
Galois Inc. Technical Report, 2015

Securing the Automobile: a Comprehensive Approach

Lee Pike, Jamey Sharp, Mark Tullsen, Patrick C. Hickey, James Bielman
Galois, Inc.

{leepike|jamey|tullsen|pat|jamesjb}@galois.com

December 20, 2015

Abstract

Previous research has demonstrated the software and
network vulnerabilities that exist in modern automo-
biles. We present a rejoinder to that work here, dis-
cussing approaches to secure the modern automobile.
The approach is comprehensive, taking into account
static assurance, dynamic assurance, software, net-
works, while considering the constraints of the auto-
motive industry.

1 Introduction

In 2010 and 2011, research performed jointly between
the University of California, San Diego and the Uni-
versity of Washington1 convincingly shows that mod-
ern cars can be completely compromised remotely by
exploiting software-based vulnerabilities [1, 2]. In
modern cars there is a lot of software to hack: es-
timates suggest that a luxury car contains 10s of mil-
lions of lines of code, over 100MB of binary code,
executing on 50-70 Electronic Control Units (ECUs),
each containing independent computer systems built
from micro-controllers, digital signal processors, mul-
timedia processors, or application processors. A
modern economy car might contain 25+ ECUs, and
that number continues to grow.

The key enabler of the attacks described by the
UCSD/UW team was the ease of gaining access to at
least one of the numerous data buses on the automo-
bile. These buses allow the ECUs to coordinate with

1 Hereafter referred to as the UCSD/UW team.

each other—e.g., so the braking system can interact
with the engine controllers to provide better control.
Some ECUs act as data-bus bridges and are able to
broadcast on multiple buses. In the automobiles an-
alyzed, every ECU is transitively connected to every
other ECU via data-bus or data-bus bridges. This
highly connected architecture is driven by complex
interactions required for safety or desired for com-
fort. For example, the door lock system must know
whether the airbags have deployed so it can automat-
ically unlock all doors to make escape easier, and the
entertainment system must know the vehicle’s speed
so it can raise audio volume to compensate for wind
and road noise.

The UCSD/UW team found multiple attack vec-
tors through which to launch an attack against the
automobile. These include a malicious audio track
played in the CD player, malicious Bluetooth access
to the entertainment system, and malicious cellular
access to the telematics system. Other vectors were
also considered, such as hacking a mechanic’s diag-
nostics tool remotely.

In each attack, some interface vulnerability is ini-
tially exploited. These include, for example, some
combination of brute-force guessing short PIN num-
bers (e.g., for Bluetooth), exploiting buffer overflows
in low-level networking code, shell-code injections,
and automated firmware updates. Once access to the
a data-bus was gained, further access is obtained by
reprogramming other ECUs over the data-bus, using
mechanisms designed so that a mechanic performing
software updates does not require physical access to
individual ECUs.

c© Galois, Inc. 2015 1

{leepike|jamey|tullsen|pat|jamesjb}@galois.com

Contributions While the UCSD/UW team has
demonstrated the software vulnerabilities of the mod-
ern automobile, there has not been a comprehensive
set of recommendations outlining how to mitigate
them; that is the purpose of the present paper. Our
goal is to provide a holistic perspective, focusing on
security at different levels of abstraction (i.e., ECUs,
the architecture, etc.) and using a broad set of ap-
proaches.

We assume that the reader is familiar at a high level
with the kinds of vulnerabilities that researchers have
reported. We propose mitigations which we believe
automobile manufacturers can begin implementing
today for incremental improvements in security, as
well as longer-term solutions to address deeper chal-
lenges.

Some security goals align with broader safety de-
mands. Section 2 discusses areas where security can
be thought of as an extreme form of the safety re-
quirements which car manufacturers already pursue.

Any security recommendations which do not ad-
dress the realities of business requirements, usability,
and practicality are doomed to fail. In Section 3,
we discuss the constraints that limit which security
recommendations are feasible.

The bulk of our recommendations apply at the
level of software found in individual ECUs, and can
be found in Section 4. Recommendations at this
level can generally be applied by individual sub-
contractors without coordination across the supply
chain, making them more practical for immediate ap-
plication. We consider both static and dynamic (run-
time) assurances.

However, some security issues can only be ad-
dressed at the level of the entire system architecture,
as discussed in Section 5. Since the product devel-
opment cycle lasts several years in the automotive
industry, significant architectural changes are not ex-
pected to appear until design cycles beginning today
hit the market.

Finally, some security concerns must be addressed
in supply chain management, as we discuss in Sec-
tion 6.

One contribution of [1, 2] is to elucidate the
breadth of the attack surface of a modern automobile,
which is broader than one might expect (or hope)

due to the interconnection of buses and the presence
of many external interfaces (USB, Bluetooth, etc.).
Some notable attack vectors here:

• The OBD-II port, which transitively includes
internet-enabled computers connected to the
port for diagnostics purposes.

• The Bluetooth port, is reachable outside the
physical confines of the automobile.

• The MP3-CD player among a host of external
interfaces: refer to [2] and also Section 4.5.

Since the attacker has numerous channels or attack
vectors (the automobile’s attack surface) to “enter
the system,” all that is remaining for the attacker is
to find some software vulnerability that is accessible
via any of these vectors. There are dozens of common
software defects which could be security vulnerabili-
ties; some of the more common of these are

• Input validation errors such as format string at-
tacks and SQL injection;

• Memory safety violations such as buffer over-
flows and dangling pointers.

• Privilege confusion or privilege escalation bugs.

2 Safety Versus Security

Throughout this paper, we discuss the tensions be-
tween safety and security. For example, in Section 5,
we describe why data buses might be connected for
safety reasons while separation provides better in-
tegrity and confidentiality guarantees. On other di-
mensions, however, safety and security are in align-
ment, and in many cases security can be thought of
as an extreme form of safety. We discuss the connec-
tions between safety and security below with respect
to the bus architecture and ECU software, respec-
tively.

Architectural Safety and Security In fault-
tolerance, there is an unattributed saying, “Time
turns the improbable to the inevitable.” Another way
of putting this is that a sufficiently improbable fault
is indistinguishable from a malicious attacker. In dis-
tributed systems design, a Byzantine fault model is
one model corresponding to an attacker [3]. A Byzan-
tine fault is one in which a node that is designed to

c© Galois, Inc. 2015 2

broadcast the same message to two recipients in fact
sends arbitrarily different messages to each. Byzan-
tine faults are observed in nature [4], and data buses
have been designed to protect against them [5]. By
using a data-bus architecture with sufficiently strong
fault-tolerance guarantees, one gets some additional
integrity protections, for free.

