
To appear in the Proceedings of the 12th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’06), LNCS, 2006.

Easy Parameterized Verification of Biphase
Mark and 8N1 Protocols

Geoffrey M. Brown1 and Lee Pike2?

1 Indiana University, Bloomington
geobrown@cs.indiana.edu

2 Galois Connections
leepike@galois.com

Abstract. The Biphase Mark Protocol (BMP) and 8N1 Protocol are
physical layer protocols for data transmission. We present a generic
model in which timing and error values are parameterized by linear
constraints, and then we use this model to verify these protocols. The
verifications are carried out using SRI’s SAL model checker that com-
bines a satisfiability modulo theories decision procedure with a bounded
model checker for highly-automated induction proofs of safety properties
over infinite-state systems. Previously, parameterized formal verification
of real-time systems required mechanical theorem-proving or specialized
real-time model checkers; we describe a compelling case-study demon-
strating a simpler and more general approach. The verification reveals
a significant error in the parameter ranges for 8N1 given in a published
application note [1].

1 Introduction

The Biphase Mark Protocol (BMP) and 8N1 Protocol are common physical layer
protocols used in data transmission – BMP in CDs, Ethernet, and Tokenring and
8N1 in UARTs. Decoders for protocols such as these present challenging formal
verification problems because their correctness depends upon reasoning about
interacting real-time events. BMP was first verified using the Boyer-Moore Theo-
rem Prover (Nqthm) [2]. Subsequently, it was verified using a Duration Calculus
model in the PVS theorem prover [3], with the HyTech model checker [4, 5] and
also using a combination of the Uppaal model checker and PVS [6]. In this paper,
we show how a parameterized specification of BMP can be verified easily with
the SAL tool set using its built-in bounded model checker in conjunction with
a satisfiability modulo theories (SMT) decision procedure to complete induction
proofs over infinite-state systems [7].3

Compared to interactive mechanical theorem proving – the usual method for
parameterized verification – this approach is substantially simpler. For example,
? The majority of this work was completed while this author was a member of the

Formal Methods Group at the NASA Langley Research Center in Hampton, Virginia.
3 The SAL specifications and a proof script are available at http://www.cs.indiana.
edu/∼lepike/pub pages/bmp.html .

1

the proof of Vaandrager and de Groot using PVS requires 37 invariants whereas
ours requires only five. Because invariants can be combined, a more meaningful
(and striking) metric may be the number of user-directed proof steps required:
their initial verification effort required more than 4000 steps whereas each of our
five invariants is proved automatically by SAL. As another comparison, the veri-
fication reported by Hung has such complexity that PVS requires approximately
five hours just to check the validity of the manually-created proof script. In our
approach, the proofs are generated by the bounded model checker and decision
procedure in just a few seconds. We emphasize the simplicity of the invariants
necessary in our verification, the “push-button” technique used to prove them,
and the robustness of the proofs under modifications to the underlying model.
In fact, we demonstrate that with a few trivial changes to the model, the proof
for BMP naturally leads to a similar proof for 8N1. Finally, in verifying the
8N1 decoder, we found a significant error in a published application note that
incorrectly defines the relationship between various real-time parameters which,
if followed, would lead to unreliable operation [1].

While the verification approach described in this paper can be orders-of-
magnitude easier than mechanical theorem-proving, it is less general. In the
models presented, we fix two small integer constants, and the constraints on the
model are parameterized with respect to these. The fixed constants are suffi-
ciently small, and the verification is sufficiently fast, so that these values can be
enumerated, and the constraints can be checked for each value. Alternatively,
an anonymous referee pointed out an alternative formulation of the constraints
that allows for a fully parameterized verification of BMP (the limitation of the
SAL’s ICS decision procedure described in Section 5 prevents a fully parame-
terized verification of 8N1). We present a fully parameterized model similar to
the one suggested by the referee in the SAL specifications provided on-line, and
we briefly describe the approach in Section 7. We also make a more detailed
comparison to other verifications, including those carried out using specialized
real-time model checkers, in Section 7.

