tenc : MODULE =
BEGIN
OUTPUT tdata : BOOLEAN
OUTPUT tstate : STATE
OUTPUT tready : BOOLEAN
INPUT tbit : BOOLEAN
INITIALIZATION

tstate = 9;
DEFINITION

tready = state /= 8;
tdata = (tstate = 9) OR tbit;

TRANSITION
[

tstate = 9 -->
tstate’ = IF tbit’

THEN 9 ELSE 0
ENDIF;

[] tstate < 9 --> tstate’ = tstate + 1;
]

END;

Figure 6. Transmitter Encoder (Finite-State)

The transmitter’s encoder tenc (Figure 6) has one in-
put variable, tbit, which is the output of tenv. The en-
coder has three output variables: tdata is the data trans-
mitted to the receiver, tstate is the transmitter’s state,
and tready is the encoder’s signal to tenv whenever a
new bit is required from the environment. The environment
(tenv) decides when a new frame of data is to be trans-
mitted; this decision is implemented by providing an ini-
tial start bit (FALSE). The encoder module has two guarded
transitions. The first guarded transition defines the behavior
in the idle state (9), which is exited when the environment
produces a start bit. The second transition simply advances
the transmitter’s state; the ready signal is suppressed in state
8 to indicate to the environment that a stop bit (TRUE) will
be inserted in the data stream.

The receiver’s decoder rdec (Figure 7) has a design
similar to tenc. Of its three variables, tdata is the data
sent by the transmitter (i.e., the output variable of tenc),
rstate is the receiver’s state, and rbit records the value
received from the transmitter. The module has three tran-
sitions: the first allows the receiver to idle waiting for the
start bit, the second transitions to the “start state”, and the
last transition governs states in which it is sampling for data.
The data is ready to be consumed when the receiver is in one
of states 1-8.

rdec : MODULE =
BEGIN
INPUT tdata : BOOLEAN
OUTPUT rstate : STATE
OUTPUT rbit : BOOLEAN
INITIALIZATION
rbit = TRUE;
rstate = 9;

TRANSITION
[rstate = 9 -->
[] rstate = 9 AND NOT tdata -->

rbit’ = FALSE;
rstate’ = 0;

[] rstate /= 9 -->
rbit’ = tdata;
rstate’ = rstate + 1;

]
END;

Figure 7. Receiver Decoder (Finite-State)

The transitions of rdec are under-constrained – even
when the transmitter provides a start bit, the receiver may
continue to stutter in state 9. Stuttering is an essential char-
acteristic of physical reality where changes to signals take
time to propagate and to be correctly sampled. In the design
of the implementation, we introduce a constraint process
that limits this stuttering based upon real-time properties of
the local clocks and which guarantees that the stuttering is
finite.

3.3 Correctness

Informally, the protocol is correct if the output of the
decoder is the same as the input of the encoder whenever
the transmitter and receiver are in the same state (i.e., the
receiver has just received the message sent), and the receiver
is neither in state 0 or 9 – recall that in state 9, the start bit
is being sent, and the model captures the possibility that the
receiver misses the bit sent by the transmitter due to their
clocks being unsynchronized. The theorem is captured by
the following LTL specification:

Thm: THEOREM system |-
G(tstate = rstate AND rstate /= 9 =>

rbit = tbit);

The theorem is proved using SAL’s BDD-based model
checker. We also use the BDD-based model checker to
demonstrate that the possible sequence of states of system
is exactly characterized by the sequence of states listed in
Section 3.1. As a convenience, we verify this through three
small theorems.

StateThm1 : THEOREM system |-

5

G(rstate = tstate
OR ((rstate + 1) MOD 10) = tstate);

StateThm2 : THEOREM system |-
G(FORALL (i : STATE) :
(i = rstate AND i = tstate) =>

X((i = rstate
AND (i + 1) MOD 10 = tstate)

OR (i = rstate
AND i = tstate AND i = 9)));

StateThm3 : THEOREM system |-
G(FORALL (i : STATE) :

(i = rstate
AND (i + 1) MOD 10 = tstate) =>

X(((i + 1) MOD 10 = rstate
AND (i + 1) MOD 10 = tstate)

OR (i = 9 AND i = rstate
AND 0 = tstate)));

Finally, SAL’s deadlock checker ensures liveness of the
model; given the assumption that the receiver detects a start
bit, the system will eventually return to an “idle” state.

