Architecture Needs Behavior

Lee Pike
Galois, Inc.
leepikel@galois.com

DRAFT

Abstract—I argue that architecture and behavior are insepa-
rable concepts. Traditionally, architecture description languages
focus on architecture. Programming languages focus on behavior.
Both are necessary to specify and reason about systems. Good
old abstraction, that is part of modern programming languages,
provides the ability to capture both architectural and behavioral
aspects of a system.

I. INTRODUCTION

In principle, ADLs [architecture description lan-
guages] differ from programming languages because
the latter bind all architectural abstractions to spe-
cific point solutions whereas ADLs intentionally sup-
press or vary such binding. In practice, architecture
is embodied and recoverable from code, and many
languages provide architecture-level views of the
system [Cle96|].

Can architecture be specified, reasoned about, and refac-
tored independently of component behavioral implementa-
tions? The question hinges on whether architecture can be
considered an abstraction of a system, independent of behav-
ior. I argue that it cannot and that trying to decompose them
leads to bugs and violated assumptions.

I begin by providing an example in Section [II| of trying to
perform an architectural refactoring in an autopilot my team
was building, and I discuss the subtle interactions between
architecture and behavior arising in the refactoring. In Sec-
tion I explore potential solutions for trying to ensure that
ADLs and behavioral implementations match.

If architecture is not a separate abstraction layer from
behavior, what is it? I claim that architecture is a prop-
erty of behavior. Behavior is specified in programs; program
properties are naturally encoded as types. I therefore explore
the notion of an architectural type system for programs in
Section [[V]

Related work in relating architecture and behavioral spec-
ifications is described in Section [V} and concluding remarks
are made in Section [VI}

A. What is an Architecture?

To understand what it means to specify an architecture, we
need to know what an architecture is in the first place.

A component is an abstract input/output automata. From the
view of the architecture, a component is abstract, although it
may even have an architecture of its own. Channels connect
the outputs of one component to the inputs of another; there
may be different kinds of channels with different semantics;

for example, a channel may have message-passing semantics
or shared-state semantics. Components and channels may be
dynamically created or destroyed during execution.

Architectural properties are the visible behavior of the com-
ponents (i.e., their inputs and outputs). These sort of properties
are sometimes called contracts [Mey92]]. Other properties may
constrain non-functional properties of the system, including
memory and time.

A system’s architecture is its set of components, its chan-
nels, the topology the channels enforce on the components,
and the architectural properties of the system.

B. The ADL Vision

The ADL vision is compelling. In designing large systems
(or “systems-of-systems”), after requirements are specified,
an architecture is designed to meet those requirements. The
architecture specifies dataflow between behavioral compo-
nents, interfaces, and assumed hardware abstractions. The
behavioral components are then implemented to satisfy the
architectural contracts and meet the specified interfaces. A
waterfall [Roy87] style workflow is envisioned, that flows
“down” from requirements to architecture to behavior, then
flows “up” from behavior to architecture to requirements in
verification and validation and integration.

System architects design the architecture. System architects
are not software engineers. Architects bridge a world requiring
interaction with a diverse range of stakeholders ranging across
customers, hardware engineers, certification authorities, safety
and security engineers, business managers, and finally software
engineers.

Requirements

4

Architecture

4

Behavior (software)

Fig. 1. The architecture abstraction.

Thus, an ADL is envisioned to be a language that bridges
the gap between these diverse worlds (Figure [I)). It is neither a
software specification nor requirements specification. An ADL
is a more rigorous, uniform, and analyzable way to capturing
system architecture than the typical approach: capturing an
architecture via a collection of prose in a word processing
document, together with ad-hoc figures, or even more likely,
never explicitly capturing the architecture in the first place.

Furthermore, at the architectural abstraction level, we do
not want to prematurely commit to a particular programming

language, and an architecture may contain components that
are implemented using a variety of languages.