1 1 0 1 0 0 1 1 1 0 1 1

Data

BMP

Clock

Fig. 1. Data and Synchronization Clock

2

To motivate the design of this sort of protocol, consider Figure 1 where the
top stream is the signal to be transmitted, while the middle stream is a digital
clock that defines the boundaries between the individual bits. In a digital cir-
cuit, the clock signal is transmitted separately from the data; however, this is not
feasible in most communication systems (e.g., serial lines, Ethernet, SONET, In-
frared) in which a single signal is transmitted. A general solution to this problem
is to merge the clock and data information using a coding scheme such as BMP,
illustrated as the lower stream. In BMP, every bit is guaranteed to begin with
a transition marking a clock event. The value of the bit is determined by the
presence (to encode a 1) or absence (to encode a 0) of a transition in the middle
of the bit period. Thus, 0’s are encoded as the two symbols 00 or 11, while 1’s
are encoded as 01 or 10. 8N1 is a simpler encoding scheme in which a transition
is guaranteed to occur only at the beginning of each frame, a sequence of bits
that includes a start bit, stop bit, and eight data bits. Data bits are encoded by
the identity function – a 1 is a 1 and a 0 is a 0. Consequently, the clock can only
be recovered once in each frame in which the eight data bits are transmitted.

Thus, the central design issue for a data decoder is reliably extracting a
clock signal from the combined signal. Once the locations of the clock events are
known, extracting the data is relatively simple. Although the clock events have
a known relationship to signal transitions, detecting these transitions precisely
is usually impossible because of distortion in the signal around the transitions,
clock jitter, and other effects. The transmitter and receiver of the data do not
share a common time base, and hence the estimation of clock events is affected
by differences in the reference clocks used. Constant delay is largely irrelevant;
however, transition time and variable delay (e.g., jitter) are not. Furthermore,
differences in receiver and transmitter clock phase and frequency are significant.
Any correctness proof of a BMP (or 8N1) decoder must be valid over a range of
parameters defining limits on jitter, transition time, frequency, and clock phase.

The remainder of this paper is organized as follows. In Section 2, the SAL
tool set and the k-induction proof technique are described. In Section 3, we
present the general SAL models of the transmitter, receiver, and data transmis-
sion used in the verifications. The specifics of the BMP model are provided in
Section 4, and the small changes necessary for the 8N1 model are in Section 5.
The verification of the two protocols is described in Section 6, and concluding
remarks follow in Section 7.

2 Introduction to SAL

The protocols are specified and verified in the Symbolic Analysis Laboratory
(SAL), developed by SRI, International [7]. SAL is a verification environment
that includes symbolic and bounded model checkers, an interactive simulator,
integrated decision procedures, and other tools.

SAL has a high-level modeling language for specifying transition systems. A
transition system is specified by a module. A module consists of a set of state
variables and guarded transitions. Of the enabled transitions, one is nondeter-

3

ministically executed at a time. Modules can be composed both synchronously
(||) and asynchronously ([]), and composed modules communicate via shared
variables. In a synchronous composition, a transition from each module is simul-
taneously applied; a synchronous composition is deadlocked if either module has
no enabled transition. In an asynchronous composition, an enabled transition
from one of the modules is nondeterministically chosen to be applied.

The language is typed, and predicate sub-typing is possible. Types can be
both interpreted and uninterpreted, and base types include the reals, naturals,
and booleans; array types, inductive data-types, and tuple types can be defined.
Both interpreted and uninterpreted constants and functions can be specified.
This is significant to the power of these models: the parameterized values are
uninterpreted constants from some parameterized type.

Bounded model checkers are usually used to find counterexamples, but they
can also be used to prove invariants by induction over the state space [8]. SAL
supports k-induction, a generalization of the induction principle, that can prove
some invariants that may not be strictly inductive. By incorporating a satisfi-
ability modulo theories decision procedure, SAL can do k-induction proofs over
infinite-state transition systems. We use SRI’s ICS decision procedure [9], the
default SAT-solver and decision procedure in SAL, but others can be plugged
in.

Let (S, I, →) be a transition system where S is a set of states, I ⊆ S is a set
of initial states, and → is a binary transition relation. If k is a natural number,
then a k-trajectory is a sequence of states s0 → s1 → . . . → sk (a 0-trajectory is a
single state). Let k be a natural number, and let P be property. The k-induction
principle is then defined as follows:

– Base Case: Show that for each k-trajectory s0 → s1 → . . . → sk such that
s0 ∈ I, P (sj) holds, for 0 ≤ j < k.

– Induction Step: Show that for all k-trajectories s0 → s1 → . . . → sk, if P (sj)
holds for 0 ≤ j < k, then P (sk) holds.

The principle is equivalent to the usual transition-system induction principle
when k = 1. In SAL, the user specifies the depth at which to attempt an induc-
tion proof, but the attempt itself is automated. The main mode of user-guidance
in the proof process is in iteratively building up inductive invariants. While ar-
bitrary LTL safety formulas can be verified in SAL using k-induction, only state
predicates may be used as lemmas in a k-induction proof. Lemmas strengthen
the invariant. We have more to say about the proof methodology for k-induction
in Section 6.