Liveness: THEOREM system |-
G(F(rstate /= 9) =>

F(tstate = 9 AND rstate = 9));

4 8N1 Implementation

An implementation of the 8N1 protocol utilizes local
clocks at the transmitter and receiver to achieve the synchro-
nization necessary to reliably transmit data. These clocks
are only loosely synchronized – each has a nominal fre-
quency, but there may be both constant and dynamic fre-
quency errors. Furthermore, the electrical properties of data
transmission lead to both transmission delay and sampling
issues due to “reading” a changing signal. The model pre-
sented in this section captures these various properties.

The overall structure of the implementation is similar to
the model presented in Section 3; the essential difference
is that a constraint module is introduced to capture the real-
time manifestations of asynchrony between the clocks (Sec-
tion 4.2).

tx_rt : MODULE = tenv || tenc || tclock_rt;
rx_rt : MODULE = rdec_rt || rclock_rt;
system_rt : MODULE =

(rx_rt [] tx_rt) || constraint;

4.1 Clocks

The clocks are modeled as timeout automata in which
the progress of time is enforced cooperatively by (possi-
bly nondeterministically) updating variables called timeouts

over the real numbers [6]. In the 8N1 protocol, the re-
ceiver and transmitter have the timeouts rclk and tclk
that mark the real-time at which they will respectively make
transitions. Each respective module representing the re-
ceiver and transmitter is allowed to execute only if its time-
out equals the value of time(rclk, tclk), which is
defined to be the minimum of the timeout variables:

TIME : TYPE = REAL;
time(t1 : TIME, t2: TIME): TIME =

IF t1 <= t2 THEN t1 ELSE t2 ENDIF;

TPERIOD : {x : TIME | 0 < x};
TSETTLE : {x : TIME | 0 <= x

AND x < TPERIOD};
TSTABLE : TIME =
TPERIOD - TSETTLE;

tclock_rt : MODULE =
BEGIN
INPUT rclk : TIME
OUTPUT tclk : TIME
INITIALIZATION
tclk IN
{x : TIME | 0 <= x AND

x <= TSTABLE};
TRANSITION
[
tclk = time(tclk, rclk) -->
tclk’ = tclk + TPERIOD;

]
END;

Figure 8. Transmitter Clock (Infinite-State)

The transmitter clock tclock_rt (Figure 8) executes
at a fixed, but arbitrary rate – without loss of generality,
all of the relative frequency errors are captured in the re-
ceiver clock relative to the transmitter frequency. The trans-
mitter clock period consists of a settling phase (TSETTLE)
and a stable phase (TSTABLE). The settling phase captures
both propagation delay as well as setup requirements at the
receiver (to be discussed in Section 4.2). TSETTLE and
TSTABLE are uninterpreted constants; however, they are
parameterized, which allows us to verify the model for any
combination of settling time and receiver clock error. The
transmitter settling time can be used to capture the effects
of jitter and dispersion in data transmission as well as jitter
in the transmitter’s clock. In the case of the settling period,
the model can be viewed as less deterministic than an ac-
tual implementation which might reach stable transmission
values sooner.

The receiver clock rclock_rt (Figure 9) is more com-
plicated than the transmitter clock because of the manner
in which a UART is implemented. Consider Figure 1.

6

timeout(min : TIME, max : TIME) :
[TIME -> BOOLEAN] =

{x : TIME | min <= x AND x <= max};

rclock_rt : MODULE =
BEGIN

INPUT tclk : TIME
INPUT rstate : STATE
OUTPUT rclk : TIME
INITIALIZATION

rclk IN
{ x : TIME | 0 <= x AND

x < RSCANMAX };
TRANSITION
[

rclk = time(rclk, tclk) --> rclk’ IN
IF (rstate’ = 9)
THEN timeout(rclk + RSCANMIN,

rclk + RSCANMAX)
ELSIF (rstate’ = 0)
THEN timeout(rclk + RSTARTMIN,

rclk + RSTARTMAX)
ELSE timeout(rclk + RPERIODMIN,

rclk + RPERIODMAX)
ENDIF;

]
END;