Architectures are not static. Like software, they must
evolve as requirements and behavioral components evolve.
ADLs promise to support compositional design and refac-
toring [MWRH13]], [SLNMOS]. Once an architectural spec-
ification is captured in an ADL, system architects can more
easily refactor and respond to changes. An architecture can
be analyzed against changing requirements rigorously. New
behavioral components can seamlessly be integrated, modified
and optimized without considering the full system specifi-
cation. Indeed, an ADL is agnostic about how behavior is
implemented so that an implementation in one programming
language may be substituted for another. One needs only check
that the component contracts, as specified in the ADL, remain
satisfied.

II. THE PROBLEM: ARCHITECTURAL REFACTORING

I argue that the vision outlined above does not work in
practice. In particular, architectural refactoring and component
refactoring are intrinsically coupled so that in the general case,
refactoring the one requires refactoring the other.

I will argue the point by considering an example inspired
by the architecture for a secure autopilot called SMACCMPi-
lot [HPET14]. SMACCMPilot was developed to showcase
formal methods technologies to make cyber-physical systems
more secure. Consider an implementation of SMACCMPilot’s
communications and crypto subsystem. We describe two archi-
tectural refactorings and show that an architectural refactoring
necessitates a behavioral refactoring.

A. Initial Architecture

er|a||ze/
deser|a||z

encrypt/ -

Fig. 2. Initial architecture.

The architecture in Figure [2| depicts a simplified encrypted
communications subsystem for an autopilot. The subsystem
mediates communications between a ground control station
(GCS) and the autopilot itself. Messages to and from the
GCS are encrypted. (For simplicity, assume symmetric key
cryptography.) A message received on the radio module from
the GCS is first deserialized, including error detection and
correction. Then it is decrypted and passed to the autopilot
for processing. In the other direction, all telemetry from the
autopilot is encrypted before being serialized and passed to
the radio module for broadcast to the GCS.

The behavior components handle dataflow in two directions:
from the autopilot to the GCS and from the GCS to the
autopilot. Suppose then that each component is implemented
as a multi-threaded program. For example, in the block
cipher component, one thread listens for messages coming
from the serialize/deserialize component, calls a
decrypt () function with incoming messages, and places the

results on an interface to be sent to the autopilot. The other
thread listens to the autopilot databus, calls an encrypt ()
function with incoming messages, and then places the result
on the outgoing interface for broadcast to the GCS. The
serialize/deserialize component has a similar multi-
threaded implementation.

B. A First Refactoring

After building and testing the system, some infelicities in

the design are found:

o The multi-threaded software components are notoriously
difficult to debug and may suffer deadlocks and livelocks.

o Also, supposing each component is a process executing
on an RTOS, by decomposing the components, all con-
currency is “flattened” to be at the top-level, simplifying
scheduling and concurrency reasoning.

o Encryption and decryption are part of the same behavioral
component. The system can be made more secure by de-
composing the crypto component into separate encryption
and decryption components. That way, if the encryption
(or decryption) function is flawed or usurped so that
communications from the autopilot to the GCS (from the
GCS) are prevented, it does not affect communications
from the GCS to the autopilot (or vise versa).

o With encryption and decryption decomposed, we can lift
an implicit assumption that encrypt and decrypt use the
same symmetric keys; different keys can be used in dif-
ferent directions [DuB13]]—one key for communications
from the GCS to autopilot and a separate key from the
autopilot to the GCS.

o Moreover, once encryption and decryption are decom-
posed, one can see that we can keep incoming and
outgoing messages completely separated by decomposing
the serialize/deserialize component, too.

serialize]—{ encrypt
deserlahze}—[decrypt]

Fig. 3. Refactored secure architecture.

ad|o

Based on these changes, a refactored architecture is shown
in Figure 3]

The new architecture needs fundamentally new software
components. Creating the revised software is not simply a
matter of decomposing some functions and declarations in
one module into two. Rather, multi-threaded programs have
to be made single threaded. Marshaling code that places
output onto an interface has to be refactored. Additionally,
we need to ensure that no legacy behavior or libraries are
left behind a decomposed module. Finally, depending on the
implementation, it may not be easy to ensure that a composed
component that internally communicated via shared state now
no longer does so. For example, if the implementation does not
guarantee memory isolation between processes, then shared-
state communication can occur between processes.