In particular, the CAN bus, one of the primary
buses used in modern automobiles, is not particu-
larly safe or secure. There is no protection against
“babbling idiots” on the bus, in which a node denies
service to other nodes, either because of a fault or
in a malicious denial of service. Furthermore, it is
difficult for nodes to reliably diagnose timing faults
in other nodes since there is no notion of clock syn-
chronization of the nodes and the bus is not time-
divisioned. Finally, since the bus is not replicated,
(potentially malicious) line noise can cause Byzan-
tine faults among recipients that cannot be detected
by error detection mechanisms like CRCs [6].

Software Safety and Security Automobiles are
designed to be safety critical, and automotive safety
integrity levels (ASIL) classifications, defined by
ISO 26262, provides guidelines for assessing the risk
of hazards if particular functions fail [7]. Four levels
of severity are defined, from level A to level D (high-
est). The ASIL classification corresponds in spirit
to similar classifications in commercial aviation [8].
At higher ASIL levels, additional guidance is given
for the software development process to decrease the
chances of introducing a flaw.

However, when calculating the probability of fail-
ure in a hazard analysis, software is assumed to be
fault-free [9]. Failure probabilities are typically based
on the failure rate of hardware components under
anticipated environmental conditions, assuming soft-
ware functions without flaw. Highly-improbable sys-
temic software flaws—when multiplied across the au-
tomotive fleet size the software is deployed in and
multiplied against the number of operational hours
each automobile will have in its lifetime—can easily
lead to catastrophic failure being more probable than
not.

3 Automotive Business Con-
straints

Business constraints can be in tension with devel-
oping secure systems. Automotive constraints are
particularly antagonistic. We highlight the following
constraints:

• Part cost: The automotive industry is extremely
sensitive to part cost.

• Size and weight: Solutions must be tempered
by the increase in size or weight. For example,
replacing a CAN network (line topology) with an
ethernet network (star topology with a central
switch) may be infeasible due to the extra wiring
required.

• Legacy integration: The automobile industry of-
ten depends on long component lifetimes to keep
costs down, so a new design may have to inte-
grate with legacy components. Approaches that
require major architectural changes, such as a
change in bus technology, may be delayed or
ruled out in order to remain compatible with
legacy components.

• Memory constraints: Cost pressures require that
ECUs use the least expensive components which
can do the job, and particularly in small mi-
crocontroller based ECUs, memory is the most
costly part of a component. Software for these
micro-controller ECUs is designed for the small-
est memory footprint possible, and security ap-
proaches which use large amounts of memory
may be ruled out on the basis of cost.

• Timing requirements: Many ECUs perform
tasks which have fixed real-time deadlines, (i.e.
the time between receiving a command and
carrying out that command), and these dead-
lines are often safety-critical. Security measures
which may prevent a program from meeting tim-
ing requirements are ruled out on the basis of
safety.

• Standardization: A single manufacturer cannot
afford to break away from industry standards.
Keeping supply chain costs low requires leverag-
ing suppliers making similar parts for multiple
manufacturers.

c© Galois, Inc. 2015 3

Some recommendations we make conflict with the
constraints above. On the other hand, the goal line
for some of today’s technical constraints will move.
For example, as processor manufacturers retire old
components, some processors will be upgraded to
modern alternatives which offer superior security fea-
tures for free—e.g., modern micro-controllers offer
memory protection, a feature which can be used to
ensure software components do not interfere with
each other.

The non-technical constraints are more difficult.
One of the largest hindrances to security is suppliers
providing components as a “black box”. Parts are
provided by suppliers with only an assurance that, in
benign operating conditions, they function according
to specification. The manufacturer provides few or
no security-oriented requirements, such as a spec for
how parts should function in adversarial operating
conditions, and the supplier, in order to protect the
intellectual property in their software, does not pro-
vide any visibility into the software used in the part,
preventing the software from being assessed, modi-
fied, or instrumented in order to increase security.

We envision some changes to the status quo that
might allow automobiles to become more secure.
• Independent evidence: Manufacturers should re-

quire evidence that security objectives are met
by a supplier’s software. If a manufacturer can-
not analyze the software directly, it can require
that the supplier provide the evidence. The evi-
dence might be in the form of test results, docu-
mentation, or signed guarantees. A third-party
analyst can also corroborate a supplier’s claims.

• Collaboration: Although a supplier may not
want to provide a manufacturer with a full copy
of each part’s software, suppliers might bene-
fit from allowing a manufacturer to embed their
own engineers within their teams. Joint teams
between suppliers and manufacturers can con-
tribute to and audit both the source code and
the software development process while reducing
risks to the supplier’s trade secrets.

• Open software: Suppliers might be convinced
that opening access to their software is a compet-
itive advantage—e.g., a “Red Hat model of busi-
ness” [10]. Open software makes it possible for

others to analyze and improve the software. In
a sense more limited than open-source, suppliers
might find ways to offer to provide manufactur-
ers with their software source, and use patents
and licensing restrictions to protect their trade
secrets.

• Liability: Finally, there is precedent for holding
automotive manufacturers liable for harm caused
by their software [11]. Business impediments to
security may naturally be reduced. In particular,
manufacturers may pass on liability to suppliers,
giving suppliers a much bigger stake in ensuring
software security.

Ultimately, it may be very difficult to ensure soft-
ware quality with the current supplier model. As
noted in the UCSD/UW research,

. . . while this outsourcing process might
have been appropriate for purely mechani-
cal systems, it is no longer appropriate for
digital systems that have the potential for
remote compromise [2].

4 Assuring the ECUs

A modern vehicle contains dozens of embedded com-
puters distributed throughout the vehicle. Some, like
the head unit, contain a laptop-grade processor, a full
operating system stack, and a user interface. Others,
such as those for seat positioning, might be 8-bit (or
smaller) microcontrollers with just a few kilobytes of
memory. Others fall between these extremes.

Attacking a modern ECU involves modifying its
program (firmware), modifying the data that pro-
gram is operating over, or modifying its hardware im-
plementation. The primary attack vectors for mod-
ifying a program or its data are flaws–or misued
features–in the program itself.

In this section, we cover approaches to improve
software development, testing, formal verification,
and runtime assurance, particularly borrowing on
high-assurance development in other domains. We
discuss hardware modifications in Section 6, where
we discuss supply chain issues.

c© Galois, Inc. 2015 4

4.1 Software Development

The Pareto Rule applies to software quality: 20% of
the effort is responsible for 80% of the quality. The
point is that by following software development prac-
tices that are well-known and low-overhead, many se-
curity vulnerabilities can be eliminated early in the
design and implementation process. Still, the auto-
motive industry has often ignored the “low-hanging
fruit” for improving software quality [11], such as us-
ing version control, unit testing, integrated testing,
and code reviews, which are already recommended
by the MISRA Software Guidelines [12].

Below, we describe additional approaches to help
improve software quality.