Figure 9. Receiver Clock (Infinite-State)

There may be an arbitrary “idle” period between frames
during which the signal is high (TRUE). The behavior of
a UART receiver is to “scan” for the high-to-low transition
that marks the beginning of a frame. Once this transition is
detected, the receiver predicts, based upon its local time ref-
erence, the middle of the 8 data and 1 stop bit times. There
are two different intervals used for this prediction – the time
between the detected “start” transition and the middle of the
first data bit and the “period” between successive data sam-
ples. In an implementation, the bit period is generally an
integer multiple of the scan time and the start interval is 1.5
times the bit period. In most implementations, the bit time
of the receiver is approximately that of the transmitter; how-
ever, in practice jitter and frequency errors mean that each
measurement interval is subject to error. Again we associate
all errors with the receiver and assume that the transmitter
runs at a constant rate.

The various receiver clock periods are expressed in terms
of linear constraints that define lower and upper bounds for
“SCAN”, “START”, and “PERIOD” (Figure 10). The con-
straints give the lower and upper bounds for the receiver’s
timeout variable to be updated. Determining the necessary
constraints is achieved by assuming the worst-case error
(minimum or maximum) and then determining how tem-
poral errors accumulate by the 10th bit time (the stop bit).
Informally, the correct behavior of the protocol requires that

RSCANMIN : {x : TIME | 0 < x};
RSCANMAX : {x : TIME | RSCANMIN <= x AND

x < TSTABLE};

RSTARTMIN :
{x : TIME | TPERIOD + TSETTLE < x};

RSTARTMAX : {x : TIME | RSTARTMIN <= x AND
x < 2 * TPERIOD -
TSETTLE - RSCANMAX};

RPERIODMIN :
{x : TIME | 9 * TPERIOD + TSETTLE <

RSTARTMIN + 8 * x};
RPERIODMAX :
{x : TIME | RPERIODMIN <= x AND

TSETTLE + RSCANMAX +
RSTARTMAX + 8 * x <
10 * TPERIOD};

Figure 10. Real-Time Linear Constraints

all signal samples other than the initial scan fall during the
“stable” portion of the transmitter clock [2].

4.2 Modeling Metastability

A fundamental issue for the implementation is that it is
not possible to reliably sample an asynchronous signal un-
less that signal is guaranteed to be stable for a period around
the sampling point. Where the physical implementation is
realized with a flipflop, changes occurring too soon before
the sampling point are said to violate the “setup time” re-
quirement of the flip-flop while changes occurring too soon
after the settling point are said to violate the “hold time”
requirement. Either violation may cause the flip-flop to en-
ter a metastable state in which the input is neither “one”
nor “zero” and which may persist indefinitely. A constraint
model captures the effects of metastability.

Again, without loss of generality, we consider only setup
time violations. We can incorporate the hold-time require-
ment into the setup-time requirement simply by changing
our perspective of where the sampling event occurs rela-
tive to the clocks. To model the possibility of metastability
(and hence random sampling of signals), we use a decoder
rdec_rt (Figure 11) in which all input sampling results
in the selection of a random value. To constrain the nonde-
terminism of the decoder, we introduce a constraint mod-
ule (Figure 12) that monitors changes on the input signal
tdata (when tclk’ /= tclk) and forces the decoder
to choose the correct value whenever the setup time require-
ments are met.

The constraint module requires that rdec_rt select the
“correct” value (i.e. tdata) whenever the input signal has
met the stability requirements. These stability requirements

7

rdec_rt : MODULE =
BEGIN
OUTPUT rstate : STATE
OUTPUT rbit : BOOLEAN
INITIALIZATION

rbit = TRUE;
rstate = 9;

TRANSITION
[

rstate = 9 --> rbit’ = TRUE;
[] rstate = 9 --> rbit’ = FALSE;

rstate’ = 0;
[] rstate /= 9 -->

rbit’ = {TRUE,FALSE;}
rstate’ = rstate + 1;

]
END;

Figure 11. Receiver Decoder (Infinite-State)

constraint : MODULE =
BEGIN
INPUT tclk : TIME
INPUT rclk : TIME
INPUT rbit : BOOLEAN
INPUT tdata : BOOLEAN
LOCAL stable : BOOLEAN
LOCAL changing : BOOLEAN
DEFINITION

stable = NOT changing
OR tclk - rclk < TSTABLE;

INITIALIZATION
changing = FALSE

TRANSITION
[

rclk’ /= rclk AND
(stable => rbit’ = tdata) -->

[] tclk’ /= tclk -->
changing’ = (tdata’ /= tdata)

]
END;

Figure 12. Constraint Module (Infinite-State)

depend upon when tdata last changed its value. The tim-
ing constraints defined in Figure 10 force the settling time
to be less that TPERIOD.