3 Modeling

In this section, we discuss the general model of physical layer protocols, postpon-
ing the details of the BMP and 8N1 protocols to Sections 4 and 5, respectively.
We model the protocols using three processes asynchronously composed – a
transmitter (tx), a receiver (rx), and a global clock unit (clock). The general

4

arrangement of the three major modules along with the details of the transmit-
ter (tx) module are illustrated in Figure 2. The modules tx and rx model the
transmitters and receivers of the protocols; the clock is a modeling artifact that
records the passage of the global real time.

system : MODULE = clock [] rx [] tx;

tclock

tenv tenc
tbit

tready

clock

tclk

time

tdata

rclk

time

tx rx

phase

Fig. 2. System Block Diagram

The clock unit provides a single real output variable – time – and two inputs,
rclk and tclk, which are the timeout variables of the receiver and transmitter,
respectively. The basic idea, described as timeout automata by Dutertre and
Sorea, is that the progress of time is enforced cooperatively (but nondeterminis-
tically) [10, 11]. The receiver and transmitter have timeouts that mark the real
time at which they will respectively make transitions (timeouts are always in
the future and may be updated nondeterministically). Each module is allowed
to execute only if its timeout equals the value of time. When no module can
execute, clock updates time to be equal to the next timeout. The SAL module
below describes the transitions of the global clock.

TIME : TYPE = REAL;

clock: MODULE =
BEGIN

INPUT rclk, tclk : TIME
OUTPUT time : TIME

INITIALIZATION time = 0
TRANSITION

[time < rclk AND rclk <= tclk --> time’ = rclk
[] time < tclk AND tclk <= rclk --> time’ = tclk]

END;

The transmitter consists of a local clock module (tclock) that manages the
transmitter’s timeout variable, an encoder (tenc) module that implements the
basic protocol, and an environment module (tenv) that generates the data to
be transmitted. These modules are synchronously composed.

5

tx : MODULE = tclock || tenc || tenv;

The environment and clock modules, defined in Figure 3, are protocol inde-
pendent and used in both the BMP and 8N1 models. The tenv module deter-
mines when new input data should be generated and is regulated by tenc (which
is protocol dependent and described in the following two sections). Whenever
tready is true, a random datum is selected from {0, 1}; otherwise the old da-
tum is preserved (the syntax “var’ IN Set” defines the value of variable var
after the transition to be a random value from the set Set).

The tclock module regulates the tenc module. To model periods when the
value of a signal is either in transition or uncertain, we divide each period of
the transmitter into a settling phase TSETTLE, in which the wire might have a
value other than Zero or One, and a stable phase TSTABLE, in which the wire
may only be Zero or One. In our models, TSETTLE and TSTABLE are uninter-
preted constants; however they are parameterized, which allows us to verify the
models for any combination of settling time and receiver clock error (described
subsequently). The transmitter settling time can be used to capture the effects
of jitter and dispersion in data transmission as well as jitter in the transmitter’s
clock. In the case of the settling period, the model can be viewed as less deter-
ministic than an actual implementation which might reach stable transmission
values sooner. This means we verify the model under more pessimistic conditions
than an actual implementation would face.

tenv : MODULE =
BEGIN

INPUT tready : BOOLEAN
OUTPUT tbit : [0..1]
INITIALIZATION tbit = 1;
TRANSITION

[tready --> tbit’ IN {0,1};
[] ELSE --> tbit’ = tbit;]

END;

PHASE: TYPE = {Stable, Settle};

tclock : MODULE =
BEGIN

INPUT time : TIME
OUTPUT tclk : TIME
OUTPUT phase : PHASE

INITIALIZATION
phase = Stable;
tclk IN {x : TIME | 0 <= x AND x <= TSTABLE};

TRANSITION
[time = tclk AND phase = Stable --> tclk’ = time + TSETTLE;

phase’ = Settle;
[] time = tclk AND phase = Settle --> tclk’ = time + TSTABLE;

phase’ = Stable;]
END;

Fig. 3. Transmitter Environment and Clock

6

The decoders are protocol dependent, and are described in the following two
sections. Each decoder is composed of a receiver clock, rclock, which enforces
the timing discipline, and a decoder state machine, rdec.

rx : MODULE = rclock || rdec;

The receiver clock, operating at a multiple of the (nominal) transmitter clock
frequency, is used to digitally sample the received signal. These samples are used
to detect both transitions and level values which are in turn used to decode the
received data. As described in Section 1, the received signal is not purely digital
in nature – there are substantial periods when the received signal is neither 1 nor
0 (i.e., it falls outside of specified voltage bands). Sampling the received signal
in or near these transition bands can result in non-deterministic behavior. To
model these transition bands, we let a wire have four possible values:

WIRE: TYPE = {Zero, One, ToZero, ToOne};

Only three values are required, but in practice it is convenient to use the two
transition values (ToZero, ToOne) to store trajectory information. At the receiver
we use non-deterministic transition rules of the form var’ IN sample(tdata)
where sample(wire) defines the set of possible values obtained when sampling
a wire that may be in transition.

sample(w : WIRE) : [WIRE -> BOOLEAN] =

IF (w = ToZero OR w = ToOne) THEN {Zero, One} ELSE {w} ENDIF;

The result is always binary but is chosen randomly from the set {Zero, One}
whenever the wire has a transition value (ToZero, ToOne). Thus, the extra data
transition values in the model do not “leak” to the receiver.

We do not model constant transmission delay – the settling phase need only
capture the variable delay. While our proofs relate the state of the transmitter
and receiver at an instant in time, the results hold for a delayed version of the
transmitter state in the presence of a constant transmission delay.

As mentioned above, the transmitter clock period is constant (TSTABLE +
TSETTLE). The receiver’s clock is based upon this nominal period; however, in
order to capture the effects of frequency mismatch and receiver clock jitter, the
receiver’s timeout period has a random error component that can affect every
cycle. We model the transmitter clock as an integer number of unit length ticks
(e.g., 16). The receiver clock error is defined on a per-tick basis. For a given
nominal timeout of length T ticks, the actual receiver timeout value falls in the
range

time + T ∗ (1− ERROR) ≤ rclk ≤ time + T ∗ (1 + ERROR) ,

which we implement in SAL with the following timeout function:

timeout (min : TIME, max : TIME) : [TIME -> BOOLEAN] =

{x : TIME | min <= x AND x <= max};

7

As we shall show when we discuss the protocols, the receiver uses different nom-
inal timeout periods depending upon its state. The value of ERROR is parame-
terized by protocol-specific linear inequalities that depend upon TSETTLE, which
is constrained by the nominal clock periods – together they define the region of
reliable operation.

4 Biphase Mark Protocol

Recall from Section 1 that the BMP protocol encodes every bit as two symbols
– 00 or 11 for bit 0 and 01 or 10 for bit 1 – guaranteeing a transition at the
beginning of every encoded bit (called a cell). Our encoder module, illustrated
below, is a straightforward translation where the first two guarded commands
implement the basic protocol and are enabled only at end of the “stable” period
discussed in Section 3; the third command is enabled only at the end of the
“Settle” period and returns the output wire tdata to one of the two stable
values (One, Zero). The tready signal, which controls the environment module
tenv (Section 3), is defined as a function from the current state and phase that
is true only when the encoder transitions from state 1 to state 0.

Note that our implementation of the transmitter clock (Section 3) assumes
the two halves of a cell are of identical length.4 To modify the model in order to
support asymmetric cells requires a small change to the tclock module to make
the timeout period state-dependent.

tenc : MODULE =
BEGIN

INPUT phase : PHASE
OUTPUT tdata : WIRE
OUTPUT tstate : [0..1]
OUTPUT tready : BOOLEAN
INPUT tbit : [0..1]
LOCAL ttoggle : WIRE

INITIALIZATION
tdata = One;
tstate = 1;

DEFINITION
tready = phase = Stable AND tstate = 1;
ttoggle = IF (tdata = Zero) THEN ToOne ELSE ToZero ENDIF;

TRANSITION
[phase = Stable AND tstate = 1 --> tdata’ = ttoggle;

tstate’ = 0;
[] phase = Stable AND tstate = 0 --> tdata’ = IF (tbit = 1)

THEN ttoggle ELSE tdata ENDIF;
tstate’ = 1;

[] phase = Settle -->
tdata’ = IF tdata = ToOne THEN One ELSIF tdata = ToZero

THEN Zero ELSE tdata ENDIF;]
END;

Recall from Section 3 that to model wires in transition, we use a two-phase
clock model for the transmitter. At the beginning of a clock cycle, the transmit-
ter either leaves its output tdata at its current value (Zero or One) or initiates
4 Although Moore [2] suggests that there are advantages to an asymmetric cell, this

is not generally done in practice because it alters the DC balance and transmitted
bandwidth of the signal.

8

a transition to the other stable value by setting tdata to the appropriate inter-
mediate value (ToOne or ToZero). After an appropriate settling time, the wire
is restored to a stable value.