C. A Second Refactoring

[serialize —> encrypt

deserialize <— decryth

Fig. 4. Efficient refactored architecture.

In system integration testing, suppose we find that the
Figure [3] architecture is no longer schedulable given that we
have increased the number of processes from two to four.
Therefore, an alternative design is proposed that composes
components orthogonally to how we have done so in Figure
This time, we compose the deserialization and decryption
components, and compose the serialization and encryption
components, as shown in Figure] The new architecture and
components have the following desirable characteristics:

o There are two processes to schedule.

o The composed behavioral components do not need to be
concurrent, since dataflow is unidirectional through each
component. For example, after decryption, serialization
can be called directly in a single-threaded program.

o The property of separating incoming and outgoing com-
munications is maintained.

This third architecture also requires refactoring the soft-
ware once again, this time, merging systems. Communication
through the architectural interfaces now become shared mem-
ory and function calls. Care must be taken to ensure that the
new software does not continue to publish messages to an
unused and undocumented interface that could maliciously be
used by other components.

IIT. A TALE OF TWO LANGUAGES

When an ADL is a separate language than the programming
languages used to implement the behavioral components, we
lose a formal connection between them. The architectural
specification can drift away from the actual implementation.
Put another way, solving the architectural modeling problem
by introducing yet another language means you now have
two problems: ensuring that the program implementing the
architecture is correct (the original problem), and ensuring that
the ADL accurately represents that implementation.

The two language problem is not unique to ADLs; the
criticism has also been leveled against formal methods ap-
proaches in which formal models do not match the imple-
mentation [Ptol4, p. 10][AP11], [Smi85] or are even incon-
sistent [Pik06].

There are at two approaches for connecting ADL specifica-
tions to behavioral implementations: component contracts and
glue code generation. We consider each in turn.

A. Component Contracts

Component contracts are compositional: so long as the
rest of the system satisfies the assumptions on which the

component relies, we can verify or validate that the component
guarantees the contracts on its behavior. A component can
thus be tested or even proved correct in isolation from the
remainder of the system, or at least in the context of an
abstracted or simulated system. Specification languages for
stating behavioral contracts have been developed; examples
include AGREE [CGM™ 12| and BLESS [LCHI3] in AADL.

But how can we ensure that a component actually satisfies
the constraints? That requires verifying the component imple-
mentation, which requires breaking the abstraction boundary
between architecture and behavior. In a system refactoring
in which the component behavior and architecture change in
tandem, the contract modification and component refactoring
naturally occur in tandem.

Non-functional properties present an additional problem.
Prototypical non-functional properties are timing and mem-
ory usage. These sort of properties are often considered
architecture-level properties, because they affect the composi-
tion of behavioral components. For example, the schedulability
of multiple components on a single processor is commonly
considered an architecture-level property. But schedulability
depends on each component satisfying timing constraints. For
example, at the architectural level, a component might be given
a worst-case execution time (WCET) of 100 milliseconds to
ensure it is schedulable.

But WCET itself of the component is only meaningful in
the context of the full system. It depends on the hardware
(e.g., processor speed, caches), the other components (e.g.,
their processor locks and priorities), the operating system (eg.,
scheduler and context switching time). There is no simple way
to abstract out the rest of the system to validate non-functional
properties.

B. Glue Code

Another approach to connecting the ADL with behavioral
implementations is via so-called “glue code” generated from
an ADL [FGAT13|]. Glue code can include software for
implementing the communication ports between behavioral
components and binding behavioral components to a platform
(e.g., process creation code on an operating system). Not only
does glue code generation relieve the programmer from the
tedious task of writing “boilerplate” code, it provides some
evidence that the behavioral components are consistent with
the architecture.

But this consistency fundamentally depends on how well an
implementation enforces consistency between program frag-
ments. For example, one ADL I know generates C code for the
interfaces. Because of build system constraints, the interface
code and the behavioral components (also in C) are compiled
separately then linked to create an executable.