Coding Standards Coding standards can help
improve software quality. For C software develop-
ment, the MISRA C standard [12] is common in the
automotive industry. (However, it is not universally
followed, [11].) About a dozen static analysis tools
can check for MISRA conformance. A much simpler
but compatible coding guideline with ten rules is pro-
posed by researchers at JPL [13].

Static Analysis Automated software static ana-
lyzers analyze the source code of a program and
alert the user to possible flaws. Popular commer-
cially available static analyzer tools include Code
Sonar [14], Coverity [15], and Polyspace [16]. Some
tools are sound, meaning they should not produce
false negatives. For scalability and to reduce false
positives, some tools are unsound. Software written
according to guidelines like MISRA can improve the
performance and usefulness of static analysis tools.

While static analysis is a powerful tool, we cau-
tion that it can also lead to a false sense of security.
Toyota used static analysis tools on their acceleration
ECU software, which was found by third parties to
have many quality issues that may have been solved
by better following software engineering best prac-
tices [11]. Static analysis tools produce false pos-
itives so many false positives that it is difficult to
discern the wheat from the chaff. Also, static analy-
sis cannot be relied upon to uncover domain-specific

bugs automatically. Indeed, some properties cannot
be encoded as code-level assertions.

Memory-Safe Programming Approximately
half of the vulnerabilities exploited by UCSD/UW
are at their heart the result of buffer overflows [2].
Buffer overflows as a security vulnerability have been
known since the 70’s, but due to unsafe languages,
still exist. Buffer overflows are a particular example
of a memory-safety violation, which itself is an
example of undefined behavior.

Coding standards and static analysis are mostly
targeted at preventing and discovering, respectively,
undefined behavior (e.g., caused by a buffer over-
flow) resulting from using “unsafe” programming lan-
guages like C or C++. C/C++ is commonly used for
ECU programming. Why? There are four reasons:

• Legacy concerns: Existing code in C/C++ rep-
resents a significant investment by software au-
thors.

• Space: Most high-level languages have a much
larger memory footprint than C/C++ programs
of comprarable functionality, and memory size is
a major cost concern.

• Timing: ECUs typically have hard real-time
deadlines. Programs written in C/C++ can typ-
ically be written so that their execution time is
determinstic and bounded.

• Low-level programming: Finally, without re-
strictions on pointer use and type-casting,
C/C++ naturally supports the idioms required
for writing device drivers that interaction with
hardware.

Safe-C languages are languages that are advertised
to be safer than C, and that require a small (com-
parable to C) runtime system. These languages are
designed to replace C for some subset of applications
commonly written in C because of C’s advantages
mentioned above.

Two modern safe-C languages are Rust [17] and
Ivory [18]. Rust is focused on two primary goals–
concurrency and memory-safety–while still providing
to the developer good performance and low-level con-
trol of memory. The language guarantees memory-
safety through static type checking rather than a run-

c© Galois, Inc. 2015 5

time system. Therefore, Rust programs are nearly as
fast and predictable with as small memory footprint
as C programs.

Ivory was developed by the authors to support the
DARPA HACMS program [19]. Ivory is a secure al-
ternative to C/C++ in which memory-safety errors
are impossible and that supports a variety of verifi-
cation tools.

4.2 Testing

Testing is the primary means in industry to provide
software assurance. We will not address testing in
more detail except to point out two classes of test-
ing that are highly effective but less often used, fuzz
testing and property-based testing.

Fuzz Testing A class of testing which has been
successfully used for security-critical systems is fuzz
testing, in which inputs that do not correspond to
the documented application interface are generated.
Fuzz testing is particularly effective for discovering
bugs caused by insufficiently sanitized user input [20].

Property-Based Testing Property-based testing
refers to a testing approach in which test-cases are
(mostly) automatically derived from the property
specification, running tests until a specific test-case
fails or the tester stops. Property-based testing tools
generally use simple test-cases initially, iteratively
generating more elaborate tests.

QuickCheck was one of the first property-based
testing tools developed [21]. QuickCheck has been
used in the automotive industry. For example, Volvo
is using QuickCheck to test conformance against the
AUTOSAR 4.0 standard [22].

4.3 Formal Verification

While testing provides partial assurance about the
actual artifact to be fielded (since a failing test vec-
tor can always be missed), formal verification pro-
vides complete assurance about a model of the sys-
tem. With testing, the designer’s worry is, “Have I
tested enough?” With formal verification, the worry
is instead, “Is my model’s fidelity accurate enough?”.

Static analysis, discussed in Section 4.1, is a form
of formal verification in which constructing the model
is performed by the static analyzer itself. Because
model construction is automated, making it domain-
specific is difficult, so static analysis usually focuses
on modeling the semantics of a programming lan-
guage. Static analyzers are therefore low-level and
cannot generally deal with systems (e.g., networked
devices), domain-specific properties, or even complex
software (e.g., concurrency).

Formal verification then requires a two-step ap-
proach: build a model, and then verify it. Fortu-
nately, for automotive systems, models may already
exist for use in simulation.

At the model level, a potentially useful class of
formal verification tools are model-checkers, which
are particularly useful for automating the analysis of
concurrent or distributed systems [23].

Other approaches include interactive theorem
proving. Theorem proving is more general but not
very automated, requiring significant user expertise.
Theorem provers have been used to verify real-time
data bus designs, though [24].

Glue Code Generation Glue code is software
that interfaces between software subcomponents.
Glue code is responsible for integrating a collection
of reusable components into a complete system. It
might be responsible for modifying data formatting
as it is passed between components, or translating
new software interfaces to work with legacy compo-
nents.

Glue code is conceptually simple, but it is of-
ten where errors occur because correctness relies
on understanding both the requirements and the
assumptions of all of the software components it
touches. Flaws in glue code are responsible for multi-
ple published security attacks on automobiles, includ-
ing Bluetooth usage, diagnostic “PassThru” systems,
and even the audio system [2].

Ideally, glue code can be generated from specifi-
cations rather than written by-hand. In general, a
top level specification which described the assump-
tions and requirements of individual components is
good engineering practice, and glue code generated

c© Galois, Inc. 2015 6

from such a specification can be a major part in en-
suring the specification of the components matches
the implemention of components. This approach can
also reduce engineering cost by reducing the time to
develop and test of tedious boilerplate [18].

4.4 Runtime Assurance

In this section, we describe approaches to ensure a
program’s execution meets a specification. These
techniques are distinct from testing or other analy-
sis techniques performed at design time, as described
the preceding section.