The Biphase receiver is composed of two modules – a receiver clock rclock
which enforces the timing discipline and a decoder state machine rdec. The
receiver clock enables state transitions when time = rclk and it determines the
next receiver timeout based upon the decoder’s next state (either scanning for
an edge or sampling data). Notice that the timeouts are selected randomly from
ranges that are bound by the receiver clock error. The values of the various
constants are discussed shortly.

rclock : MODULE =
BEGIN

INPUT time : TIME
INPUT rstate : [1..2]
OUTPUT rclk : TIME

INITIALIZATION
rclk IN { x : TIME | 0 <= x AND x < RSCANMAX };

TRANSITION
[time = rclk -->

rclk’ IN IF (rstate’ = 2)
THEN timeout(time + RSCANMIN, time + RSCANMAX)
ELSE timeout(time + RSAMPMIN, time + RSAMPMAX) ENDIF;]

END;

rdec : MODULE =
BEGIN

INPUT tdata : WIRE
OUTPUT rdata : WIRE
OUTPUT rstate : [1..2]
OUTPUT rbit : [0..1]

INITIALIZATION
rstate = 2;
rdata = One;
rbit = 1;

TRANSITION
[rstate = 1 -->

rdata’ IN sample(tdata);
rbit’ = IF (rdata = rdata’) THEN 0 ELSE 1 ENDIF;
rstate’ = 2;

[] rstate = 2 -->
rdata’ IN sample(tdata);
rstate’ = IF (rdata = rdata’) THEN 2 ELSE 1 ENDIF;]

END;

The decoder has two states – in state 2, the decoder scans for an edge while in
state 1 it determines the value of the transmitted bit.

We define the nominal transmitter clock period TPERIOD, the length of a half-
cell, as an constant integer number of units. The nominal number of ticks from
the beginning of the cell until the middle of the next half-cell is the constant
TSAMPLE. In practice, verification of the model is sufficiently fast that it’s feasible
to run the verification for any choice of TPERIOD and TSAMPLE.

TIME : TYPE = REAL;

TPERIOD : TIME = 16;

TSAMPLE : INTEGER = 23

9

The receiver runs at two rates – when it is “scanning” for an edge, its clock
rate is nominally 1 time unit. After detecting an edge, the receiver waits until
the middle of the next half cell. The actual receiver clock (timeout) depends
upon the per tick frequency error giving us the four constants used in generating
the receiver timeout, as shown in Figure 4.

RSAMPMAX : TIME = TSAMPLE * (1 + ERROR);
RSAMPMIN : TIME = TSAMPLE * (1 - ERROR);
RSCANMAX : TIME = 1 + ERROR;
RSCANMIN : TIME = 1 - ERROR;

Fig. 4. Receiver Rate Bounds

The limits on ERROR are related by a pair of linear inequalities to TSETTLE.
Even if ERROR = 0, there is a practical limit on TSETTLE – reading of the second
half-cell value must occur after the settling time but before the end of the cell.
This results in the following type constraints for the uninterpreted constants
TSETTLE and TSTABLE. Notice their values are both dependent on the value of
TPERIOD.

TSETTLE : {x : TIME | (0 <= x) AND (x + TPERIOD < TSAMPLE) AND

(x + TSAMPLE + 1 < 2 * TPERIOD)};

TSTABLE : TIME = TPERIOD - TSETTLE;

Finally, we derive the frequency error bounds. Again, we examine where the
reading of the second half-cell value occurs. It must occur after the mid-cell
transition, but before the end of the cell. The earliest the reading may occur is
RSAMPMIN after the beginning of the cell and the latest the reading may occur is
TSETTLE + RSCANMAX + RSAMPMAX. This observation leads to a bound on ERROR.

ERROR : {x : TIME | 0 <= x AND TPERIOD + TSETTLE < TSAMPLE * (1-x) AND

TSAMPLE * (1+x) + (1+x) + TSETTLE < 2 * TPERIOD};

Note that the type for ERROR is parameterized by linear inequalities since
TSAMPLE is an interpreted constant.

5 8N1 Protocol

In contrast with BMP, where the receiver clock is re-synchronized on every cell,
8N1, illustrated in Figure 5, is a frame-based protocol where re-synchronization
occurs once per frame. Each frame consists of a start bit (0), eight data bits,
and one or more stop bits (1), making 10 bits in total.

