
Model Checking for the Practical Verificationist:

A User’s Perspective on SAL

Lee Pike
Galois, Inc.

leepike@galois.com

ABSTRACT
SRI’s Symbolic Analysis Laboratory (SAL) is a high-level
language-interface to a collection of state-of-the-art model
checking tools. SAL contains novel and powerful features,
many of which are not available in other model checkers.
In this experience report, I highlight some of the features I
have particularly found useful, drawing examples from pub-
lished verifications using SAL. In particular, I discuss the
use of higher-order functions in model checking, infinite-
state bounded model checking, compositional specification
and verification, and finally, mechanical theorem prover and
model checker interplay. The purpose of this report is to ex-
pose these features to working verificationists and to demon-
strate how to exploit them effectively.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: [formal meth-
ods, model checking]

1. INTRODUCTION
SRI’s Symbolic Analysis Laboratory (SAL)1 is bad news for
interactive mechanical theorem provers. SAL is so auto-
mated yet expressive that for many of the verification en-
deavors I might have previously used a mechanical theorem
prover, I would now use SAL. The purpose of this brief re-
port is to persuade you to do the same.

To convince the reader, I highlight SAL’s features that are
especially useful or novel from a practitioner’s perspective.
My goals in doing so are (1) to begin a dialogue with other
SAL users regarding how best to exploit the tool, (2) to
show off SAL’s features to verificationists not yet using SAL,
and (3) to provide user feedback to spur innovation in the
dimensions I have found most novel and beneficial, as a user.

1SAL is open source under a GPL license and the tool, doc-
umentation, a user-community wiki, etc. are all available
at http://sal.csl.sri.com.

To appear in the proceedings of Automated Formal Methods
(AFM07), November 2007, Atlanta, Georgia.

With my coauthors, I have had the opportunity to use SAL
in a number of applied verifications [3, 4, 5, 20, 21, 22].2

These works draw from the domains of distributed systems,
fault-tolerant protocols, and asynchronous hardware proto-
cols (the most notable omission is the domain of software,
although the techniques reported are not domain-specific).

Let me also say what are not the intentions of this report.
This report is not a manual or user’s guide; such artifacts
are available from the SAL website (I do, however, strive to
make the report self-contained, even for the reader not ex-
perienced with SAL). Also, I do not compare and contrast
SAL to other model checkers. In particular, I am not claim-
ing that each feature highlighted is unique to SAL, but I do
claim that their combination in one tool is unique.

The outline for the remainder of this report is as follows. In
Section 2, I briefly overview SAL’s language and toolset. In
Section 3, I describe how higher-order functions, as imple-
mented in SAL, can be used in a model checking context to
simplify the specification of state machines. In Section 4,
I describe SAL’s infinite-state bounded model checker, a
particularly novel and powerful model checker, and I de-
scribe how it can be used to prove safety-properties of real-
time systems with an order of magnitude reduction in proof
steps as compared to mechanical theorem proving. Sec-
tion 5 describes how to judiciously use synchronous and
asynchronous composition to ease the proof effort required
in infinite-state bounded model checking and to decompose
environmental constraints from system specifications. De-
spite the power of SAL, a model checker sometimes is not
enough; in Section 6, I describe cases in which SAL can be ef-
fectively used in tandem with a mechanical theorem prover.
Conclusions are provided in Section 7.

2. SAL OVERVIEW
SAL has a high-level modeling language for specifying state
machines. A state machine is specified by a module. A
module consists of a set of state variables (declared to be
input, output, global, or local) and guarded transitions. A
guarded transitions is enabled if its guard—some expression
that evaluates to a boolean value—is true. Of the enabled
transitions in a state, one is nondeterministically executed.
When a transition is exercised, the next-state values are

2My coathors for these works include Geoffrey Brown, Steve
Johnson, Paul Miner, and Wilfredo Torres-Pomales. The
specifications associated with these works are all available
from http://www.cs.indiana.edu/~lepike.

1

assigned to variables; for example, consider the following
guarded transition:

H --> a’ = a - 1;

b’ = a;

c’ = b’ + 1;

If the guard H holds and the transition is exercised, then in
the next state, the variable a is decremented by one, the
variable b is updated to the previous value of a, and the
variable c is updated to the new value of b, plus one. In
the language of SAL, “;” denotes statement separation, not
sequential composition (thus, variable assignments can be
written in any order). If no variables are updated in a tran-
sition (i.e., H -->), the state idles.