But typical linkers do not enforce consistency across object
files. Suppose that interface.c from Figure [5|implements
an interface generated by an ADL, and main.c implements
a consumer of the interface. Using gcc -Wall to compile
each file separately then linking them together produces no
warnings and an executable program that has undefined be-
havior (the result returned on my computer after a particular
compilation is 1343657516).

int foo(int a, int b) {
return atb;

}

int foo(int a);

int main (void) {
printf ("$d\n",
return 0;

}

foo (42));

Fig. 5. Interface (interface.c, top) and client (main.c, bottom) code
mismatch.

While other languages may provide stronger guarantees
when composing program fragments, the resolution is at the
abstraction level of the software implementation, not the ADL.

Furthermore, glue code can violate non-functional assump-
tions such as stack usage or timing, and the developer has
no insight into the glue code impact on system design. For
example, consider an example that arose in SMACCMPilot,
with a component as shown in Figure [6}

—

Fig. 6. Fan-in, fan-out.

A component had a large number input connections (“fan-in”)
as well as output connections (“fan-out”). The input ports were
incoming serialized messages, tagged with an identifier. The
output ports were for unpacked messages, one port for each
kind of message. We generated glue code from AADL [FG12]]
specifications. In the glue code implementation, for each
input port, memory is statically reserved for each output
port the incoming data may be eventually sent out on (the
reason for doing so has to do with the concurrency semantics
implemented, and are not important for this discussion). So if
every input port can potentially send to each potential output
port, then ¢ X o memory slots are reserved, where ¢ are the
input ports and o are the output ports.

The component had dozens of input ports and output ports.
A crash was encountered during integrated testing that we
could not attribute to application code. Eventually, it was
traced to the glue code: a process implementing the component
allocates memory on its stack for input and output ports. The
cross-product of ports became so large that the process blew
its stack!

But our design intention was that each input port correspond
to exactly one output port. By providing the additional infor-
mation to the architectural model, the 7 X 0 memory slots were
reduced to ¢ (or o, since there are exactly as many input as
output ports) slots.

Glue code generation, while useful, cannot provide a suffi-
cient connection between architecture and behavior.

IV. ARCHITECTURE AS TYPES

So far, I have argued the perils of decomposing architectural
from behavioral specifications. The reason is that architecture

is not a separate abstraction layer from behavior. Rather, I
argue that architecture is a property of programs. An estab-
lished method for tying properties to programs is via types,
and so the way to approach architectural specifications is via
an architectural type system.

I first give an example of how an architectural and com-
ponent programming language can be combined, using types
to tie them together. Then I describe type system research
on which an architectural type system could be based. I then
describe remaining challenges.

A. Composing Architecture and Behavior

An approach to composing architectural and behavioral pro-
grams was taken in implementing portions of SMACCMPilot,
mentioned in Section [[I| Behavioral components are built using
Ivory [EPWT™15], a “safe-C” language, designed for low-
level embedded programming but that guarantees the absence
of the vulnerabilities found in C. The architecture is built
using Tower [HPE™14] that provides architectural constructs;
namely, the notion of components, hardware interfaces, and
communication channels between components.

Ivory and Tower are both embedded domain-specific lan-
guages (EDSLs) [[Gil14], meaning they are embedded within a
host language; in this case, the host language is Haskell [Has].
EDSLs have the advantage that their host-language acts as
a Turing-complete meta-programming language for the em-
bedded language. By having the same host language, Ivory
and Tower programs share the same type system and meta-
programming language so they are not so much different
languages as aspects of a single language.

Tower types describe data passed over channels and ensure
the types of state-machines (implemented in Ivory) match
the inputs and outputs of channel data. Tower channels are
represented as input/output pairs. The first element of the pair
is the input portion of the channel, allowing a producer to place
data into the channel, and the second element is the output
portion, allowing a consumer to pull data off a channel.

(tx, ChanOutput a)

For example, the pair (tx, rx) is a pair that has the type
(ChanInput a, ChanOutput a), where tx is a handle
to place values in a channel and rx is a handle to pull values
from a channel.