5 Proving Refinement

With both a finite-state specification and an infinite-state
implementation in hand, we can now prove the latter refines
the former. More specifically, every possible interleaving of
the transmitter and receiver in the implementation is a pos-
sible interleaving of the specification. Paraphrasing Abadi

and Lamport, I implements S if every externally visible be-
havior of I is also allowed by S [1]. To prove that I imple-
ments S it is sufficient to prove that if I allows the behavior

〈〈(e0, z0), (e1, z1), (e2, z2), ...〉〉

where each ei is an externally-visible state, and where each
zi is an internal state (the remainder of the state), then there
exist internal states yi such that S allows

〈〈(e0, y0), (e1, y1), (e2, y2), ...〉〉

5.1 Guard Weakening in SAL

In general, an Abadi-Lamport style refinement proof can
be difficult and may rely upon the introduction of history
and prophecy variables. For the class of protocols we con-
sider in this paper, the refinement mappings are straightfor-
ward. The basic transformation rule that we apply is guard
weakening over SAL’s guards to show that the guards of the
implementation imply the guards of the specification. Con-
sider a module consisting of the following set of guarded
transitions:

G0 → S0[] . . . []GN → SN

where each Gi is a predicate over the state variables, and
each Si is a set of possibly nondeterministic next-state vari-
able assignments. If Gi implies G′

i for each i, then the fol-
lowing set of guarded commands allow a superset of behav-
iors and are therefore are a specification for the former:

G′
0 → S0[] . . . []G′

N → SN

Theorems of the form Gi ⇒ G′
i are the refinement con-

ditions. The semantics of synchronous and asynchronous
composition in SAL are such that the effect of weakening
any guard is to expand the set of legal behaviors [3]; we
have covered the case of asynchronous composition above.
In the case of synchronous composition, observe that the
following equivalence holds:

(G0 → S0 ‖ G1 → S1) ≡ (G0 ∧G1 → S0;S1)

(Recall from Section 2.3 that ; is commutative.) Weaken-
ing either G0 or G1 has the effect of weakening G0 ∧ G1.
Indeed, by weakening either guard to True, its associ-
ated module can be eliminated (effectively abstracting away
the module’s outputs). The key observation is that an un-
constrained input is treated by SAL as having any possi-
ble value – eliminating a module and its associated outputs
increases the nondeterminism of the corresponding inputs.
Thus, in a synchronous composition P || Q, guard weak-
ening can be generalized to module elimination: P and Q are
both specifications of P || Q. A corollary to the equiva-
lence above allows us to “split” a process:

(G0 → S0) ≡ ((G0 → skip) ‖ (TRUE → S0))

8

5.2 Temporal Refinement for the 8N1
Protocol

In this section, we describe the refinement con-
ditions proved in SAL for the 8N1 protocol. In
short, the refinement is principally over the clock
modules of the finite-state and infinite-state models.
Recall that system_rt is the composed module
(rx_rt [] tx_rt) || constraint. From
the discussion of module elimination above, the
constraint module can be eliminated, and the
composition rx_rt [] tx_rt is a specification of
system_rt. For the transmitter implementation module
tx_rt, we prove the single guard in tclock_rt (Fig-
ure 8) implies that the single guard in tclock (Figure 3)
holds:

tclock_thm : THEOREM system_rt |-
G(tclk = time(tclk, rclk) =>

tstate = rstate);

The proof is automated in SAL using infinite-bmc induc-
tion. The proof requires a small invariant bounding the
maximum skew between the clocks as a function of the
transmitter’s and receiver’s respective states.

