A Protocol for Anonymous and Private Federated Search
(DRAFT)

Lee Pike
Galois, Inc.

leepike@galois.com

ABSTRACT

A federated search is a data query over segregated data
sources. We present a novel but simple protocol for anony-
mous and private federated search. We also provide a math-
ematical model for reasoning about the protocol’s anonymity
guarantees and prove they hold. This is the first treatment
of anonymity in federated search.

1. INTRODUCTION

A federated search' is a data query over segregated data
sources [7]. This paper presents a solution to the problem
of protecting the anonymity of a client making a federated
search query while ensuring the client also has the access
credentials necessary to make her searches. The protocol we
propose is data-agnostic and only addresses the anonymity
and privacy aspects of carrying out a data query; we do
not address issues such as how to aggregating or rank the
relevance of data from disparate sources, for example. In our
model, we assume there is a set of clients making queries and
a set of servers containing data (e.g., databases, webpages,
etc.) that respond to the queries.

Some potential use-cases for a protocol solving this problem
include

e Humanitarian aid-workers: an aid organization may
maintain records online in various databases to which
only aid-workers should have access. However, due
to dangers an aid-worker might incur by a repressive
regime, the databases should contain no record of who
makes what query.

o Whistle-blowing: a large corporation may wish to en-
courage individuals to report abuses or corruption with-
out fear of retribution. Therefore, the corporation
might want to allow anonymous searches of its in-

L Also known as meta-search.

tranet, but in addition, ensure that an individual can-
not access information to which she is not privileged.

e Sensitive research: a library or news aggregator might
wish to ensure that only those who subscribe to ser-
vices have access to those services but otherwise allow
anonymous search.

e Corporate liability: the protocol prevents the loss of
privacy and anonymity even if databases or servers are
compromised, or if a single trusted third party in the
protocol is compromised (see Section 4.3).

Outline. We describe this paper’s contributions and related
work in Section 2. In Section 3, we list the properties the
protocol should satisfy. In Section 4, we informally describe
the protocol. We present a mathematical model of the pro-
tocol to reason about the protocol’s anonymity guarantees
in Section 5, and we prove the anonymity properties hold in
Section 6. Finally, we provide concluding remarks in Sec-
tion 7.

2. CONTRIBUTIONS AND RELATED WORK

To our knowledge, this is the first protocol to address ano-
nymity and privacy in federated search. Our purpose in this
paper is to formulate the problem and rigorously analyze
one solution. Thus, the principal contributions of this paper
are (1) the formulation of anonymity and privacy properties
for federated search and (2) a simple protocol that satisfies
these properties. Once we have formulated the problem, our
protocol is a straightforward but novel solution. We also
present a simple mathematical model in which to analyze
the correctness of the protocol.

We know of only one brief paper (summarizing a poster ses-
sion presentation) specifically addressing privacy in feder-
ated search [8]. This paper presents a cryptographic pro-
tocol for protecting the privacy of responses in a federated
search. It does not address the anonymity of clients and
servers.

We hypothesize that cryptographic protocols that have been
developed for privately and anonymously negotiating shared
hidden credentials [6] could be used to solve the problem
we pose here (but no publications exist extending those re-
sults to federated search). In brief, the hidden credentials
problem is for agents to anonymously provide information

to one another only if each has the set of credentials de-
manded by the other. The protocol succeeds by having a
trusted third-party assign a pseudonym to Alice and to tie
credentials to Alice’s pseudonym. Alice is provided with se-
cret keys corresponding to her credentials. Bob can encrypt
to these credentials, so that only someone in possession of
Alice’s private key and her credential private keys can de-
crypt the message. A more sophisticated protocol has been
developed for cases such as anonymous and private “match-
making” between individuals [14]. The protocol generalizes
other privacy and anonymity related problems such as secret
handshakes and trust negotiation.

However, these protocols depend on two assumptions which
may be too strong in our context. First, they assume, of
course, that clients and servers implement the novel crypto-
graphic protocols described. While these protocols might be
standardized at some time, our solution works for “legacy”
clients and servers and requires only standard Transport
Layer Security [16] to ensure confidentiality and integrity
in point-to-point communications.

Second, the protocols assume an underlying anonymizing
network for communications. (Protocols to guarantee sender
anonymity for internet traffic include the Onion Router [5],
Crowds [12], and Hordes [9]. The P® protocol is designed
to provide both sender and receiver anonymity over stan-
dard internet protocols [13].) An anonymizing network is
required by those protocols because there is direct point-
to-point communication between clients and servers. While
anonymizing networks exist [4], they may not be available to
a client (e.g., she cannot install locally the software required
to join an anonymizing network).

We do not need a cryptographic protocol to solve the anon-
ymous and private federated search problem. In our pro-
tocol, we have trusted third-parties broker all communica-
tions, forwarding search requests and routing responses. We
describe assumptions about these trusted third-parties to
provide sender anonymity (see Section 4). Assuming the
trusted third-parties are not compromised, a novel aspect of
our protocol is that for a client’s identity to be revealed to
a server or vice versa, both a client and a server must be
compromised.