System Specialization In the UCSD/UW anal-
ysis, some middleware contained a full installation
of an operating system (e.g., Linux), complete with
standard root-level networking tools. There was no
need for these tools to exist on the system, but they
were leveraged during the study to simplify the at-
tacker’s analysis of other parts of the system and
to simplify software attacks. As noted by Check-
oway et al.:

Finally, a number of the exploits we de-
veloped were also facilitated by the services
included in several units. For example, we
made extensive use of telnetd, ftp, and
vi, which were installed on the PassThru
and telematics devices. There is no rea-
son for these extraneous binaries to exist
in shipping ECUs, and they should be re-
moved before deployment, as they make it
easier to exploit additional connectivity to
the platform [2].

The lesson is that only those tools required should be
installed.

Taken to its conclusion, operating systems re-
searchers have been developing a unikernel approach
in which an operating system and drivers is devel-
oped as a set of specialized libraries, and depending
on the applications running on it, only the required
libraries are linked in. Two virtual machines imple-
menting the unikernel approach are the HaLVM, de-
veloped at Galois, Inc. [25]; and Mirage, developed

at Cambridge University [26]. Tools like HaLVM and
Mirage are particularly relevant for securing systems
built on modern application processors, such as the
entertainment system ECU.

Data Integrity Measurement and attestation
(M&A) are, respectively, approaches to check the
value of data, including the executable, and then
prove to a third-party that the values are as ex-
pected [27]. M&A often assumes the existence of
special hardware (like a Trusted Platform Module)
to provide a root of trust [28], which may exist on
small microcontrollers; lighter-weight solutions have
been proposed in the automotive industry [29].

M&A is particularly relevant to ensure that ECUs
are only executing binaries which have been endorsed
by the manufacturer. Reflashing ECUs with mali-
ciously modified binaries was a key element in a num-
ber of the attacks described in the UCSD/UW work.

Runtime Verification Runtime verification (RV)
is an active research field that marries formal verifi-
cation and testing. The idea is to take a high-level
specification about program behavior and instrument
a program’s internals or output to check for confor-
mance against the property.

The challenges associated with RV include how to
instrument a program to check all control-paths that
are relevant to the property, while ensuring that the
instrumentation does not adversely change the be-
havior of the program (particularly the nonfunctional
behaviors, such as timing and memory usage). Pre-
vious work by the authors, addressed these problems
in the context of hard real-time avionics [30].

Software Fault Containment Regions The con-
cept of fault-containment regions (FCRs) is funda-
mental to fault-tolerant system design [31]. The idea
is to design architectural regions that contain classes
of faults. For example, separate cabinets with sep-
arate power supplies suffer power failures indepen-
dently. Replicated ECUs for critical applications pro-
vide some level of fault-containment. However, an ar-
gument that hardware FCRs provide redundancy as-
sumes there is no common-mode failure in any repli-

c© Galois, Inc. 2015 7

cated software. Thus, software vulnerabilities can un-
dermine safety arguments, as described in Section 2.

Similarly, FCRs make sense for software as well as
hardware. For example, memory isolation is particu-
larly important so that memory safety errors cannot
propagate between programs. Small ECUs typically
lack memory management units.

Moreover, software functions follow the principle
of least privilege and share only the data required by
other functions. In particular, diagnostic and debug-
ging information should be separated from nominal
payloads and be enabled only in specific modes.

4.5 Sanitizing Inputs

Automobiles have a variety of interfaces on which
they accept input. From a security perspective, every
input interface must be considered completely under
the control of an attacker. All input interfaces offer
some attack surface for an attacker to subvert as-
sumptions of software which interacts with that in-
terface. The key to defending against attacks on un-
trusted interfaces is for the software to assume noth-
ing about the input. This means it must have valid
modes for handling any input.

Let us inspect a number of common interfaces and
discuss vectors of attacks on each.

Radio Systems Ordinary FM and AM audio de-
coding is straightforward enough. However, new
standards, such as Radio Broadcast Data System
(RBDS), provide machine readable information out-
side the audible band of an FM radio signal [32].
RBDS may provide information relevant to the radio
tuner itself, the audio system, and traffic informa-
tion relevant to a variety of other systems in the car.
This relatively simple input may have a broad reach
throughout the car’s systems, interacting with tens
of thousands of lines of code just to manage string
manipulation and character encoding.

Other digital radio standards, such as HD Radio
and satellite radio, have problems along the same
lines, but are considerably more complex than RBDS.

Media Systems Nearly all cars support playback
of audio provided by the user in digital format.

These systems are required to deal with an enormous
amount of complexity. To go from a user-provided
MP3-CD, SD card, or USB drive to an audio stream,
the input must interact with many hundreds of thou-
sands of lines of code throughout a stack of software
components, starting with low level device drivers,
moving up through filesystems, metadata parsers, au-
dio and video decoders, and display systems.

Additional complexity ripe for attack includes de-
coders to interact with iPod, iPhone, or Android
phones over USB, and subsystems that classify or rec-
ognize a newly attached device. Attacks have been
demonstrated in the wild against these kinds of tar-
gets [33].

Telematics Systems Today’s high-end cars have
complex telematics units connected to the cell phone
network. These are used for emergency services as
well as day-to-day conveniences. Any vulnerabilities
in these systems are particularly hazardous since they
may be remotely exploitable by anyone with access
to the phone network, and because these telematics
units must have access to critical systems for emer-
gency services purposes. Unsurprisingly, exploitable
vulnerabilities have been demonstrated in telematics
systems [2].

Wireless Key Systems The most widely-
understood class of attacks among the general
population of car owners: If an attacker can unlock
your car without possessing your keys, that is a vio-
lation of trust that consumers recognize at a visceral
level. Unlike the other categories, the attacks which
have been demonstrated have not typically been due
to software implementation bugs. They’ve either
been caused by inadequate cryptographic protocol
design, or physical threats such as relay attacks [34].
Still, even perfectly-applied cryptography and phys-
ical defenses would be useless if a buffer overrun
allowed them to be bypassed.

Vehicle to Vehicle Communication Vehicle-to-
vehicle (V2V) systems, under proposal by the De-
partment of Transportation [35], do not exist in com-
modity vehicles and have not been subject to vulnera-

c© Galois, Inc. 2015 8

bility analyses, but they will present additional secu-
rity challenges and vulnerabilities [36]. V2V involves
a complex security infrastructure, aimed at providing
authentication while providing anonymity to users.
Implementations will consequently require complex
software and will likely provide another attack vec-
tor for the vehicle.

5 Architectural Assurance

It is common in modern vehicles to use multiple buses
to connect different ECUs together, for several rea-
sons. Some links can be low-bandwidth, in which
case LIN is preferred to reduce cost. At the other
extreme, the amount of communication over high-
bandwidth links has been growing beyond the capac-
ity of a single CAN bus. Very high bandwidth flows
are migrating to Ethernet or FlexRay. Others are
being split onto dedicated CAN buses.