A handler in Tower takes a receive end of a channel, and an
Ivory program to run on the received value. The Ivory program
is a callback, or anonymous function to run. So Ivory/Tower
programs have the form

rx) (ChanInput a,

handler rx
callback (

where callback takes a lambda term as an argument. If
rx has type ChanOutput Integer, then val has type
Integer.

In Tower, channel endpoints are values that can be created
and manipulated. Executing a Tower program generates an ar-
chitecture. Arbitrary type-safe, Turing-complete computation
can be done when generating the architecture, including, for
instance, specializing the number of components depending

\val -=> ...)

on compile-time constraints, and adding debugging channels
for testing. We have done both.

For example, we have a single-board autopilot implementa-
tion that executes solely on an ARM Cortex M4-based board,
which is used for testing and development, and a dual-board
design that also uses an ARM Cortex A15-based board which
communicates with the ARM Cortex M4 board over a CAN
bus. Depending on compile-time options, either the first or
second architecture is compiled from the same code. We do not
have to maintain two models or perform a manual refactoring
to get from one to the other.

Once the architecture is generated, it is fixed. The ar-
chitecture specification generated from a Tower program is
essentially isomorphic to an AADL specification; indeed,
AADL specifications can be generated from Tower [HPE™ 14].

B. Toward an Architecture Type System

ADLSs can provide a formal model of a system, and in a
formal system, formal properties can be proved. Toward that
end, a logic is associated with the ADL for specifying and
proving properties [CGM™12], [LCHI3].

The Curry-Howard isomorphism provides a correspondence
between logics and type systems [Wadl5]; the slogan of the
correspondence is that “propositions are types” and “proofs
are programs”. The isomorophism is a powerful idea because
it means that any logic has a corresponding type system, and
vice versa.

Specialized type systems can describe protocols and
message-passing systems. One such type system is ses-
sion types, a type-system extension developed to statically
prove properties about protocol implementations [HVKOS],
[DCD10], [GVRO3]]. The basic idea is that each state of the
protocol is modeled as part of the type of the channel it is
performed on, with that type being mutated by actions over it.
Session types can also describe branching and choice, allowing
for failure at different points in a protocol, or for a client to
make choices about what the next state should be.

In contrast to many ADLs, they can specify not only
channels and their types, but the message-passing behavior
(or protocols) over the channels, doing so statically.

A standard example to explain session types is one in
which a client provides a server two numbers, the server
adds them and returns them to the client, closing the con-
nection [GVRO3].

First, let us create a session type for this action, from the
perspective of the server. Let 7a represent an input argument
of type a, !b represent an output argument of type b, a.b
represent a sequence of two operations, and End the closing
of a connection. Then the following session type corresponds
to the program described above:

?Integer.?Integer.!Integer. End

The type does not describe the computation performed by the
server; it only describes the expected sequence of actions for
the protocol. If an implementation subtracted the first number
from the second or returned the first number and ignored the
second, it would still have the above type.

A client has the corresponding dual type:

IInteger.\Integer.?Integer.End

A program that is typed with session types connects the
architecture to the behavior through type-checking. If the
implementation does not satisfy the types, type-checking fails.
Furthermore, the types can sometimes be inferred from the
program.

server = offer $ ixdo
X <— recv
y <- recv
send (x + vy)
close

client x y = ixdo
send x

send y

z <— recv

close

ret z

Fig. 7. Message-passing program with session types.

For example, consider the implementation in Figure |7} writ-
ten in the simple-sessions language, a domain-specific
language for session types in Haskell [PTO8|]: (For readers
familiar with Haskell, i xdo depends on a preprocessor to use
“do notation”.) The server program implements the server
described above that adds two numbers and returns them. The
client takes two integers x and y as arguments and sends
them to the server, awaiting a response.

The types of server and client are respectively com-
puted automatically by type inference. Let me repeat: one
needs only to write the programs above, and the type system
computes the types. Taking our position that types denote
an architecture, the type system infers an architecture from
a program!