Modules can be composed both synchronously (||) and asyn-
chronously ([]), and composed modules communicate via
shared variables. In a synchronous composition, a transition
from each module is simultaneously applied; a synchronous
composition is deadlocked if either module has no enabled
transition. Furthermore, a syntactic constraint on modules
requires that no two modules update the same variable in
a synchronous composition. In an asynchronous composi-
tion, an enabled transition from exactly one of the modules
is nondeterministically applied.

The language is typed, and predicate sub-types can be de-
clared. Types can be both interpreted and uninterpreted,
and base types include the reals, naturals, and booleans.
Array types, inductive data-types, and tuple types can be
defined. Both interpreted and uninterpreted constants and
functions can be specified.

One of the greatest practical benefits of SAL is that a variety
of useful tools are associated with the same input language.
SAL 3.0 includes a BDD-based model checker, a SAT based
model checker (capable of performing k-induction proofs),
and infinite-state bounded model checker that is integrated
with the Yices satisfiability modulo theories (SMT) solver, a
BDD-based simulator, a BDD-based deadlock checker, and
an automated test-case generator. Other tools can be built
on SAL’s API.

3. HIGHER-ORDER FUNCTIONS
The first feature of SAL I cover is higher-order functions.
What use are higher-order functions in a model checker?
Model checkers are about building state machines, and higher-
order functions are typically associated with “stateless” pro-
gramming. The practicality of higher-order functions is well-
known in the programming and mechanical theorem prov-
ing communities [12], and these advantages apply just as
well to specifying the functional aspects of a model. Fur-
thermore, higher-order functions are just as indispensable
for specifying a model’s stateful aspects; I give two support-
ing examples below. First, I show how sets can be specified
with higher-order functions, allowing the easy specification
of nondeterministic systems. Second, I show how to replace
guarded transitions with higher-order functions; the benefit
of doing so is that it allows one to decompose the envi-
ronment and system specifications or to make assumptions
explicit in proofs.

3.1 Sets and Nondeterminism
The first example is drawn from work done with Geoffrey
Brown to verify real-time physical-layer protocols [3, 5]. Sup-
pose I want to nondeterministically update some value to be
within a parameterized closed interval of real-time (mod-
eled by the real number line). We can define a higher-
order function that takes a minimum and a maximum value
and returns the set of real values in the closed interval be-
tween them. The function has the return type of REAL ->

BOOLEAN, which is the type of a set of real numbers.

timeout(min : REAL

, max : REAL) : [REAL -> BOOLEAN] =

{x : REAL | min <= x

AND x <= max};

I use the identifier ’timeout’ to pay homage to timeout au-
tomata, a theory and corresponding implementation in SAL
developed by Bruno Dutertre and Maria Sorea for specify-
ing and verifying real-time systems using infinite-state k-
induction (see Section 4) [10].

Then, in specifying the guarded transitions in a state ma-
chine, we can simply call the function with specific values
(let H and I be some predicates on the real-time argument).
The IN operator specifies that its first argument, a variable
of some arbitrary type T, nondeterministically takes a value
in its second argument, a set of type T -> BOOLEAN.

H(t) --> t’ IN timeout(1, 2);

[] I(t) --> t’ IN timeout(3, 5);

With higher-order functions, nondeterministic transitions
can be specified succinctly, as above, rather than specify-
ing an interval in each transition.3

3.2 Specifying Transitions
Another benefit of higher-order functions is that they can
be used to “pull” constraints out of the state machine spec-
ification. The motivations for doing this include (1) to sim-
plify specifications, (2) to make assumptions and constraints
more explicit in proofs, and (3) to decompose environmental
constraints from state machine behavior.

To illustrate this idea, we will model check a simple dis-
tributed system built from a set of nodes (of the uninter-
preted type NODE) and a set of one-way channels between
nodes. Furthermore, suppose that the creation of channels
is dynamic, and we wish to make this explicit in our state-
machine model of the system. We might prove properties
like, “If there is a channel pointing from node n to node m,
then there is no channel pointing from m to n,” (i.e., channels
are unidirectional) or “No channel points from a node in one
subset of nodes to a node in another subset of nodes.”

3In this and subsequent specifications, we sometimes state
just the guarded transitions where the remainder of the
guard specification is irrelevant or can be inferred from con-
text.