Related work from the database communities includes a
2004 position paper in which directions in maintaining ano-
nymity and privacy are highlighted, with a focus on allow-
ing individuals to maintain control over their personal data,
even after it has been released. The authors draw on exam-
ples of deployed anonymizing technology, such as temporary
email addresses or temporary credit card numbers [1]. A
few simple protocols are also given for transferring private
data. Indeed, our proposed protocol can be thought of as be-
ing inspired by the ideas of an anonymous database server
architecture [2], combined with anonymous guarantees for
clients and servers.

Aggarwal et al. also describe a distributed architecture to
maintain privacy in database queries that does not intrinsi-
cally depend on encrypted communication [2]. (Their moti-
vation for not relying on encryption is its performance over-
head.) The motivational example given in the paper is that

one database on one server contains a credit card number
X0Red with a random number, and another database on an-
other server contains that random number. To recover the
credit card number, both servers are queried and the re-
sults are combined. The architecture addresses privacy of
the data but not the anonymity of the client or database
servers.

Clayton, Danezis, and Kuhn describe some practical attacks
on mechanisms that provide user anonymity, with a focus
on web-based applications [3]. For example, they describe
UNIX-based attacks for discovering the association of anon-
ymous email addresses with user identities. A practical im-
plementation of our proposed protocol must avoid these pit-
falls.

3. CORRECTNESS PROPERTIES

Here we state the properties we wish for the protocol to sat-
isfy. Subsequently in the paper, we refer to the properties of
the protocol by their names and item number. In Section 6,
we prove the anonymity properties, Properties 1 — 4, in our
mathematical model. In Section 7, we discuss the remaining
properties.

Technically, we prove three anonymity properties and one
pseudonymity property. Anonymity is the concept of com-
pletely hiding one’s identity in a transaction, whereas pseu-
donymity is the concept of associating one’s identity with
a pseudonym such that the pseudonym is associated with
the same individual, but which individual that is remains
secret. [10]. For convenience, we shall refer to the four prop-
erties collectively as the “anonymity properties”. As we will
describe shortly, only clients have pseudonyms in our archi-
tecture, so they may be pseudonymous but not anonymous.
Servers have no pseudonyms. As noted, a key characteristic
of our protocol is that for a client’s identity to be revealed
to a server or vice versa, both a client and server must be
compromised.

Below, we state our properties informally. In Section 6, we
state the first four properties more rigorously in our math-
ematical model.

Property 1 Client-server pseudonymity: a client remains
pseudonymous to servers, unless the client dissemi-
nates its own identity to a server.

Property 2 Client-client anonymity: This property is the
conjunction of the following two properties:

e Pseudonymity: a client ¢ remains pseudonymous
to another client ¢/, unless both (1) ¢ dissemi-
nates its own identity to some server, and (2)
some server disseminates the identity of either ¢
or ¢ to a client;

e Anonymity: a client remains anonymous to other
clients unless pseudonymity is violated and a server
disseminates the client’s pseudonym to another
client.

Property 3 Server-client anonymity: a server remains anon-
ymous to clients, unless the server disseminates its own
identity to a client.

Property 4 Server-server anonymity: a server s remains
anonymous to another server s’, unless both (1) s dis-
seminates its own identity, and (2) some client dissem-
inates the identity of either s or s’ to a server.

Of course, nominally, a client or server will protect its own
identity. Our qualifications regarding a client or server dis-
seminating its own identity is to reason about cases in which
an agent has been compromised.

We have two privacy properties:

Property 5 Privacy: for any client query and correspond-
ing server response, no agent other than the client and
server ever possess both the query and the response. In
addition, forward privacy is preserved: a compromised
agent does not cause queries and responses previously
issued to be revealed.

Property 6 Accessibility: the protocol prevents a client
from querying a server if the client does not possess
an access control privilege to query that server.

Because the protocol we propose contains trusted intermedi-
aries, Property 5 ensures that no intermediary ever contains
both a query and responses to that query. In our proto-
col, Property 6 is enforced by a mandatory access control
maintained by a trusted intermediary.

Finally, we state a liveness property:

Property 7 Delivery: if a client makes a query, and a
server responds to it, the response is eventually pro-
vided to the client.

The purpose of this liveness property is to prevent the other
properties from being satisfied by a “no-op” protocol that
sends no messages.

4. THE PROTOCOL: ASSUMPTIONS AND
DESCRIPTION

In this section, we begin by describing environmental as-
sumptions about the protocol and then we describe the pro-
tocol’s agents and execution. We finish by describing the
trust model for the protocol and then by informally remark-
ing on our design choices for the protocol.

4.1 Communication Model

Our model of point-to-point communication is as follows.
Associated with each agent is an address or identity—we
associate an agent’s identity with its address and use the
terms synonymously—such that any agent possessing an-
other agent’s address can send messages to that agent. Fur-
thermore, we assume messages cannot be delivered to an un-
intended recipient (thus, we assume there are no eavesdrop-
ping attacks), as provided by, for example, Transport Layer
Security protocols [16]. We also assume communication is
non-lossy, so any message sent is received—that is, there are
no denial-of-service attacks. However, lossy communication

only affects the correctness of the protocol (Property 7); it
does not affect any of the security properties.

We do not assume assured sender anonymity by the network
as provided by anonymizing networks. Because of this, we
depend on the trusted third-parties to take steps ensuring
sender anonymity.

4.2 Trusted Third-Parties

We posit two trusted third-parties (TTPs)—an advertiser
and a router.