C. Architectural Type System Challenges

While I advocate for “architecture as types”, the approach
is not without challenges, and session types represent a single
point in the design space.

Large systems often contain components implemented in
multiple programming languages, but a type system is associ-
ated with a single language. Indeed, one of the motivations of
an ADL is as a unifying language, since an architecture may
deal with components from multiple languages. So how does
a type system help us?

Programmers deal with multiple programming languages
through interfaces. A foreign function interface allows one to
directly access functions from one language in another. Typ-
ically one language is primary in the software architecture—
but that does not obviate the use of other languages. An ADL
is a language itself, so the idea that an ADL is language-
agnostic is specious; an ADL may be agnostic with respect to
programming languages—since an ADL is not one—but it is
not language agnostic.

Another challenge is being able to reason about non-
functional properties such as timing and memory usage, and

being able to do so through different levels of abstraction.
While I present no particular insights into how to solve this
problem (but see Edward Lee’s article [Lee09]), I have argued
in this paper that these properties cannot be addressed outside
of an implementation.

Architecture is an abstraction, but an architecture itself
can have levels of abstraction, e.g., refining a fault-intolerant
architecture into one that masks faults [BKO7]. One form
of abstraction is something I will call architectural polymor-
phism. An example of architectural polymorphism is to keep
the number of nodes in a distributed system uninterpreted as
n nodes, where n can be instantiated with specific values.
Distributed algorithms are typically designed for arbitrary
numbers of nodes (with constraints). However, ADLs typically
have few polymorphism capabilities. For example, the popular
ADL AADL [EG12]] does not support node polymorphism.

High-level programming languages, however, have poly-
morphism built in as a cornerstone of program abstraction.
Still, specific support for architectural polymorphism over
nodes, channels, protocols, replication, etc. is needed.

A type system typically has constrained expressiveness to
preserve (mostly) decidable type inference. Dependent types
are more general, but type inference is lost [Wadl3]. In our
example of session types, some properties are not expressible;
for example, one cannot assert that an integer returned by a
server is greater than the two integers sent to it.

Refinement types are more expressive types that maintain
decidability via techniques like enforcing structural type re-
cursion [EP91] or logically qualified data types, abbreviated
as liquid types, a type system that combines Hindley-Milner
type inference with decidable logical theories (satisfiability
modulo theories) [RKJOS]. Refinement types for ADLs could
be a promising avenue of research.

V. RELATED WORK

Our claim is related in spirit—and this paper’s title pays
homage to—the position paper entitled, “Computing Needs
Time”, arguing that time, a non-functional property, should be
a first-class aspect of programs [Lee(09].

The “Twin Peaks” model argues that requirements and
architecture be developed and refined in tandem [NusOl1]].
The Twin Peaks model is motivated by the claim made by
Swartout and Balzer that specification and implementation
fundamentally cannot be independent or sequential [SB82].
The problem, they argue, is that missed assumptions and con-
straints nearly always require changes to a specification during
implementation. Today, one sees the upshot of these arguments
in practice: the Waterfall model of software development is
largely abandoned. The Waterfall development proposes that in
requirements, architecture, and implementation be developed
in series, and each be finalized and frozen before moving onto
the next.

Two modern ADLs that connect architecture specifications
to implementations are the P language [DGJT12]] allows one
to specify both architecture and components in a single unified
language. It includes a model-checker backend. P has an
asynchronous semantics. Another domain-specific language

for specifying distributed algorithms that can be compiled to
executing code is DistAlgo [LLS11].

For a general survey of ADLs, I refer the reader to
Tomiyama et al. [THG'99] and Medvidovic and Tay-
lor [MTOO].

VI. CONCLUSION

The fundamental thesis put forth here are that (1) ADLs are
incomplete without being tied to behavioral implementations,
and (2) architecture is best considered as a property of
behavior (and types naturally capture program properties).

Wither architecture description languages? Hardly. ADLs
provide many practical benefits not addressed by program-
ming languages. For example, significant modeling and anal-
ysis tools have been built over ADLs. Taking AADL as
a particular example, there is a real-time scheduling anal-
ysis [SCNMO3], assurance-case analysis [GBCT 14|, and
model-checkers [CGM™12]], for example. AADL provides a
common language on which to build a range of analyses
focused an the architectural level.