There are good security reasons to use multiple
buses as well, although as we’ll see, there are trade-
offs that must be considered.

Ideally, nodes which do not need to communicate
with each other should be partitioned onto separate
buses to limit damage if other countermeasures fail.
It’s especially important that safety-critical nodes
should be on a dedicated bus, not shared with any-
thing less critical.

Sometimes, two buses must be bridged, perhaps
because data produced by a critical node is needed
by a low-criticality component such as the entertain-
ment system. In that case, each bridge should only
forward messages which have been explicitly permit-
ted by the system design, and should rate-limit those
messages to keep denial-of-service attacks on one bus
from affecting others.

However, each additional bus adds to wiring costs;
separation adds to architectural complexity, which
has an engineering cost; and introducing bridges be-
tween buses adds to electronics costs.

Furthermore, there are often non-obvious reasons
why seemingly-unrelated nodes need to communicate
with each other. For example, door locks might nor-
mally be a low-criticality interface, while detecting a
car crash is a highly safety-critical process—but there

may be a requirement that when a car crash occurs,
the doors automatically unlock. As a result, there
is a complicated trade-off at the architectural level
between safety, reliability, and security.

Challenges The obvious way to guarantee the con-
fidentiality and authorization of data in transit is
with cryptography. However, there are several sig-
nificant challenges to adding cryptographic authenti-
cation to ECU communications today.

First, most messages of interest are delivered over
CAN, which in the current technology generation lim-
its each message to 8 bytes in length. Since 8 bytes is
the smallest a cryptographic signature can be while
still having reasonable security, any authentication
scheme on current CAN buses requires a message
fragmentation protocol.

Since some communications are already
fragmented–notably dealer diagnostic commands–
these are a natural first target for strong cryptogra-
phy. In addition, future technology generations will
relax these restrictions. Ethernet frames can be up
to 1,500 bytes on standard hardware, and FlexRay
frames can be up to 254 bytes long. If the CAN-FD
extension to the CAN standard is adopted by the
automotive industry, compliant CAN nodes will be
able to exchange frames up to 64 bytes long [37].

Another challenge is the cost of hardware security
modules (HSMs). An attacker may have full physical
access to the electronics in the vehicle, and may have
financial incentive to invest in expensive equipment.
As a result, tamper-resistant key storage would be
preferable; unfortunately, this could add significantly
to parts cost.

Two factors mitigate this problem. One is that
that cost of HSMs is falling to the point that some
automotive manufacturers are considering them for
cars in the next few years [29]. The other factor is
that it is not necessary to prevent tampering or key
extraction given physical access to the vehicle, so long
as extracting the key from one car doesn’t make any
other cars vulnerable. This requirement can be met
given a public-key infrastructure, where each com-
ponent is assigned a random key-pair signed by the
manufacturer, and then key exchange computes ses-

c© Galois, Inc. 2015 9

sion keys which are not saved across power cycles.

For messages which are time-critical, performance
is a third challenge. Cryptographic functions take
time to compute, especially on a microcontroller that
doesn’t have hardware acceleration for the crypto-
graphic primitives. Here, too, the decreasing cost of
HSMs will make hardware accelerated crypto avail-
able to more parts of the car over time. Still, mes-
sages which are not time-critical should be the first
targets for security improvements.

Recommendations The first step is to use strong
cryptography for messages intended for dealers’ use
in the field. This includes commands for firmware
updates and other vendor-specific diagnostics. Many
manufacturers already do some portion of this, al-
though the implementation details should be re-
viewed by cryptography experts and tested by a team
of penetration testing experts.

Diagnostic messages are the best case for each of
the challenges that automotive cryptography faces:
They are often already longer than one CAN message,
so they already require fragmentation; they typically
aren’t addressed to the smallest microcontrollers; and
they are not normally time-sensitive. These messages
are also critical to protect, because if you can’t trust
that the firmware loaded on an ECU is authentic,
that undermines other efforts to harden ECU secu-
rity.

Given additional resources, the next step is to add
authentication to critical messages sent during nor-
mal vehicle operation, such as:

• commands to brakes, throttle, steering, locks
• status for speedometer, fuel gauge
• data from lateral acceleration sensor to airbags

OBD-II Port Independent of the architecture of
the internal data busses, the government-mandated
OBD-II port provides external access to most ECUs.
While access to the OBD-II port requires physical
access to the vehicle, it is security-critical (and even
safety-critical) and should be given careful attention.

Only the specified diagnostic messages should be
allowed to be transmitted to/from the OBD-II port.
This includes not only the kind of message, but in

what vehicle state they are administered. If a com-
mand that is useful for diagnostics would be danger-
ous if issued at highway speeds, then the command
should only be recognized in a special system diag-
nostic mode, which should be authenticated.

Head Unit System Isolation The head unit, in-
cluding the telematics and entertainment systems, is
at the highest risk of having an exploitable vulner-
ability. At the same time, it is the easiest to com-
partmentalize, since it is centrally located within the
vehicle, minimizing extra wiring, and it already uses
relatively high-end CPUs with a variety of security
features and support for higher-cost buses like Eth-
ernet.

The head unit should be placed on an untrusted
bus, which might be CAN or Ethernet, together with
a separate ECU to bridge and filter that bus to the
critical buses in order to forward necessary data. Ide-
ally, these units should also run their software under
a trusted virtualization hypervisor with a small filter
driver that prevents the node from sending or receiv-
ing traffic it is not supposed to exchange (see the
discussion on system specialization in Section 4.4).
Notably, they should not be permitted to send diag-
nostic commands; in fact, the bar for allowing these
components to send any messages at all to the rest
of the vehicle should be set very high.

Some interfaces within the vehicle must be trusted
in order for systems to work properly. For instance,
the brake controller must trust inputs which indicate
whether to apply the brake or not. Since the brake
controller is receiving that input from an external in-
terface which may have been compromised, the brake
controller should authenticate the input.

Currently, messages broadcast onto automobile
CAN and LIN buses have no way of authenticating
their origin. Due to the broadcast nature of these
buses, there is no protection at the hardware level
from an attacker adding an additional device to these
buses to send maliciously crafted messages. Worse,
the government-mandated OBD-II port makes exe-
cution of this kind of attack easy.

In addition, there is no protection against repro-
gramming existing devices connected to these buses

c© Galois, Inc. 2015 10

to send maliciously crafted messages, and, as shown
in the UCSD/UW work, the dealer’s equipment could
even be subverted to attack known vulnerabilities in
each car brought into the shop.

To avoid these issues, important messages between
ECUs should be cryptographically authenticated. It
may also be desirable to encrypt them, to make it dif-
ficult for an attacker to determine when to execute
an attack based on the state of the vehicle. Conve-
niently, with modern authenticated-encryption block
cipher modes like Galois Counter Mode (GCM), en-
cryption comes free with the implementation of au-
thentication [38].