The advertiser. The advertiser’s job is to take queries from
clients and depending on the access privileges of a client,
forward the query to the appropriate servers. We assume
the following about the advertiser:

1. The advertiser’s address is universally known.

2. Each server registers its address with the advertiser so
it can deliver messages to servers.

The router. The router’s job is to take the responses of
servers and forward them to the appropriate clients. The
router has these characteristics:

1. The router’s address is universally known.

2. Clients register their addresses with the router. For
each address registered, the router returns pseudonym
such that there is a one-to-one function from pseudonyms
to addresses. The function is computable only by the
router. For example, one implementation is to simply
generate random numbers and store the random num-
ber and address pair in a lookup table kept secret by
the router.

Furthermore, we assume the router verifies the identity
of clients that it registers and assigns them to server
access groups. A server group is the set of servers a
client is permitted to query.

In an implementation of the protocol, the router may
also be responsible for aggregating the responses for a
particular query, or the job could be left to individual
clients; our description of the protocol is agnostic in
regards to where aggregation takes place (although the
decision may have security ramifications).

4.3 Architecture Remarks

Let us briefly motivate the architecture before describing
the protocol itself. Our architecture assumes a fairly static
set of servers (rather than a federated search over, say, the
World Wide Web). One purpose of the trusted third-parties
(TTPs) is to ensure anonymity between clients and servers
as well as preventing unauthorized access by clients to servers.
The extent to which the advertiser and router provide suf-
ficient anonymity is implementation-dependent. To a great
extent, anonymity depends on the TTPs’ ability to prevent

Router

client 0 server 0

server m

Figure 1: The Architecture

client n Advertiser

traffic analysis [11] by a malicious eavesdropper. For exam-
ple, the advertiser might randomize the duration between re-
ceiving queries from clients and distributing them to servers
to make timing attacks more difficult. In the case that the
TTPs are compromised, note that the advertiser is essen-
tially stateless, and the router’s state is comprised of just
its access control table and its mapping from identities to
pseudonyms. Being (mostly) stateless can help the TTPs
from violating forward privacy if compromised; that is, a
compromised TTP should not cause the privacy of previous
federated searches to be lost.

Why do we distinguish the advertiser and router? By sep-
arating them, no agent other than the client that issues a
query and the server responding to it know both the query
and response (Property 5). Thus, our architecture requires
both the advertiser and router to be compromised to vio-
late the privacy of the client-server transaction, eliminating
a single point of failure regarding the loss of privacy.

4.4 The Protocol

The protocol itself is simple. For each query a client makes,
the following steps are taken, as illustrated in Figure 1.
There, clients are labeled 0 through n, servers 0 through
m, and the edge labels (1 — 6) correspond to the six steps of
the protocol, as follows:

1. The client (in the figure, client 0) sends the pair (id,
query) to the advertiser, where id is the pseudonym
of client 0 generated by the router and query is the
client’s query.

2. The advertiser sends id to the router.

3. The router looks up the client associated with the pseu-
donym id in its secret table. The router replies to the
advertiser with the client’s server group, S, where S is
a set of servers.

4. The advertiser broadcasts (id, query) to each server
in S. In the figure, only server 0 is in S.

5. If a server responds to a received query, the server
sends a response (id, resp) to the router, where resp
is its response to the query.

6. The router computes the address associated with id
and sends resp to client 0.

4.5 Threat Model

Clients and servers may behave maliciously. We presume the
advertiser and router to be non-malicious, but they may in-
advertently pass on messages generated by malicious clients
or servers. Any number of clients or servers may exhibit
any of the following malicious behaviors and the protocol
properties in Section 3 must still hold:

1. A client or server sends any address it possesses to
another agent (i.e., a client, a server, the advertiser, or
the router).

2. A client or server sends any pseudonym it possesses to
another agent.

3. A client or server sends a query to the advertiser using
some other client’s pseudonym it possesses.

4. A client sends a response to the router, or a server
sends a response (id, resp) to the router such that
the message resp contains another agent’s address or
a client’s pseudonym.

These behaviors are described in more detail in Section 5.

S. MATHEMATICAL MODEL

The purpose of our mathematical model is to reason about
the anonymity properties of the protocol. Because our pro-
tocol is not fundamentally a cryptographic protocol, our
model is based on reasoning over a transition system rather
than about cryptographic strength. We first describe the
state components below, then we describe the initial state
and state transitions, including both nominal and malicious
transitions. We then give examples of protocol executions
before proving the anonymity properties hold of the protocol
in Section 6.

In our mathematical model, we abstract the state of the
agents to just those elements required to reason about the
correctness of the protocol with respect to anonymity—that
is, those state elements that may lead two agents to intro-
duce a new communication channel by passing pseudonyms
or addresses.

State components. The agents are the advertiser A, router
R, the clients, and the servers, all of which are disjoint. Let
C be the nonempty finite set of clients, and let S be the
nonempty finite set of servers.

Each agent maintains a address set denoting the set of other
agents for which that agent has a address to send messages.
For an agent x, we denote its address set as ADR;. An
agent x can send messages to an agent y only if y € ADR,.
The recipient of a message does not necessarily possess the
address of the sender.

Associated with each client is exactly one pseudonym de-
noted pn. for client c¢. Additionally, we have a mapping from
pseudonyms to addresses, f(pn.) = ¢, computable only by
the router. Each agent x also maintains an pseudonym set,
PN, of pseudonyms it possesses.