2

To build the model, we will record the existence of channels
using a NODE by NODE matrix of booleans. For convenience,
we define CHANS to be the type of these matrices:

CHANS : TYPE = ARRAY NODE OF ARRAY NODE OF BOOLEAN;

For some matrix chans of type CHANS, we choose, by con-
vention, to let chans[a][b] mean that there is a channel
pointing from node a to node b.

We define a function newChan that takes two nodes and adds
a channel between them. Indeed, having higher-order func-
tions at our disposal, we define the function in curried form.

newChan(a : NODE, b : NODE) : [CHANS -> CHANS] =

LAMBDA (chans : CHANS) :

chans WITH [a][b] := TRUE;

The function newChan returns a function, and that function
takes a set of channels and updates it with a channel from
a to b.

Now we will build a state machine containing three asyn-
chronous transitions. Two of the transitions introduce new
channels into the system depending on the current system
state, and the final one simply stutters (i.e., maintains the
system state). Let H and I be predicates over sets of chan-
nels (i.e., functions of type CHANS -> BOOLEAN), and let m, n,
o, p, . . . be constant node-identifiers (i.e., constants of type
NODE).

H(chans) --> chans’ = newChan(n, m)

(newChan(p, q)

(chans));

[] I(chans) --> chans’ = newChan(q, n)(chans);

[] ELSE -->

Alternatively, we can write an equivalent specification us-
ing a predicate rather than defining three transitions in
the state machine. First, we define a function that takes
a current channel configuration and returns a set of channel
configurations—i.e., chanSet returns a predicate parameter-
ized by its argument.

chanSet(chans : CHANS) : [CHANS -> BOOLEAN] =

{x : CHANS |

(H(chans) => x = newChan(n, m)

(newChan(p, q)

(chans)))

AND (I(chans) => x = newChan(q, n)(chans))

AND ((NOT I(chans) AND NOT H(chans))

=> FORALL (a, b : NODE) :

x[a][b] = chans[a][b]))};

Now, we can specify the state-machine with the following
single transition:

TRUE --> chans’ IN chanSet(chans);

In all states, chans is updated to be some configuration
of channels from the possible configurations returned by
chanSet(chans). Why might one wish to “pull” transitions
out of a state-machine specification and into a predicate?
One reason would be to decompose the transitions enabled
by the state machine itself from the environmental con-
straints over the machine. For example, suppose that in our
example distributed system, the nodes themselves are not re-
sponsible for creating new channels—some third party does
so. In this case, specifying channel creation in the transi-
tions of the state-machine module itself belies the distinction
between the distributed system and its environment. (See
Section 5.2 for an industrial application of this idea.)

We can even go one step further and remove the constraints
entirely from the model. First, we modify the previous tran-
sition so that it is completely unconstrained: under any con-
dition (i.e., a guard of TRUE), it returns any configuration of
channels. (We also add an auxiliary history variable, the
sole purpose of which is to record the set of channels in the
previous state; we use the variable shortly.

TRUE --> chans’ IN {x : CHANS | TRUE};

chansHist’ = chans

Now suppose we were to prove some property about the
machine; for instance, suppose we wish to prove that all
channels between two nodes are unidirectional. We might
state the theorem as follows.4

Thm : THEOREM system |-

G(FORALL (a,b : NODE) :

chans[a][b] => NOT chans[b][a]);

With a completely under-specified state machine, the the-
orem fails. We are forced to add as an explicit hypothesis
that the state variable chans belongs to the set of channels
chanSet(chansHist) generated in the previous state.5

Thm : THEOREM system |-

LET inv : BOOLEAN = chanSet(chansHist)(chans)

IN W((inv => FORALL (a, b : NODE) :

chans[a][b] => NOT chans[b][a])

, NOT inv);
4This and subsequent SAL theorems, lemmas, etc. are
stated in the language of Linear Temporal Logic (LTL), a
common model-checking logic. In the following theorem, the
G operator states that its argument holds in all states on an
arbitrary path, and LTL formulas are implicitly quantified
over all paths in the system. See the SAL documentation
for more information.
5Due to the semantics of LTL, we cannot simply add
chanSet(chansHist)(chans) (call it inv) as a hypothesis.
This is because false positives propagate over transitions:
there is a path on which inv fails for one or more steps (so
the implication holds), and because the state machine was
under-specified, we can then reach a state in which inv holds
but the unidirectional property fails. To solve this problem,
we use the weak until LTL operator W. Intuitively, W states
that on any arbitrary path, its first argument either holds
forever, or it holds in all states until its second argument
holds, at which point neither need to hold.