This is the only refinement condition required for
tx_rt: the other two modules, tenv and tenc, are
identical in the specification and implementation. As for
the module rx_rt, recall that the module is the parallel
composition rdec_rt || rclock_rt. The refinement
condition and proof for rclock_rt (Figure 9) is exactly
analogous to that for tclock_rt.

This leaves only rdec_rt to refine. To complete
the refinement proof, we prove a refinement condition
that slightly generalizes guard weakening. The module
rdec_rt (Figure 11) is actually less deterministic than
is rdec (Figure 7), but its nondeterminism is limited by
the constraint module. In simple guard weakening, the
next-state variable assignments in the specification and im-
plementation are identical, but for the modules rdec and
rdec_rt, they are not. In this case, the hypothesis of the
refinement condition is a conjunction of the implementa-
tion’s guard and the next-state variable values produced by
the implementation’s transition. Likewise, the antecedent
of the refinement condition is a conjunction of the specifi-
cations guard and the next-state variable values produced by
the specification’s corresponding transition.

Applying this reasoning to rdec_rt and rdec, we
prove three theorems, one for each of the three correspond-
ing guarded transitions in the two modules:

rdec_thm1 : THEOREM system_rt |-
G(rstate = 9 => rbit);

rdec_thm2 : THEOREM system_rt |-
G(rstate = 9 AND X(NOT rbit)

AND X(rstate = 0) => NOT tdata);

rdec_thm3 : THEOREM system_rt |-
G(FORALL (i : [0..8]) :

rstate = i AND X(rstate = i+1) =>
X(rbit) = tdata);

Each of these theorems is proved using a disjunctive invari-
ant lemma [12, 2]. For the 8N1 protocol, the disjunctive
invariant covers the two special-case configurations – when
the transmitter and receiver are idle and when the transmit-
ter has sent a start bit that is not detected – as well as the two
general-case configurations – when tstate = rstate
and when tstate = rstate + 1.

6 Discussion

We have presented by example how to use a model
checker and SMT solver to prove temporal refinement of the
8N1 protocol. We have also applied this method to prove re-
finement of the Biphase Mark protocol, and those specifica-
tions and proofs are also available.1 These results should be
extensible to other physical-layer protocols. The purpose of
this paper is not to delineate the class of real-time specifica-
tions to which this approach is feasible but rather to demon-
strate that it is possible. The theoretical considerations of
Abadi-Lamport style refinement for real-time systems (par-
ticularly with linear constraints) deserve additional study.

As mentioned in Section 1, one motivation for these re-
finement results comes from the desire for compositional
reasoning. We have completed a infinite-state model of the
8N1 protocol composed with shift registers (with widths of
eight bits) for the sender and receiver, respectively.1 One
would like to prove that after a round of execution of the
8N1 protocol, the receiver’s shift register contains the value
that was in the sender’s shift register before the round. Do-
ing the proof directly in an infinite-state model requires aug-
menting an invariant with properties of the shift registers.
However, the proof is automatic using BDDs in a finite-state
model of the system augmented with shift registers. Then,
only the cross-clock domain protocol needs to be refined to
a real-time implementation – the shift registers specification
is the same in both the specification and implementation.

As pointed out by an anonymous reviewer, although we
present an methodology for temporal refinement, the real-
time implementation can itself be refined using data refine-
ment techniques. The data-refined implementation should
still inherent the safety properties from the untimed, data-
abstract specifications. Carrying out data refinement on our
model is future work.

While this paper demonstrates the feasibility of automat-
ing parts of refinement proofs utilizing SAL, the work was

9

somewhat hampered by the lack of a well-developed alge-
braic theory for the SAL language and by the need to apply
algebraic reasoning by hand. Automated model checking
techniques have matured sufficiently to prove the tedious
refinement conditions presented in this paper, but combin-
ing SAL with a system capable of algebraic reasoning (e.g.,
an interactive theorem prover) would both increase the as-
surance and decrease the tedium of deriving the implemen-
tation and refinement conditions from the specification.

Another anonymous noted that refinement does not pre-
serve liveness properties. We have proved liveness for the
finite state model but not for the implementation. There is a
possibility that the implementation is vacuous. Because the
implementation is infinite-state, we cannot directly prove
LTL liveness properties about it. As an approximation, we
can attempt to prove some safety property of the imple-
mentation that should be false (e.g., G(tstate > 0). If
the system is deadlocked, then the property may be proved.
If the property is not proved, then either the system is not
deadlocked, or the property is not k-inductive, for the value
of k and lemmas used in the proof effort. We call the these
safety properties “poor man’s liveness properties”.