Finally, in an ideal world, manufacturers would add
authentication and encryption to most or all mes-
sages. This is expected to be a long-term effort be-
cause it requires coordination between many differ-
ent vendors throughout the supply chain for each car
manufacturer.

6 Assuring the Supply Chain

Recent years have shown a growing concern over the
robustness of supply chains, in particular those used
to obtain critical “microelectronics supplies for de-
fense, national infrastructure, and intelligence appli-
cations,” [39]. One concern is over the possibility
of introducing a hardware Trojan: circuitry that lies
dormant (e.g., often doing nothing except monitoring
external stimuli) until it observes a trigger condition,
at which point it performs an attack.

The attack surfaces facilitated by hardware
Trojans are numerous: proof-of-concept attacks
have demonstrated troublesome capabilities includ-
ing data exfiltration [40], gradual degradation or de-
struction of system components via malicious pro-
cess parameterization [41], privilege escalation and
credential capture [42], and injection of modified
firmware [42]. Many proposed Trojans suggest ways
to realize “kill switch” functionality [43], wherein de-
ployed systems (e.g., UAVs or radar systems) can be
shut down or behave maliciously when a trigger con-
dition is received (e.g., a trigger value obtained via
an adversary’s transmission device).

In 2005, the Defense Science Board Task Force

on High Performance Microchip Supply performed a
study [39] of the threat and made various recommen-
dations for mitigating the problem. This study was
done in the context of “defense, national infrastruc-
ture, and intelligence applications,” but the same vul-
nerabilities exist in the commercial sector, and in the
case of automobiles, the impact of exploits may also
extend to the loss of human life.

In the commercial space (in contrast to the de-
fense space), it may be problematic for the manufac-
turer to acquire from component vendors information
that may expose, to various degrees, their intellectual
property: e.g., evidence that a component is free of
vulnerabilities or that it was developed with a cer-
tain process. We touched on this problem in Section
3: we suggested (under independent evidence) how
the supplier might provide test results, documenta-
tion, or third party guarantees.

The following are approaches to secure the supply
chain:

1. secure the process of developing and delivering
components;

2. remove vulnerabilities from components (hard-
ening components against threats);

3. apply the principle of least privilege (limiting the
capabilities of the attacker from a compromised
component);

4. detect malicious circuitry or code in the compo-
nents;

5. add run-time mechanisms for thwarting and/or
detecting malicious behavior.

All of these defenses are orthogonal and could be used
profitably in conjunction, thus achieving Defense in
Depth. Due to space considerations, we discuss only
the last two, which are areas of active research, in
more depth.

A large body of work has been produced in the last
few years that describe various ways of tackling the
detection problem of hardware or firmware Trojans.
This work ranges from high-level taxonomical de-
scriptions of Trojans and detection techniques [44], to
statistical techniques [45], to specific detection meth-
ods such as power calibration or gate-level behavior
characterization [46]. A variety of “fingerprinting”
methods have been proposed to allow post-fab iden-
tification of modified circuitry, either via path delays

c© Galois, Inc. 2015 11

in golden circuits [47] or by the collection and prov-
able correspondence of data extracted from various
side channels [48]. Finally, extensions to existing test-
ing methodologies propose new test vector generation
strategies based on theoretical models of anticipated
Trojan behavior and Trojan insertion methods [49].

Another class of countermeasures is to add diver-
sity to our systems. Diversity at the network com-
munications level could inhibit Trojans from being
activated or inhibit their actions if triggered. Acti-
vating a Trojan requires the adversary to be able to
deliver a trigger to some data path that the Trojan
can observe. By introducing some degree of obfusca-
tion in the hardware or in the software, the attacker’s
assumptions are violated, potentially preventing the
trigger from being delivered or recognized.

Synthetic diversity at the code level has been pro-
posed as a countermeasure to code vulnerability ex-
ploits: by creating multiple–functionally equivalent–
variations of the code, we make it more difficult for
the attacker to create an attack that works on every
variation of the code [50].

7 Conclusions

Drivers’ sense of control over their vehicles is psy-
chologically critical. Having that sense of control
threatened by a security vulnerability gets substan-
tial negative media and consumer attention. If any of
these vulnerabilities are exploited and lead to prop-
erty damage, injury, or death, the legal liabilities are
also a significant concern. Naturally, the automobile
industry understands this, but the gap between se-
curity researchers’ recommendations and the practi-
cal constraints that the manufacturers operate under
have led to missed opportunities for improvement.

In this paper, we have presented the constraints
that have limited automotive adoption of the best-
known methods in computer security, as well as
our recommendations for solutions and mitigations
that satisfy those constraints. Our recommendations
cover the range from individual microcontrollers to
system architecture level design questions and all the
way through supply chain management concerns.

It is our hope that the automotive industry at all

levels can find easy process enhancements in this re-
port which they can apply today for incremental im-
provements in security, and more significant changes
which they can apply over time to resist substan-
tially more advanced threats. In addition, we intend
that security researchers can take from this report
some guidance on fruitful directions for research re-
sults that will be applicable to the auto industry’s
needs.

Acknowledgments

This work was partially supported by DARPA con-
tract HR0011-14-C-0113. All opinions expressed
herein are our own.

References
[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno,

S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, and S. Savage, “Experimental security anal-
ysis of a modern automobile,” in IEEE Symposium on
Security and Privacy, 2010.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roes-
ner, and T. Kohno, “Comprehensive experimental analy-
ses of automotive attack surfaces,” in USENIX Security,
2011.

[3] L. Pike, J. Maddalon, P. Miner, and A. Geser, “Abstrac-
tions for fault-tolerant distributed system verification,” in
Theorem Proving in Higher Order Logics (TPHOLs), ser.
LNCS, vol. 3223. Springer, 2004, pp. 257–270.

[4] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg,
“Byzantine fault tolerance, from theory to reality,” in
Computer Safety, Reliability, and Security, ser. LNCS,
vol. 2788. Springer, 2003, pp. 235–248.

[5] P. Miner, A. Geser, L. Pike, and J. Maddalon, “A unified
fault-tolerance protocol,” in Formal Techniques, Model-
ing and Analysis of Timed and Fault-Tolerant Systems
(FORMATS-FTRTFT), ser. LNCS, vol. 3253. Springer,
2004, pp. 167–182.

[6] M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E. Latronico,
and P. Koopman, “Coverage and the use of cyclic redun-
dancy codes in ultra-dependable systems,” in 2005 In-
ternational Conference on Dependable Systems and Net-
works (DSN), 2005, pp. 346–355.