3

Being forced to add the hypothesis can be a virtue: the en-
vironmental assumptions now appear in the theorem rather
than being implicit in the state machine. The difference be-
tween assumptions being implicit in the model or explicit
in the theorem is analogous to postulating assumptions as
axioms in a theory or as hypotheses in a proof—a classic
tradeoff made in mechanical theorem proving. SAL allows a
verificationist to have the same freedoms in a model checking
environment.

4. PRACTICAL INVARIANTS
Bounded model checkers have historically been used to find
counterexamples, but they can also be used to prove in-
variants by induction over the state space [7]. SAL sup-
ports k-induction, a generalization of the induction princi-
ple, which can prove some invariants that may not be strictly
inductive. The technique can be applied to both finite-state
and infinite-state systems. In both cases, a bounded model
checker is used. For infinite-state systems, the bounded
model checker is combined with a satisfiability modulo theo-
ries (SMT) solver [8, 26]. For shorthand, I refer to infinite-
state bounded model checking via k-induction as inf-bmc in
the remainder of this paper.

The default SMT solver used by SAL is SRI’s own Yices
solver, which is a SMT solver for the satisfiability of (possi-
bly quantified) formulas containing uninterpreted functions,
real and integer linear arithmetic, arrays, fixed-size bit vec-
tors, recursive datatypes, tuples, records, and lambda ex-
pressions [9]. Yices has regularly been one of the fastest and
most powerful solvers at the annual SMT competitions [2].

4.1 Generalized Induction
To define k-induction, let (S, I, →) be a transition system
where S is a set of states, I ⊆ S is a set of initial states, and
→ is a binary transition relation. If k is a natural number,
then a k-trajectory is a sequence of states s0 → s1 → . . . →
sk (a 0-trajectory is a single state). Let k be a natural
number, and let P be property. The k-induction principle
is then defined as follows:

• Base Case: Show that for each k-trajectory s0 → s1 →
. . . → sk such that s0 ∈ I, P (sj) holds, for 0 ≤ j < k.

• Induction Step: Show that for all k-trajectories s0 →
s1 → . . . → sk, if P (sj) holds for 0 ≤ j < k, then
P (sk) holds.

The principle is equivalent to the usual transition-system
induction principle when k = 1. In SAL, the user specifies
the depth at which to attempt an induction proof, but the
attempt itself is automated.

For example, consider the following state machine defined
in SAL:

counter1 : MODULE =

BEGIN

OUTPUT cnt : INTEGER

OUTPUT b : BOOLEAN

INITIALIZATION

cnt = 0;

b = TRUE;

TRANSITION

[b --> cnt’ = cnt + 2;

b’ = NOT b

[] ELSE --> cnt’ = cnt - 1;

b’ = NOT b

]

END;

The module produces an infinite sequence of integers and
boolean values. It’s behavior is as follows:

cnt : 0 2 1 3 2 4 . . .
b : T F T F T F . . .

Now suppose we wish to prove the following invariant holds:

Cnt1Clm : CLAIM counter1 |- G(cnt >= 0);

While Cnt1Clm is an invariant, it is not inductive (i.e., k =
1). To see why, consider the induction step, and consider (an
unreachable) state in which b is false and cnt is zero. This
state satisfies Cnt1Clm, but in one step, cnt equals −1, and
the invariant fails. However, in any two steps (i.e., k = 2),
the claim holds.

4.2 Disjunctive Invariants
Unfortunately, k-induction is exponential in the size of k, so
at some point, an invariant will likely need to be manually
strengthened. I find the method of building up invariants
using disjunctive invariants [24] to be particularly suited to
SAL. A disjunctive invariant is built up by adding disjuncts,
each of which is an invariant for some system configuration.
In SAL, disjunctive invariants can quickly be built up by
examining the counterexamples returned by SAL in failed
proof attempts. Disjunctive invariants contrast with the tra-
ditional approach of strengthening an invariant by adding
conjuncts. Each conjunct in a traditional invariant needs to
hold in every system configuration, unlike in a disjunctive
invariant.