The 8N1 encoder module is very similar to the Biphase encoder. It contains
additional transitions for the special cases of delivering the start and stop bits.
The transmitter has ten states. In state 9, the encoder nondeterministically idles,

10

1 0 0 1 1 1 0 1

start bit stop bit
d0 d7

Frame

Fig. 5. 8N1 Code

or it sends a start bit by transitioning tdata to Zero and transitioning to state
0. In states 1 through 8, the encoder sends data bits that are generated by the
tenv module described in Section 3. However, the interaction between the two
modules differs slightly. tenv is directed to generate a new value for tbit when
phase = Stable and tstate < 8 – the states during which data bits are sent.
In state 8, the encoder generates a stop bit by transitioning tdata to One.

The 8N1 decoder model is also a simple adaption of the Biphase decoder
model. The 8N1 decoder has ten states. In state 10, the decoder samples for the
start bit; in state 9, it samples for the stop bit, and in the other states it samples
for data bits. As with the BMP decoder, detection of the start of the frame
causes the 8N1 decoder to wait until the middle of the first data bit to take its
next sample, skipping over the start bit (which has already been detected).

The timing parameters are similar to those in the Biphase model. Again, a
nominal transmitter clock period TPERIOD is defined. The 8N1 receiver runs at
three rates. While scanning for an edge, its nominal bit rate is 1 time unit. After
detecting a start bit, the receiver waits until the middle of the first data cell to
sample the data. The constraints on sampling and scanning are the same as in
Figure 4. To read the remaining data, the receiver waits for TPERIOD nominal
ticks to sample the middle of the next cell. RPERIODMAX and RPERIODMIN bound
the error of the receiver’s clock.

RPERIODMAX : TIME = TPERIOD * (1 + ERROR);

RPERIODMIN : TIME = TPERIOD * (1 - ERROR);

As with BMP, we can derive bounds on both TSETTLE and ERROR (we discuss
TSETTLE shortly). The basic intuition behind parameterizing ERROR is that the
accumulated error at the point of reading the stop bit must fall in the stable
part of the received signal. There are two bounds – the end of the stop bit and
the beginning of the stable period of the stop bit. Together, these define bounds
on the clock error value. Notice the similarity with the constraint for BMP.

ERROR : {x : TIME | 0 <= x AND 9 * TPERIOD + TSETTLE <

8 * TPERIOD * (1-x) + TSAMPLE * (1-x) AND

8 * TPERIOD * (1+x) + TSAMPLE * (1+x) + (1+x) + TSETTLE <

10 * TPERIOD};

11

ICS is unable to handle the ERROR constant parameterized by an uninter-
preted TSETTLE in this protocol. Thus, we parameterize ERROR by the worst-case
settling time calculated by hand. For example, if we bound the uninterpreted con-
stant TSETTLE such that 0 <= TSETTLE < TPERIOD/4, then we calculate from
the above formula that 0 <= ERROR < 3/151.

As we mention in Section 1, we discovered significant errors in the analysis
in an application note for UARTs [1]. The authors suggest that if TSTABLE is
TPERIOD/2 (they call this the “nasty” scenario), then a frequency error of ±2%
is permissible. In fact, even with zero frequency mismatch, the stable period is
too short – if we assume “infinitely” fast sampling, it is possible to show that
the settling time must be less than 50% of TPERIOD – otherwise it is impossible
to sample the first data bit after the settling period but before the end of the
bit period. With our choice of time constants, the longest settling time must be
less than 7 (43.75%). In reading the article, it becomes clear that the authors
neglected the temporal error introduced by sampling the start bit. They describe
a “normal” scenario with TSETTLE = TPERIOD/4 and assert that a frequency
error of ±3.3% is permissible. As our derivation above illustrates, the frequency
error in this case is limited to ±3/151 ≈ ±1.9%.

6 Verification

Our main goal is to prove that the Biphase and 8N1 decoders reliably extract
the data from the combined signal they receive. The statement of the main
correctness theorem for BMP is expressible in the LTL temporal logic, where
the G operator denotes that its argument holds in all states on a trajectory
through the transition system, and the X operator denotes that its argument
holds in the next state.

BMP_Thm : THEOREM

system |- G(rstate = 1 AND time = rclk =>

(time /= tclk) AND (tstate = 1) AND X(rbit = tbit));

Informally, suppose that rstate = 1, and the time has come for the receiver
to make a transition (time = rclk). At this time, the wire’s value should corre-
spond to the second half of a transmitted cell, and the transmitter should not be
changing the value of the wire at this time. Furthermore, in the next state – just
after the receiver has sampled the wire – the receiver should record the same
data bit as the receiver had encoded in that cell. Thus, rbit = tbit should
hold.