[7] Development Guidelines for Vehicle Based Software.
MISRA, 1994, iSBN 0 9524156 0 7. Out of print. Available
from www.misra.org.uk.

c© Galois, Inc. 2015 12

www.misra.org.uk

[8] Radio Technical Commission for Aeronautics (RTCA),
“DO-178B: Software considerations in airborne systems
and equipment,” 2011, http://www.rtca.org/onlinecart/
product.cfm?id=501.

[9] N. G. Leveson, Safeware: System Safety and Computers.
New York, NY, USA: ACM, 1995.

[10] R. Young, W. Rohm, and R. H. Inc., Under the Radar:
How Red Hat Changed the Software Business–and Took
Microsoft by Surprise. Coriolis Group, 1999.

[11] P. Koopman, “A case study of toyota unintended
acceleration and software safety,” Public seminar,
September 2014, available at http://www.slideshare.net/
PhilipKoopman/toyota-unintended-acceleration?ref=
http://betterembsw.blogspot.com/.

[12] Guidelines for the Use of the C Language in Critical
Systems. MISRA, 2004, iSBN 0 9524156 2 3 (pa-
perback). Available at http://193.35.217.33/Buyonline/
tabid/58/Default.aspx.

[13] G. Holzman, “The power of 10: Rules for developing
safety-critical code,” Computer, vol. 39, no. 6, pp. 95–
97, Jun. 2006.

[14] “Code sonar,” Website, available at http://www.
grammatech.com/codesonar.

[15] “Coverity,” Website, available at http://www.coverity.
com/.

[16] “MathWorks polyspace,” http://www.mathworks.com/
discovery/static-code-analysis.html, May 2015.

[17] N. D. Matsakis and F. S. Klock, II, “The rust language,”
in Proceedings of the 2014 ACM SIGAda Annual Confer-
ence on High Integrity Language Technology, ser. HILT
’14. ACM, 2014, pp. 103–104.

[18] P. C. Hickey, L. Pike, T. Elliott, J. Bielman, and
J. Launchbury, “Building embedded systems with em-
bedded DSLs,” in Proceedings of the 19th ACM SIG-
PLAN International Conference on Functional Program-
ming, ser. ICFP ’14. ACM, 2014, pp. 3–9.

[19] “High-assurance cyber military systems,” Website,
available at http://www.darpa.mil/Our Work/I2O/
Programs/High-Assurance Cyber Military Systems %
28HACMS%29.aspx.

[20] A. Takanen, J. DeMott, and C. Miller, Fuzzing for Soft-
ware Security Testing and Quality Assurance. Artech
House, 2008.

[21] K. Claessen and J. Hughes, “QuickCheck: A lightweight
tool for random testing of haskell programs,” in Proceed-
ings of the Fifth ACM SIGPLAN International Confer-
ence on Functional Programming, ser. ICFP ’00. ACM,
2000, pp. 268–279.

[22] “Checksum property for AUTOSAR,” Website, De-
cember 2014, available at http://www.quviq.com/
checksum-property-for-autosar/.

[23] E. M. C. Jr., O. Grumberg, and D. A. Peled, Model Check-
ing. MIT Press, 1999.

[24] J. Rushby, “An overview of formal verification for the
time-triggered architecture,” in Formal Techniques in
Real-Time and Fault-Tolerant Systems, ser. LNCS, vol.
2469. Springer, Sep. 2002, pp. 83–105.

[25] A. Wick, “The HaLVM: A simple platform for simple
platforms,” Xen Summit Talk, August 2012, slides avail-
able at http://www-archive.xenproject.org/xensummit/
xs12na talks/M9b.html.

[26] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft, “Unikernels: Library operating systems for
the cloud,” SIGPLAN Notices, vol. 48, no. 4, pp. 461–472,
Mar. 2013.

[27] X. Zhang, O. Acimez, and J.-P. Seifert, “Building efficient
integrity measurement and attestation for mobile phone
platforms,” in Security and Privacy in Mobile Informa-
tion and Communication Systems, ser. LNCS. Springer,
2009, vol. 17, pp. 71–82.

[28] S. L. Kinney, Trusted Platform Module Basics: Us-
ing TPM in Embedded Systems (Embedded Technology).
Newnes, 2006.

[29] O. Bubeck and V. Bourgeois, “New security con-
cepts for future generation automotive electronic con-
trol units,” in Proceedings of Embedded Real-time Soft-
ware and Systems (ERTS) 2014, Toulouse, France, 2014,
available at http://www.erts2014.org/Site/0R4UXE94/
Fichier/erts2014 7C2.pdf.

[30] L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot:
A hard real-time runtime monitor,” in Proceedings of the
1st Intl. Conference on Runtime Verification, ser. LNCS.
Springer, November 2010.

[31] J. Rushby, “Bus architectures for safety-critical embedded
systems,” in EMSOFT 2001: Proceedings of the First
Workshop on Embedded Software, ser. LNCS, vol. 2211.
Springer, Oct. 2001, pp. 306–323.

[32] “NRSC-4-B: United States RBDS standard,” April 2011,
available at http://www.nrscstandards.org/SG/nrsc-4-B.
pdf.

[33] “CVE-2013-3200,” April 2013, available at http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3200.

[34] A. Francillon, B. Danev, and S. Capkun, “Relay attacks
on passive keyless entry and start systems in modern
cars.” in NDSS, 2011, available at http://s3.eurecom.fr/
docs/ndss11 francillon.pdf.

[35] J. Harding, G. Powell, Y. R., F. R., D. J., S. C., L. D.,
S. M., J., and J. Wang, “Vehicle-to-vehicle communica-
tions: Readiness of V2V technology for application,” U.S.
Department of Transportation National Highway Traffic
Safety Administration, August, Tech. Rep. DOT HS 812
014, 2014.