Finally, as this work is primarily a case-study, we pro-
vide some “lessons learned” to inform similar future en-
deavors. In Section 2, we gave some metrics comparing
our verification efforts to previous work. In our work, the
vast majority of our time was spent generalizing the model.
Developing the “right” modeling abstractions took a few
weeks of effort. Instantiating the general model with an-
other physical-layer protocol would probably take a day of
effort (the effort required is speculative since we developed
the general model by abstracting the specific protocols). Al-
though we conjecture that carrying out the proof via SMT
and model checking is at least an order-of-magnitude faster
than using mechanical theorem proving, it is still the most
onerous aspect of the verification. The particular difficulty
results from building up the main disjunctive invariant for a
sufficiently small value of k. Developing the invariant for a
new protocol may take on the order of a few days of effort.

Acknowledgments

We thank our anonymous reviewers for their suggestions
and corrections.

References

[1] M. Abadi and L. Lamport. The existence of refinement map-
pings. Theor. Comput. Sci., 82(2):253–284, 1991.

[2] G. M. Brown and L. Pike. Easy parameterized verifica-
tion of biphase mark and 8N1 protocols. In The Proceed-
ings of the 12th International Conference on Tools and
the Construction of Algorithms (TACAS’06), pages 58–72,

2006. Available at http://www.cs.indiana.edu/
∼lepike/pub pages/bmp.html.

[3] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar,
M. Sorea, and A. Tiwari. SAL 2. In Computer-Aided Ver-
ification, CAV’04, volume 3114 of LNCS, pages 496–500,
Boston, MA, July 2004. Springer-Verlag.

[4] L. de Moura, H. Rueß, and M. Sorea. Bounded model
checking and induction: From refutation to verification.
In Computer-Aided Verification, CAV’03, volume 2725 of
LNCS, 2003.

[5] B. Dutertre and L. de Moura. Yices: an SMT solver. Avail-
able at http://yices.csl.sri.com/, August 2006.

[6] B. Dutertre and M. Sorea. Modeling and verification of a
fault-tolerant real-time startup protocol using calendar au-
tomata. In FORMATS/FTRTFT, pages 199–214, 2004.

[7] T. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons
from the Hytech experience. In Proceedings of the 40th
Annual Conference on Decision and Control, pages 2887–
2892, 2001.

[8] T. S. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager.
Linear parametric model checking of timed automata. Tech-
nical Report RS-01-5, BRICS, University of Aarhus, Jan-
uary 2001.

[9] D. V. Hung. Modelling and verification of biphase mark
protocols using PVS. In Proceedings of the International
Conference on Applications of Concurrency to System De-
sign (CSD’98), Aizu-wakamatsu, Fukushima, Japan, March
1998, pages 88–98. IEEE Computer Society Press, 1998.

[10] J. S. Moore. A formal model of asynchronous communi-
cation and its use in mechanically verifying a biphase mark
protocol. Formal Aspects of Computing, 6(1):60–91, 1994.

[11] L. Pike and S. D. Johnson. The formal verification of a rein-
tegration protocol. In EMSOFT ’05: Proceedings of the
5th ACM international conference on Embedded software,
pages 286–289, New York, NY, USA, 2005. ACM Press.

[12] J. Rushby. Verification diagrams revisited: Disjunctive in-
variants for easy verification. In Computer-Aided Verifi-
cation, CAV’00, volume 1855 of LNCS, pages 508–520,
Chicago, IL, July 2000. Springer-Verlag.

[13] J. Rushby. Harnessing disruptive innovation in formal veri-
fication. In 4th IEEE International Conference on Software
Engineering and Formal Methods (SEFM). IEEE Computer
Society, 2006. Available at http://www.csl.sri.
com/users/rushby/abstracts/sefm06.

[14] F. W. Vaandrager and A. L. de Groot. Analysis of a Biphase
Mark Protocol with Uppaal and PVS. Technical Report
NIII-R0455, Nijmegen Institute for Computing and Infor-
mation Science, 2004.

10