The main theorem for the 8N1 decoder is essentially the same. The only
substantial difference is that we prove that the decoder must reliably extract the
data over an entire frame (i.e., for states rstate < 9).

For both BMP and 8N1, supporting lemmas are necessary to prove the main
theorem. When a k-induction proof attempt fails, two options are available to
the user: the proof can be attempted at a greater depth, or supporting lemmas
can be added to restrict the state-space. A k-induction proof attempt is au-
tomated, but if the attempt is not successful for a sufficiently small k (i.e., the

12

attempt takes too long or too much memory), additional invariants are necessary
to reduce the necessary proof depth. The user must formulate the supporting
invariants manually, but their construction is facilitated by the counterexamples
returned by SAL for failed proof attempts. If the property is indeed invariant,
the counterexample is a trajectory that fails the induction step but lies outside
the set of reachable states, and the state-space can be appropriately constrained
by an auxiliary lemma based on the counterexample. The following lemmas are
built by examining the counterexamples returned from proof attempts for the
main theorem and the successive intermediary lemmas.

For both models, we begin by proving three simple preliminary invariants
that describe the behavior of the transmitter in both models, irrespective of the
receivers. The first invariant, l0, states that either the wire is in its settling
phase, or it is high or low. Invariants l1 and l2 constrain the transmitter’s
timeout tclk during the stable and settle phases: it will never be updated more
than TSTABLE and TSETTLE, respectively. Each lemma is inductive, so it is proved
at a depth of one.

l0 : LEMMA system |- G(phase = Settle OR tdata = One OR tdata = Zero);

l1 : LEMMA system |- G(phase = Stable => (tclk <= (time + TSTABLE)));

l2 : LEMMA system |- G(phase = Settle => (tclk <= (time + TSETTLE)));

One additional lemma is proved for the 8N1 transmitter stating that the stable
value of the stop bit is One. This lemma is proved at a depth of 13, using
invariants l0 - l2 as lemmas.

The essential part of the proof is an invariant describing the relationship be-
tween the transmitter and receiver. We must relate them both temporally and
with respect to their discrete state (e.g., tstate with rstate and tdata with
rdata). The number of and the complexity of the supporting lemmas necessary
to prove the main results is significantly reduced by proving a disjunctive in-
variant [12]. A disjunctive invariant has the form

∨
i∈I Pi where each Pi is a

state predicate (predicates Pi and Pj need not be disjoint for i 6= j). Disjunc-
tive invariants are easier to generate iteratively than conjunctive invariants. If a
disjunctive invariant fails to cover the reachable states, additional disjuncts can
be incrementally added to it (in a conjunctive invariant, additional conjunctions
must hold in all the reachable states). Although this is a general proof technique,
it is particularly easy to build a disjunctive invariant in SAL. The counterex-
amples SAL returns can be used to iteratively weaken the disjunction until it is
invariant.

There are seven disjuncts in the both the BMP and the 8N1 disjunctive
invariants. To get an idea about how the invariants are constructed, consider
the typical state predicate from the BMP model below. In general, each disjunct
states the phase, relates tstate and rstate, and then describes the relative
difference between tclk and rclk:

... OR ((phase = Settle) AND (rstate = tstate + 1) AND

(rclk - tclk - TPERIOD > 0) AND

(tclk + TPERIOD + TSTABLE - rclk > 0)) OR ...

13

Using lemmas l0, l1, l2 described above, the BMP disjunctive invariant is
proved at depth five. Using these lemmas and lemma l3, the 8N1 disjunctive
invariant is proved at depth three. All that remains is to prove the main theo-
rems, BMP_Thm and the corresponding theorem for the 8N1 decoder. Using the
respective disjunctive invariants as lemmas, the former is proved at depth two,
and the latter is proved at depth six.

7 Discussion

We have described a general model of physical layer data transmission, and we
have used this model to verify the correctness of BMP and 8N1 under parame-
terized timing constraints. We also present an error in a published application
note discovered during the verification. The verification is highly-automated us-
ing k-induction implemented with a SMT decision procedure and a bounded
model checker in SAL.