Now we can define pseudonymity and anonymity in our
model:

e Pseudonymity A client ¢ is pseudonymous to agent
y if and only if z ¢ ADR,.

e Anonymity An agent x is anonymous to agent y if
and only if both z is pseudonymous to y, and if = has
a pseudonym, then pn, ¢ PN,.

The advertiser maintains a set Queries containing pairs of
the form (pne, q) representing the queries it has received
from clients. The queries include both the client ¢’s pseudo-
nym pn. and ¢’s query q.

The router’s state is a set Responses of pairs of the form
(pne, resp), where pn. is a client’s pseudonym returned by
the server, and resp is the server’s response. Additionally,
the router maintains a client’s server groups as a relation
Gc(s) that is true if server s is in client ¢’s server group.
The server group designates the set of servers a client is
permitted to query.

Thus, a system state of the system is the collection of each
agent’s respective address set, each agent’s respective pseu-
donym set, the advertiser’s set of queries, and router’s set
of responses, and the router’s server groups.

Initial state. Initially, the router possesses the addresses of
the clients, and the advertiser possesses the addresses of the
servers. Furthermore, we allow that the addresses of the
advertiser and router are universally known. That is,

e The advertiser’s address set includes itself, the set of
servers, and the router: ADRa = SU{A, R}.

e The router’s address set includes itself, the set of clients
and the advertiser: ADRr = C'U{A, R}.

e For all clients ¢, its address set includes itself, the ad-
vertiser and router: ADR. = {¢, A, R}.

e For all servers s, its address set includes itself, the
advertiser, and router: ADR, = {s, A, R}.

e For each client c, its pseudonym set initially contains
its own pseudonym: PN, = {pn.}. The pseudonym
set of the Router is the set of all clients: PNgr =
{pnc | ¢ € C}. For every other agent z, its pseudonym
set is initially empty: PN, = 0.

e The advertiser’s set of clients’ queries is initially empty:
Queries = ().

e The router’s set of responses is initially empty:
Responses =).

e The router’s server groups G_(—) is initialized to be
some relation on clients and servers.

State transitions. State transitions are events in which one
agents sends a message to another agent, causing the receiv-
ing agent’s state to update. We denote a transition by a
pair (z, Si+1), where x is the agent sending a message and
Sit+1 is the state updated from state S; resulting from the
message being sent. Our notation for a state update is

Si+1 = S; with exp,

where exp is the set of updates carried out. For example,
from state S;, if the next transition is (¢, S;+1), representing
client ¢ sending x its own address and its own pseudonym,
we write

Sit1 = S8; with c € ADR, and pn. € PN,

to show that ¢’s address is now contained in z’s address
set and ¢’s pseudonym is now contained in z’s pseudonym
set. For another example, if ¢ sends its own address and the
address of y to =, we write

Si+1 = S; with {C7 y} C ADR,

All transitions must satisfy the invariant that if state S;+1
is the result of agent x sending a message to agent y, then in
state S;, x must have y’s address: y € ADR,. Transitions
(and hence communication) are modeled asynchronously;
e.g., if x sends a message before y sends a message, x’s mes-
sage may arrive before or after y’s message. State transitions
occur when messages are received, not when it is sent.

Below, we first model nominal transitions, then malicious
transitions.

Nominal transitions. In Section 4, we described six tran-
sitions: (1) a client’s query, (2) the advertiser requesting
a client’s server group, (3) the router responding with the
server group, (4) the advertiser forwarding queries to servers,
(5) the servers responding to queries, and (6) the router
forwarding responses to clients. Of these, we only need to
model transitions (1), (4), and (5) to reason about the pseu-
donymity properties: these transitions are the only ones in
which a pseudonym or an address is transmitted from one
agent to another not already in possession of the pseudo-
nym or address as part of the protocol. (Below, we cover
transitions in which a pseudonym or address is maliciously
sent.)

Transition 1 Client Query: a client ¢ sends a query ¢ to
the advertiser, so the advertiser updates its set of client
queries and pseudonym set: S;y1 = S; with (pne, q) €
Queries and pn. € PNa.

Transition 2 Advertiser Relay: the advertiser forwards a
query to the appropriate servers, causing them to up-
date their set of address pseudonyms: if (pne, q) €
Queries in state .S;, then for each server s such that
Gc(8), Siy1 = S; with pn. € PN;.

Transition 3 Server Response: for a client ¢ and server
s, if ¢’s pseudonym is possessed by s, then s can send
a response to the router, including ¢’s pseudonym: if in
state S; pne € PNs, then S;y1 = S; with (pn., resp) €
Responses.

Malicious transitions. We consider clients and servers to
be untrusted, so they can send messages with malicious in-
tent. We assume the advertiser and router to be trusted, so
they do not generate malicious content, but they may inad-
vertently pass on malicious content sent to them by clients
or servers—for example, if a server encodes? the address of
another agent in its response. Inadvertently malicious mes-
sages sent by the advertiser or router are captured by the
transitions. Furthermore, we do not address issues such as a
server maliciously sending incorrect responses to a query—
we only address transitions that may result in the loss of
privacy or anonymity.

Again, any agent x can send any message to another agent
y (including the advertiser and router) if y € ADR,.