c© Galois, Inc. 2015 13

http://www.rtca.org/onlinecart/product.cfm?id=501
http://www.rtca.org/onlinecart/product.cfm?id=501
http://www.slideshare.net/PhilipKoopman/toyota-unintended-acceleration?ref=http://betterembsw.blogspot.com/
http://www.slideshare.net/PhilipKoopman/toyota-unintended-acceleration?ref=http://betterembsw.blogspot.com/
http://www.slideshare.net/PhilipKoopman/toyota-unintended-acceleration?ref=http://betterembsw.blogspot.com/
http://193.35.217.33/Buyonline/tabid/58/Default.aspx
http://193.35.217.33/Buyonline/tabid/58/Default.aspx
http://www.grammatech.com/codesonar
http://www.grammatech.com/codesonar
http://www.coverity.com/
http://www.coverity.com/
http://www.mathworks.com/discovery/static-code-analysis.html
http://www.mathworks.com/discovery/static-code-analysis.html
http://www.darpa.mil/Our_Work/I2O/Programs/High-Assurance_Cyber_Military_Systems_%28HACMS%29.aspx
http://www.darpa.mil/Our_Work/I2O/Programs/High-Assurance_Cyber_Military_Systems_%28HACMS%29.aspx
http://www.darpa.mil/Our_Work/I2O/Programs/High-Assurance_Cyber_Military_Systems_%28HACMS%29.aspx
http://www.quviq.com/checksum-property-for-autosar/
http://www.quviq.com/checksum-property-for-autosar/
http://www-archive.xenproject.org/xensummit/xs12na_talks/M9b.html
http://www-archive.xenproject.org/xensummit/xs12na_talks/M9b.html
http://www.erts2014.org/Site/0R4UXE94/Fichier/erts2014_7C2.pdf
http://www.erts2014.org/Site/0R4UXE94/Fichier/erts2014_7C2.pdf
http://www.nrscstandards.org/SG/nrsc-4-B.pdf
http://www.nrscstandards.org/SG/nrsc-4-B.pdf
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3200
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3200
http://s3.eurecom.fr/docs/ndss11_francillon.pdf
http://s3.eurecom.fr/docs/ndss11_francillon.pdf

[36] A. Humayed and B. Luo, “Cyber-physical security for
smart cars – issues, survey and challenges,” in 2nd Intl.
IFIP Workshop on Emerging Ideas and Trends in Engi-
neering of Cyber-Physical Systems (EITEC), 2015.

[37] R. B. GmbH, “Can with flexible data-rate; ver-
sion 1.1,” Whitepaper, August 2011, available at
http://www.bosch-semiconductors.de/media/pdf 1/
canliteratur/can fd.pdf.

[38] M. Dworkin, Recommendation for block cipher modes of
operation: Galois/Counter Mode (GCM) and GMAC.
US Department of Commerce, National Institute of Stan-
dards and Technology, 2007.

[39] “Defense science board task force on high performance
microchip supply,” available at http://www.acq.osd.mil/
dsb/reports/ADA435563.pdf.

[40] F. Kiamilev, “Demonstration of hardware tro-
jans,” http://www.defcon.org/images/defcon-16/
dc16-presentations/defcon-16-kiamilev.pdf.

[41] Y. Shiyanovskii, F. G. Wolff, C. A. Papachristou,
D. J. Weyer, and W. Clay, “Hardware trojan by
hot carrier injection,” CoRR, vol. abs/0906.3832,
2009, informal publication. [Online]. Available: http:
//arxiv.org/abs/0906.3832

[42] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang,
and Y. Zhou, “Designing and implementing malicious
hardware,” in First USENIX Workshop on Large-Scale
Exploits and Emergent Threats, April 15, 2008, San Fran-
cisco, CA, USA, Proceedings, F. Monrose, Ed. USENIX
Association, 2008. [Online]. Available: http://www.
usenix.org/events/leet08/tech/full papers/king/king.pdf

[43] S. Adee, “The hunt for the kill switch,” IEEE Spectrum,
vol. 45, no. 5, pp. 34–39, 2008.

[44] M. Tehranipoor and F. Koushanfar, “A survey of
hardware trojan taxonomy and detection,” IEEE Design
& Test of Computers, vol. 27, no. 1, pp. 10–25, 2010.
[Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/MDT.2010.7

[45] S. Jha and S. K. Jha, “Randomization based probabilistic
approach to detect trojan circuits,” in HASE. IEEE
Computer Society, 2008, pp. 117–124. [Online]. Available:
http://dx.doi.org/10.1109/HASE.2008.37

[46] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey,
“Hardware trojan horse detection using gate-level
characterization,” in DAC. ACM, 2009, pp. 688–
693. [Online]. Available: http://doi.acm.org/10.1145/
1629911.1630091

[47] Y. Jin and Y. Makris, “Hardware trojan detection
using path delay fingerprint,” in IEEE International
Workshop on Hardware-Oriented Security and Trust,
HOST 2008, Anaheim, CA, USA, June 9, 2008.
Proceedings, M. Tehranipoor and J. Plusquellic, Eds.
IEEE Computer Society, 2008, pp. 51–57. [Online].
Available: http://dx.doi.org/10.1109/HST.2008.4559049

[48] S. Narasimhan, R. S. Chakraborty, D. Du, S. Paul,
F. G. Wolff, C. A. Papachristou, K. Roy, and
S. Bhunia, “Multiple-parameter side-channel analysis:
A non-invasive hardware trojan detection approach,”
in HOST 2010, Proceedings of the 2010 IEEE
International Symposium on Hardware-Oriented Security
and Trust (HOST), 13-14 June 2010, Anaheim
Convention Center, California, USA. IEEE Computer
Society, 2010, pp. 13–18. [Online]. Available: http:
//dx.doi.org/10.1109/HST.2010.5513122

[49] F. G. Wolff, C. A. Papachristou, S. Bhunia, and
R. S. Chakraborty, “Towards trojan-free trusted ICs:
Problem analysis and detection scheme,” in DATE.
IEEE, 2008, pp. 1362–1365. [Online]. Available: http:
//dx.doi.org/10.1109/DATE.2008.4484928

[50] B. Baudry and M. Monperrus, “The multiple facets of
software diversity: Recent developments in year 2000
and beyond,” CoRR, vol. abs/1409.7324, 2014. [Online].
Available: http://arxiv.org/abs/1409.7324

c© Galois, Inc. 2015 14

http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can_fd.pdf
http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can_fd.pdf
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf
http://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-kiamilev.pdf
http://www.defcon.org/images/defcon-16/dc16-presentations/defcon-16-kiamilev.pdf
http://arxiv.org/abs/0906.3832
http://arxiv.org/abs/0906.3832
http://www.usenix.org/events/leet08/tech/full_papers/king/king.pdf
http://www.usenix.org/events/leet08/tech/full_papers/king/king.pdf
http://doi.ieeecomputersociety.org/10.1109/MDT.2010.7
http://doi.ieeecomputersociety.org/10.1109/MDT.2010.7
http://dx.doi.org/10.1109/HASE.2008.37
http://doi.acm.org/10.1145/1629911.1630091
http://doi.acm.org/10.1145/1629911.1630091
http://dx.doi.org/10.1109/HST.2008.4559049
http://dx.doi.org/10.1109/HST.2010.5513122
http://dx.doi.org/10.1109/HST.2010.5513122
http://dx.doi.org/10.1109/DATE.2008.4484928
http://dx.doi.org/10.1109/DATE.2008.4484928
http://arxiv.org/abs/1409.7324

	Introduction
	Safety Versus Security
	Automotive Business Constraints
	Assuring the ECUs
	Software Development
	Testing
	Formal Verification
	Runtime Assurance
	Sanitizing Inputs

	Architectural Assurance
	Assuring the Supply Chain
	Conclusions