As mentioned in Section 1, a referee suggested an alternative approach that
fully parameterizes the BMP verification. The central idea is to leave TPERIOD
and TSAMPLE as uninterpreted constants and then constrain the times when the
receiver scans and samples directly in terms of TPERIOD, TSETTLE, and TSTABLE:

RSCANMIN : {x : TIME | 0 < x};
RSCANMAX : {x : TIME | RSCANMIN <= x AND x < TSTABLE};
RSAMPMIN : {x : TIME | TPERIOD + TSETTLE < x};
RSAMPMAX : {x : TIME | RSAMPMIN <= x AND x < 2 * TSTABLE - RSCANMAX};

Thus, no error term is necessary, and the verification is fully parameterized. The
BMP specification otherwise remains the same, and its proof of correctness suc-
ceeds using the same lemmas, proved at the same depth. The constraints on the
error can be easily recovered by hand from the fully parameterized verification
by replacing the constants RSCANMIN, RSAMPMIN, and RSCANMAX in the type defi-
nitions above by their definitions from Figure 4. The referees also point out that
because the error bounds are not explicit in this fully parameterized model in
SAL, it is less general than the verification by Vaandrager and de Groot using
mechanical theorem-proving [6]. Although the parameterized verification in SAL
with error bounds recovered by hand is neither fully automated nor machine-
checked, it is a more economical approach than mechanical theorem-proving.

As compared to real-time model checking, our SAL verification appears to be
more parameterized than the verifications reported by Ivanov and Griffioen in
Hytech [4] and at least as parameterized as the one suggested (but not described)
by Henzinger, Preussig, and Wong-Toi, also using Hytech, in which the verifica-
tion is fully automatic [5]. The tool TReX has similar capabilities to HyTech [13].
Note, however, that SAL is not specifically a real-time model checker.

The verification technology employed in SAL is recent, and only a few non-
trivial verifications using it exist [11, 14]. This work, along with recent work by
one of the authors, is the first known application of these techniques to the
verification of physical-layer protocols [15].

14

Acknowledgments We thank Leonardo de Moura, John Rushby, and our three
anonymous TACAS referees for their careful comments and suggestions.

References

1. Maxim Integrated Products, Inc. Determining Clock Accuracy Requirements for
UART Communications, June 2003. Available at http://www.maxim-ic.com/

appnotes.cfm/appnote number/2141.
2. J Strother Moore. A formal model of asynchronous communication and its use

in mechanically verifying a biphase mark protocol. Formal Aspects of Computing,
6(1):60–91, 1994.

3. D. V. Hung. Modelling and verification of biphase mark protocols using PVS.
In Proceedings of the International Conference on Applications of Concurrency to
System Design (CSD’98), pages 88–98. IEEE Computer Society Press, 1998.

4. S. Ivanov and W. O. D. Griffioen. Verification of a biphase mark protocol. Technical
Report CSI-R9915, University of Nijmegen Computing Science Institute, 1999.

5. T. Henzinger, J. Preussig, and H. Wong-Toi. Some lessons from the Hytech ex-
perience. In Proceedings of the 40th Annual Conference on Decision and Control,
pages 2887–2892, 2001.

6. F. W. Vaandrager and A. L. de Groot. Analysis of a Biphase Mark Protocol with
Uppaal and PVS. Technical Report NIII-R0455, Nijmegen Institute for Computing
and Information Science, 2004.

7. Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria
Sorea, and Ashish Tiwari. SAL 2. In Computer-Aided Verification, CAV’04, volume
3114 of LNCS, pages 496–500, Boston, MA, July 2004. Springer-Verlag.

8. Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking
and induction: From refutation to verification. In Computer-Aided Verification,
CAV’03, volume 2725 of LNCS, 2003.

9. Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, and N. Shankar.
The ICS decision procedures for embedded deduction. In 2nd International Joint
Conference on Automated Reasoning (IJCAR), volume 3097 of LNCS, pages 218–
222, Cork, Ireland, July 2004. Springer-Verlag.

10. Bruno Dutertre and Maria Sorea. Timed systems in SAL. Technical Report SRI-
SDL-04-03, SRI International, 2004.

11. Bruno Dutertre and Maria Sorea. Modeling and verification of a fault-tolerant real-
time startup protocol using calendar automata. In FORMATS/FTRTFT, pages
199–214, 2004.

12. John Rushby. Verification diagrams revisited: Disjunctive invariants for easy ver-
ification. In Computer-Aided Verification, CAV’00, volume 1855 of LNCS, pages
508–520, Chicago, IL, July 2000. Springer-Verlag.

13. Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX: A tool for
reachability analysis of complex systems. In Computer-Aided Verification, CAV’01,
pages 368–372, London, UK, 2001. Springer-Verlag.

14. Lee Pike and Steven D. Johnson. The formal verification of a reintegration pro-
tocol. In EMSOFT ’05: Proceedings of the 5th ACM international conference on
Embedded software, pages 286–289, New York, NY, USA, 2005. ACM Press.

15. Geoffrey M. Brown. Verification of a data synchronization circuit for all time.
Unpublished, 2005.

15