Transition 4 Malicious Address Transfer: We have three
kinds of malicious address transfers: one to cover ma-
licious clients and servers sending addresses to each
other, one to cover the advertiser inadvertently for-
warding addresses to servers, and one to cover the
router inadvertently forwarding addresses to clients.

1. If the sender z is a malicious client or server and
the receiver y is also either a client or server,
then the receiver y’s address set is updated with
any addresses in the sender z’s address set: if in
state S;, M C ADR,, then S;+1 = S; with M C
ADR,.

2. If the sender is the advertiser, then it executes
a malicious address transfer of address z to a
server s only if there exists some query (pnc, q) €
Queries such that z is encoded in gq.

3. If the sender is the router, then it executes a ma-
licious address transfer of address z to a client ¢
only if there exists some response (pns, resp) €
Responses such that z’s address is encoded in
resp.

Transition 5 Malicious Pseudonym Transfer: These are
analogous to the malicious address transfers. Again,
we have three cases:

1. If the sender z is a malicious client or server and
the receiver y is also either a client or server, then
the receiver y’s pseudonym set is updated with
any pseudonyms in the sender x’s pseudonym set:
if in state S;, I C PN,, then S;+1 = S; with I C
PN,.

2. If the sender is the advertiser, then it executes a
malicious pseudonym transfer of pn to a server s
only if there exists some query (pnc, q) € Queries
such that pn. is encoded in q.

3. If the sender is the router, then it executes a ma-
licious pseudonym transfer of pn, to a client ¢
only if there exists some response (pns, resp) €
Responses such that pn. is encoded in resp.

2We leave the notion of encoding an address or pseudonym
uninterpreted. We do not model what constitutes an encod-
ing but only the effects of an encoding.

Transition 6 Malicious Query: a client ¢ updates the ad-
vertiser’s query set with a query (pn., q) such that at
least one of the following hold:

1. the sender uses a pseudonym that is not its own:
pnge # pne (and png € PN.), or

2. the sender encodes either pseudonyms or addresses
in its query: I C PN, and [C q, or M C ADR,
and M Cgq.

Transition 7 Malicious Response: A server s issues a re-
sponse (pn., resp) to the router such that at least one
of the following hold:

1. ¢ made no query to s: in the state, there exists
no (pne, q) € Queries, or

2. s encodes pseudonyms or addresses in the response:
I C PNg; and I C resp, or M C ADR, and
M C resp.

Executions. An execution path of the system is an initial
state Sp followed by a finite sequence of transitions of the
form

(:v1, S1)7 (xg, 52)7 ($n7 Sn)

(Recall that in a transition (x, S), = is the agent that sent
a message and S is the updated state based on the message
sent.)

In our model, executions are monotonic insofar as no tran-
sition reduces the number of elements in an agent’s pseudo-
nym set or address set. Because executions are monotonic,
executing the same transition multiple times does not af-
fect the state; we therefore assume each transition in an
execution path is unique. Let’s consider a brief example of
executing the transition system we have defined.

Example. This example demonstrates an execution path
enabling one malicious client to transfer its address to an-
other client, with the help of a malicious server. Assume cg
and c; are clients, s is a server such that G, (s), and G, (s).
The client ¢ encodes its address in its query, providing it to
the server. Then ¢; makes a query, and in s’s response to
c1’s query, s encodes co’s address.

1. So (initial state)

2. (e, S1), where S1 = Sp with (pne,, q) € Queries, co €
q, and pn., € PN4 (malicious query)

3. (A, S2), where Sy = S; with pn,, € PN and ¢g €
ADR; (advertiser relay)

4. (s, S3), where S3 = Sy with (pne, resp) € Responses
(server response)

5. (c1, Sa), where S4 = S3 with (pn.,, ¢') € Queries and
pne, € PN4 (client query)

6. (A, S5), where S5 = S4 with pn., € PN, (advertiser
relay)

7. (s, Sg), where Sg = S5 with (pne,, resp’) € Responses
and co € resp’ (malicious response)

8. (R, S7), where S; = Sg with ¢ € ADR., (malicious
address transfer)

6. ANONYMITY PROOFS

Below, we formalize and prove the four anonymity properties
stated in Section 3. Our proofs are by induction over the
transitions of our transition system.

We begin by proving anonymity properties about the clients,
Properties 1 and 2. Lemma 1 is a slight generalization of
Property 1, which we will also use in the proof of Property 2.
Property 2 requires two additional lemmas, since it contains
both anonymity and pseudonymity components.

Lemma 1 describes a precondition that must hold in order
for a client to lose its pseudonymity: the client must have
disseminated its own address by encoding it in a query.

LEMMA 1. For all clients ¢ and client or server x, if ¢ €
ADR, and c # z, then ¢ exzecuted a malicious query (pny, q),
for some pn,, such that c € q.

PROOF. More precisely, we show that if ¢ € ADRz and
c # x in state Sy, then in state S; such that i < n, the
advertiser possesses a query (pny, q¢) € Queries, sent by c
such that ¢ € q.

The proof is by induction.

e Initial state: in the initial state, c € ADR, for ¢ # x.

e Induction step: only the malicious address transfer
transition (Transition 4) updates AD R, for all clients
and servers x. Suppose transition (y, Sn+1) s a mali-
cious address transfer, and Sp4+1 = Sp with ¢ € ADR,,
for ¢ # x. For our induction hypothesis, suppose that
in all states S; where i < n, for all clients ¢ and all
clients or servers x, ¢ ¢ ADRy if ¢ # x©. Consider the
cases of the sender y in transition (y, Sp+1):

— Ify is a client, then ¢, © € ADR, in state Sy, so
the result holds trivially by the induction hypoth-
es1s.