Additionally, in practice, ADLs are not competing with
type theories, they are competing with Word documents,
the dominate means by which architecture, interfaces, and
constraints are modeled. Informal, ad-hoc documents suffer
the criticisms made herein far worse than ADLs do.

ACKNOWLEDGEMENTS

I believe many of my colleagues, funders, and collaborators
would actively disavow themselves of these viewpoints. Good
ideas have been borrowed and cited; bad ideas are mine alone.

REFERENCES

[AP11] Darren Abramson and Lee Pike. When formal systems kill:
computer ethics and formal methods. In APA Newsletter on
Philosophy and Computers, volume 11. American Philosophy
Association, 2011.

Borzoo Bonakdarpour and Sandeep S. Kulkarni. Exploiting
symbolic techniques in automated synthesis of distributed pro-
grams with large state space. In International Conference on
Distributed Computing Systems (ICDCS, page 3, 2007.

D. Cofer, A. Gacek, S. Miller, M. Whalen, B. LaValley, and
L. Sha. Compositional verification of architectural models. In
Proceedings of NASA Formal Methods, pages 126140, 2012.
Paul C. Clements. A survey of architecture description lan-
guages. In Proceedings of the 8th International Workshop on
Software Specification and Design. IEEE Computer Society,
1996.

Mariangiola Dezani-Ciancaglini and Ugo De’Liguoro. Sessions
and session types: an overview. In Proceedings of the 6th
international conference on Web services and formal methods,
pages 1-28. Springer-Verlag, 2010.

Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sri-
ram Rajamani, and Damien Zufferey. P: Safe asynchronous
event-driven programming. Technical Report MSR-TR-2012-
116, November 2012.

Thomas M. DuBuisson. SMACCMPilot secure MAVLink com-
munications. Technical report, Galois, Inc., 2013. Available at
http://smaccmpilot.org/artifacts/Galois-commsec.pdf,

Trevor Elliott, Lee Pike, Simon Winwood, Pat Hickey, James
Bielman, Jamey Sharp, Eric Seidel, and John Launchbury. Guilt
free Ivory. In Proceedings of the 8th ACM SIGPLAN Symposium
on Haskell, Haskell 2015, pages 189-200. ACM, 2015.

Peter H. Feiler and David P. Gluch. Model-Based Engineering
with AADL: An Introduction to the SAE Architecture Analysis
& Design Language. Addison-Wesley Professional, 2012.

[BKO7]

[CGMT12]

[Cle96]

[DCD10]

[DGIt12]

[DuB13]

[EPWT15]

[FG12]

http://smaccmpilot.org/artifacts/Galois-commsec.pdf

[FGAT13]

[FPI1]

[GBCT14]

[Gill4]

[GVRO3]

[Has]
[HPE' 14]

[HVKO9S]

[LCH13]

[Lee09]

[LLS11]

[Mey92]

[MTO00]

[MWRH13]

[NusO1]

[Pik06]

[PTO8]

[Pto14]

[RKJO8]

[Roy87]

[SB82]

[SLNMOS]

[Smi85]

Matthew Fernandez, Peter Gammie, June Andronick, Gerwin
Klein, and Thor Kuz. CAmKES glue code semantics. Technical
report, NICTA and UNSW, Australia, nov 2013.

Tim Freeman and Frank Pfenning. Refinement types for ML.
In Progamming Language Design and Implementation (PLDI),
1991.

Andrew Gacek, John Backes, Darren D. Cofer, Konrad Slind,
and Mike Whalen. Resolute: an assurance case language for
architecture models. In Proceedings of High integrity language
technology, HILT, pages 19-28, 2014.

Andy Gill. Domain-specific languages and code synthesis using
Haskell. Queue, 12(4):30-43, April 2014.

Simon Gay, Vasco Vasconcelos, and Antonio Ravara. Session
types for inter-process communication. Technical Report TR-
2003-133, University of Glasgow, March 2003.