— If y is a server, then ¢ € ADR, and the result
holds trivially by the induction hypothesis.

— Ify is the advertiser, then in state Sy, there exists
a query (pny, q) € Queries such that ¢ is encoded
in q. Thus, in state Sy, c is in the address set
of some client c’. If ¢ # ¢, then the result holds
trivially by the induction hypothesis. Otherwise,
c=c, implying our lemma.

— Ify is the router, then c € ADR; for some server
in state Sn, and the result holds trivially by the
induction hypothesis.

Our result follows immediately from the cases. [

Property 1 follows directly from Lemma 1:

THEOREM 1 (CLIENT-SERVER PSEUDONYMITY). For all
clients ¢ and servers s, ¢ ¢ ADRs, unless ¢ executed a ma-
licious query in which it sent its own address.

PRrROOF. The proof is immediate from Lemma 1. [

Lemma 2 is similar to Lemma 1 in that it describes another
precondition that must hold for a client to lose its pseudo-
nymity. In particular, we show that for some client to obtain
another client’s address, some server must have behaved ma-
liciously.

LEMMA 2. For all clients ¢ and ¢, if c € ADR, and
c # ¢, then there exists a server s that evecuted either (1)
a malicious response (pn.s, resp) such that c € resp, or (2)
a malicious address transfer providing c’s address to c’.

PROOF. More precisely, we show that if c € ADR. and
c # ¢ in state Sy, then in state S; such that i < n, there ex-
ists a malicious server s such that either (1) the router pos-
sesses a response (pn., resp) € Responses sent by s such
that ¢ € resp, or (2) s executes a malicious address transfer
Sit1=5; withc€ ADR,.

The proof is by induction.

e Initial state: in the initial state, c € ADR. forc # c'.

e Induction step: only the malicious address transfer
transition (Transition 4) updates ADR., for all clients
c'. Suppose transition (x, Sn+1) is a malicious address
transfer, and Sp+1 = S, with ¢ € ADR. for ¢ # c.
For our induction hypothesis, suppose that in all states
Si where i < n, for all clients ¢ and ¢’, ¢ € ADR. if
c # . Consider the cases of the sender x in transition

(257 Sn+1)~'

— Ifx is a client, then c, ¢ € ADR, in state Sp, so
the result holds trivially by the induction hypoth-
ests.

— If x is a server, then the second disjunct of the
lemma’s consequent holds.

— There are no channels from the advertiser to a
client, so x cannot be a client.

— If x is the router, then the router contains a re-
sponse (pn., resp) such that ¢ € resp, and the
first disjunct of the lemma’s consequent holds.

Our result follows immediately from the cases. [

We must prove one more lemma before proving the client-
client anonymity property (Property 2). So far, we have
only reasoned about client-client pseudonymity—that is, the
conditions under which a client’s address is revealed. We
need to prove Lemma 3, which states the conditions under
which a client’s pseudonym is revealed to another client.

LEMMA 3. For all clients c and ¢, ifc € PN, and c # ¢/,
then either (1) some server s executed a malicious response
(pnes, resp) such that pn. € resp, or (2) ¢ executed a mali-
cious query (pny, q), for some pny, such that c € q.

PRrROOF. More precisely, we show that if ¢ € PN. and
c # c in state Sy, then in state S; such that i < n, either
the router possesses a response (pn., resp) € Responses,
such that pn. € resp, or the advertiser possesses a query
(pny, q) € Queries, sent by c, such that ¢ € q.

The proof is by induction.

e Initial state: in the initial state, c € PN, for c # ¢ .

e Induction step: only the malicious pseudonym trans-
fer transition (Transition 5) updates PN. . Suppose
transition (x, Sp+1) is a malicious pseudonym trans-
fer, and Sp4+1 = S, with ¢ € PN . For our induction
hypothesis, suppose that in all states S; where i < n,
for all clients ¢ and ¢’, ¢ € PN, if c # ¢'. Consider
the cases of the sender x in transition (x, Snt1):

— If x is a client, then ¢’ € ADR, in state Sy, so
by Lemma 1, the second disjunct of our lemma’s
consequent holds.

— If x is a server, then ¢ € ADR, in state Sy,
so also by Lemma 1, the second disjunct of our
lemma’s consequent holds.

— Because there are no channels from the advertiser
to clients, x cannot be the advertiser.

— Ifx is the router, it possesses a malicious response
(pne, resp) € Responses, such that pn. € resp,
so the first disjunct of our lemma’s consequent
holds.

Our result follows immediately from the cases. [

Now we can prove the client’s anonymity property (Prop-
erty 2). We emphasize again that the protocol ensures a
client ¢’s address is not revealed to another client ¢’ unless
both ¢ disseminates its own address and a server dissemi-
nates either ¢’s address or ¢’’s address.

THEOREM 2
cand c', ¢ # ¢ implies both

e ¢c & ADR., unless both (1) ¢ executed a malicious
query (pny, q), for some pny, such that ¢ € q, and (2)
there exists a server s that executed either (a) a ma-
licious response (pny, resp), for some pny, such that
either ¢ € resp or ¢’ € resp or (b) a malicious address
transfer containing either ¢ or c’.

e ¢ & PN., unless either (1) some server s executed a
malicious response (pn.s, resp) such that pn. € resp,
or (2) ¢ executed a malicious query (pny, q), for some
pny, such that c € q.

PROOF. The proof is immediate from Lemmas 1, 2, and 3. [

Now we just have left the anonymity properties for the servers,
Properties 3 and 4. Their proofs are analogous to those for
the clients. We begin by proving Lemma 4, which states a
necessary condition that must hold for a server’s address to
be revealed to a client. The lemma is a slight generalization
of Property 3.

(CLIENT-CLIENT ANONYMITY). For all clients

LEMMA 4. For all servers s and client or server x, if
s € ADR, and s # x, then s executed a malicious response
(pne, resp), for some client c, such that s € resp.

PROOF. More precisely, we show that if s € ADR; and
s # x in state Sy, then in state S; such that i < n, the
router possesses a response (pne, resp) € Responses, sent
by s, such that s € resp.

The proof is by induction.

e Initial state: in the initial state, s ¢ ADR, for s # x.

e Induction step: only the malicious address transfer
transition (Transition 4) updates AD Ry, for all clients
and servers x. Suppose transition (y, Sn+1) is a mali-
cious address transfer, and Sp+1 = S, with s € ADR,
for s # x. For our induction hypothesis, suppose that
in all states S; where i < n, for all servers s and all
clients or servers x, s € ADR, if s # x. Consider the
cases of the sender y in transition (y, Spt1):

— Ify is a client, then s, x € ADR, in state Sy, so
the result holds trivially by the induction hypoth-
ests.

— If y is a server, then s € ADR, and the result
holds trivially by the induction hypothesis.

— Ify is the advertiser, then in state Sy, there exists
some query (pnz, q) € Queries such that s is en-
coded in q. Thus, in state Sy, s is in the address
set of some client, and the result holds trivially by
the induction hypothesis.

— Ify is the router, then there exists some response
(pne, resp) € Responses, for some client c, sent
by some seller s, such that s € resp. If s # s,
then our result holds trivially by the induction hy-
pothesis. Otherwise, the consequent of our lemma
follows.

Our result follows immediately from the cases. [

We can now use the lemma to conclude the proof of Prop-
erty 3:

THEOREM 3 (SERVER-CLIENT PSEUDONYMITY). For all
servers s and clients ¢ and ¢, if s € ADR., then s executed
a malicious response (pnes, resp), such that s € resp.

PRrROOF. The proof is immediate from Lemma 4. [

Our final theorem proves Property 4, that servers remain
anonymous to other servers. To prove this property, we
must prove Lemma 5 stating that for a server’s address to
be disseminated requires both some client and some server
to act maliciously.

LEMMA 5. For all servers s and s', if s € ADRy and
s # s, then there exists a client c that executed either (1) a
malicious query (pns, q), for some png, such that either s €
q, or (2) a malicious address transfer providing s’s address
to s'.

PROOF. More precisely, we show that if s € ADRy and
s # s in state S,, then in state S; such that i < n, there
exists a malicious client ¢ such that either (1) the advertiser
possesses a query (png, resp) € Queries, for some pna, sent
by ¢, such that s € resp, or (2) ¢ executes a malicious ad-
dress transfer S;11 = S; with s € ADR,/.

The proof is by induction.

o Initial state: in the initial state, s ¢ ADR, for s # s'.

e Induction step: only the malicious address transfer
transition (Transition 4) updates ADR, for all clients
s'. Suppose transition (x, Sn+1) is a malicious address
transfer, and Sn+1 = Sn with s € ADR, for s # s'.
For our induction hypothesis, suppose that in all states
S; where i < n, for all servers s and s', s ¢ ADRy/ if
s # s'. Consider the cases of the sender x in transition
(337 Sn+1)-'

— If x is a client, then the second disjunct of our
lemma’s consequent holds.

— If x is a server, then the result follows trivially
from the induction hypothesis.

— If x is the advertiser, then the advertiser contains
a query (pny, q), for some pny, such that s € q,
so the first disjunct of our lemma holds.

— There are no channels from the router to servers,
so x cannot be the router.

Our result follows immediately from the cases. [

Our final anonymity theorem proving Property 4 shows that
for a server’s address to be revealed to another server, both
a client and a server must behave maliciously.

THEOREM 4
s and s', s # s implies both s € ADR,, unless both (1) s
ezecuted a malicious response (pne, resp), for some client c,
such that s € resp, and (2) there ezxists a client ¢ that ex-
ecuted either (a) a malicious query (pna, q), for some png,
such that either s € g, or (b) a malicious address transfer
providing s’s address to s'.

PRrROOF. The theorem follows immediately from Lemmas 4
and 5. [J

7. CONCLUSION

In this conclusion, we address the remaining properties from
Section 3 and then discuss potential extensions and modifi-
cations to the protocol.