Website. https://www.haskell.org/.

Patrick C. Hickey, Lee Pike, Trevor Elliott, James Bielman, and
John Launchbury. Building embedded systems with embedded
DSLs (experience report). In Intl. Conference on Functional
Programming (ICFP). ACM, 2014.

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto
Kubo. Language primitives and type discipline for struc-
tured communication-based programming.
the 7th European Symposium on Programming: Programming
Languages and Systems, pages 122—138, London, UK, 1998.
Springer-Verlag.

BrianR. Larson, Patrice Chalin, and John Hatcliff. BLESS:
Formal specification and verification of behaviors for embedded
systems with software. In NASA Formal Methods, volume 7871
of LNCS, pages 276-290. Springer, 2013.

Edward A. Lee. Computing needs time. Communications of the
ACM, 52(5):70-79, May 2009.

Yanhong A. Liu, Bo Lin, and Scott D. Stoller. Programming
and optimizing distributed algorithms: An overview. In Proc. 8th
International Conference & Expo on Emerging Technologies for
a Smarter World (CEWIT 2011). IEEE Press, November 2011.
Bertrand Meyer. Applying “design by contract”. Computer,
25(10):40-51, October 1992.

N. Medvidovic and R.N. Taylor. A classification and comparison
framework for software architecture description languages. [EEE
Transactions on Software Engineering, 26(1), 2000.

Anitha Murugesan, Michael W. Whalen, Sanjai Rayadurgam,
and Mats P.E. Heimdahl. Compositional verification of a medical
device system. In ACM International Conference on High
Integrity Language Technology (HILT) 2013. ACM, November
2013.

Bashar Nuseibeh. Weaving together requirements and architec-
tures. Computer, 34(3):115-117, March 2001.

Lee Pike. A note on inconsistent axioms in Rushby’s
”Systematic formal verification for fault-tolerant time-triggered
algorithms”. [EEE Transactions on Software Engineering,
32(5):347-348, May 2006.

Riccardo Pucella and Jesse A. Tov. Haskell session types with
(almost) no class. In ACM SIGPLAN 2008 Haskell Symposium,
Sept. 2008.

Claudius Ptolemaeus, editor. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014.

Patrick M. Rondon, Ming Kawaguci, and Ranjit Jhala. Liquid
types. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 159—-169. ACM, 2008.
W. W. Royce. Managing the development of large software
systems: Concepts and techniques. In Proceedings of the
9th International Conference on Software Engineering, Intl.
Conference on Software Engineering, pages 328-338. IEEE,
1987.

William Swartout and Robert Balzer. On the inevitable inter-
twining of specification and implementation. Communications
of the ACM, 25(7):438-440, July 1982.

F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Scheduling
and memory requirements analysis with AADL. In Proceedings
of the 2005 Annual ACM SIGAda International Conference on
Ada: The Engineering of Correct and Reliable Software for
Real-Time &Amp; Distributed Systems Using Ada and Related
Technologies, SigAda 05, pages 1-10. ACM, 2005.
Brian Cantwell Smith. The limits of correctness.
Computer Society, pages 18-26, January 1985.

SIGCAS

In Proceedings of

[THG199]

[Wad15]

Hiroyuki Tomiyama, Ashok Halambi, Peter Grun, Nikil Dutt,
and Alex Nicolau. Architecture description languages for
systems-on-chip design. In Sixth Asia Pacific Conference on
Chip Design Language, pages 109-116, 1999.

Philip Wadler. Propositions as types. Communications of the
ACM, 58(12):75-84, November 2015.

https://www.haskell.org/

	Introduction
	What is an Architecture?
	The ADL Vision

	The Problem: Architectural Refactoring
	Initial Architecture
	A First Refactoring
	A Second Refactoring

	A Tale of Two Languages
	Component Contracts
	Glue Code

	Architecture as Types
	Composing Architecture and Behavior
	Toward an Architecture Type System
	Architectural Type System Challenges

	Related Work
	Conclusion
	References