Remaining properties. We have proved the anonymity prop-

erties hold in our mathematical model. This leaves the two
privacy properties and the liveness property stated in Sec-
tion 3. Our model does not address the privacy properties or
the liveness property. As discussed in Section 4.3, the Pri-
vacy Property (Property 5), stating that no agent other than

a client and a responding server possesses both a query and
response, holds from the architectural design. Of course, if
either the client or server is compromised or malicious, they
could broadcast query-response pairs to other agents. The
Accessibility Property (Property 6), stating that a client
cannot query a server outside its server access group, also
holds provided the advertiser performs an access check on
each query, and the access control table in the router has
not been modified. Finally, the Delivery Property (Prop-
erty 7) stating that queries are eventually answered. This
property depends on the implementation; as mentioned ear-
lier, its purpose is to prevent the “no-op protocol” (i.e., a
protocol that sends no messages) from vacuously satisfying
the other properties. An implementation must also take
measures to prevent denial-of-service attacks by malicious
clients and servers.

Protocol extensions and modifications. One extension to
the protocol would be for the advertiser or router to have
filtering capabilities. The filters could remove identifying in-
formation that a client or sender includes, either by mistake
or by malicious intent.

Clients are assigned pseudonyms once, allowing a server to
determine its history of transactions with a client. The his-
tory can be used to gain trust without sacrificing pseudo-
nymity [15]. Alternatively, a new pseudonym could be gen-
erated for each client query to maintain stricter anonymity
guarantees.

Finally, the protocol does not address implementation de-
tails concerning how to achieve setup conditions for the
initial state of the protocol. This includes the advertiser
obtaining the addresses of the servers, the router obtain-
ing the addresses of the clients, the clients obtaining their
own pseudonyms, and the router mapping clients to server
groups. Our mathematical model does not address issues
regarding dynamic behavior—e.g., clients arriving or dis-

(SERVER-SERVER ANONYMITY). For all servers appearing. However, if every pseudonym assigned by the

router is unique, we hypothesize the correctness of the pro-
tocol should not be affected.

In conclusion, we have presented a novel protocol to address
anonymity and privacy for federated search. This is the first
such work of which these authors are aware. We believe fed-
erated search to be widespread as data sources become more
diverse, more transient, and users require more personalized
search. We hope this work inspires additional research in
the security of federated search.

Acknowledgments

Adam Wick originally suggested applying this protocol the
author developed to the problem of federated search. Eric
Mertens and Iavor Diatchki provided valuable feedback on
the protocol. Dylan McNamee and Levent Erkok provided
useful feedback on an early draft of this paper.

7]

8]

REFERENCES

G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-molina,
K. Kenthapadi, N. Mishra, R. Motwani, U. Srivastava,
D. Thomas, J. Widom, and Y. Xu. Vision paper:
Enabling privacy for the paranoids. In Proceedings of
VLDB 2004, pages 708-719, 2004.

G. Aggarwal, M. Bawa, P. Ganesan,

H. Garcia-Molina, K. Kenthapadi, R. Motwani,

U. Srivastava, D. Thomas, and Y. Xu. Two can keep a
secret: A distributed architecture for secure database
services. In Conference on Innovative Data Systems
Research (CIDR), pages 186-199, 2005.

R. Clayton, G. Danezis, and M. G. Kuhn. Real world
patterns of failure in anonymity systems. In In
Proceedings of the Workshop on Information Hiding,
pages 230-245, 2001.

R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings of
the 13th USENIX Security Symposium, August 2004.
D. Goldschlag, M. Reed, and P. Syverson. Onion
routing for anonymous and private internet
connections. Communications of the ACM, 42:39-41,
1999.

J. E. Holt, R. W. Bradshaw, K. E. Seamons, and

H. Orman. Hidden credentials. In WPES ’03:
Proceedings of the 2008 ACM workshop on Privacy in
the electronic society, pages 1-8. ACM, 2003.

P. Jacsé. Internet insights - thoughts about federated
searching. In Information Today, page 17. October
2004.

W. Jiang, L. Si, and J. Li. Protecting source privacy
in federated search. In SIGIR ’07: Proceedings of the
80th annual international ACM SIGIR conference on
Research and development in information retrieval
(Poster Session), pages 761-762. ACM, 2007.

B. Neil and L. C. Shields. Hordes: A protocol for
anonymous communication over the internet. ACM
Journal of Computer Security, 2002.

J. R. Rao and P. Rohatgi. Can pseudonymity really
guarantee privacy? In Proceedings of the 9th
conference on USENIX Security Symposium. USENIX
Association, 2000.

J.-F. Raymond. Traffic Analysis: Protocols, Attacks,
Design Issues, and Open Problems. In H. Federrath,
editor, Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in
Anonymity and Unobservability, pages 10-29.
Springer-Verlag, LNCS 2009, July 2000.

M. K. Reiter and A. D. Rubin. Crowds: Anonymity
for web transactions. ACM Transactions on
Information and System Security, 1:66-92, 1998.

R. Sherwood, B. Bhattacharjee, and A. Srinivasan.
P5: A protocol for scalable anonymous
communication. In In IEEE Symposium on Security
and Privacy, pages 5870, 2002.

J. S. Shin and V. D. Gligor. A new privacy-enhanced
matchmaking protocol. In Proceedings of the Network
and Distributed System Security Symposium (NDSS).
The Internet Society.

A. Singh. TrustMe: Anonymous management of trust
relationships in decentralized P2P systems. In In
IEEE International. Conference on Peer-to-Peer

Computing, pages 142—149, 2003.
[16] S. A. Thomas. SSL and TLS essentials securing the
Web. Wiley, 2000.