Consider the following simple example:

counter2 : MODULE =

BEGIN

OUTPUT cnt : INTEGER

OUTPUT b : BOOLEAN

INITIALIZATION

cnt = 0;

b = TRUE;

TRANSITION

[b --> cnt’ = (-1 * cnt) - 1;

b’ = NOT b

[] ELSE --> cnt’ = (-1 * cnt) + 1;

b’ = NOT b

]

END;

4

The module produces an infinite sequence of integers and
boolean values. It’s behavior is as follows:

cnt : 0 −1 2 −3 4 −5 . . .
b : T F T F T F . . .

Suppose we wished to prove an invariant that captures the
behavior of the state machine. Rather than consider every
configuration of the machine, we might begin with an initial
approximation that only characterizes states in which b is
true:

Cnt2Clm : CLAIM counter2 |- G(b AND cnt >= 0);

The conjecture fails. SAL automatically returns a coun-
terexample in which both b is false and cnt is less than
zero. Guided by the counterexample, we can now augment
the original conjecture with a disjunct to characterize the
configuration in which b is false.

Cnt2Clm : CLAIM counter2 |-

G((b AND cnt >= 0)

OR (NOT b AND cnt < 0));

The stated conjecture is proved by SAL. Of course, the ex-
ample presented is quite simple, but the technique allows
one to build up invariants of complex specifications in piece-
meal fashion by considering only one configuration at a time
and allowing SAL’s counterexamples to show remaining con-
figurations.

Using k-induction and disjunctive invariants, Geoffrey Brown
and I were able to dramatically reduce the verification ef-
fort of physical-layer protocols, such as the Biphase Mark
protocol (used in CD-player decoders, Ethernet, and To-
kenring) and the 8N1 protocol (used in UARTs) [5]. The
verification of BMP presented herein results in an orders-
of-magnitude reduction in effort as compared to the proto-
col’s previous formal verifications using mechanical theorem
proving. Our verification required 3 invariants, whereas a
published proof using the mechanical theorem prover PVS
required 37 [28]. Using infinite-bmc induction, proofs of the
3 invariants were completely automated, whereas the PVS
proof initially required some 4000 user-supplied proof direc-
tives, in total. Another proof using PVS is so large that the
tool required 5 hours just to check the manually-generated
proof whereas the SAL proof is generated automatically in
seconds [13]. BMP has also been verified by J. Moore using
Nqthm, a precursor to ACL2, requiring a substantial proof
effort (Moore cites the work as being one of the “best ideas”
of his career) [18].6 Geoffrey and I spent only a couple of
days to obtain our initial results; much more time was spent
generalizing the model and writing up the results.

In Section 5.1, we describe techniques to exploit k-induction
effectively.

6http://www.cs.utexas.edu/users/moore/best-ideas/.

5. COMPOSITION
Similar to SMV [16] and other model checkers, SAL al-
lows state machines to be composed both synchronously and
asynchronously, and a composed state machine may con-
tain both synchronously and asynchronously composed sub-
compositions. For example, supposing that A, B, C, and D

were modules, the following is a valid composition (assum-
ing the modules satisfy the variable-update constraints for
synchronous composition mentioned in Section 2):

E : MODULE = (A [] B) [] (C || D);

The judicious use of synchronous composition can simplify
specifications and ease the verification effort, taking further
advantage of SAL’s tools.

In the following, I first provide an example emphasizing how
to use synchronous composition to reduce the proof effort for
k-induction. The second emphasizes how to judiciously use
composition to decompose environmental constraints from
the state machine itself, allowing for simple specification re-
finements.

5.1 Cheap Induction Proofs
In proofs by k-induction (described in Section 4), k specifies
the length of trajectories considered in the base case and
induction step. With longer trajectories, weaker invariants
can be proved. Unfortunately, the cost of k induction is
exponential in the value of k, since a SAT-solver is used
to unroll the transition relation. Thus, models that reduce
unessential interleavings make k-induction proofs faster.

Let me give a simple example explaining this technique first
and then describe how I used it in an industrial verifica-
tion. Recall the module counter1 from Section 4.1. We will
modify its transitions slightly so that it deadlocks when the
counter is greater than 2 (the sole purpose of which is to
avoid dealing with fairness conditions in the foregoing state-
machine composition):

b AND cnt <= 2 --> cnt’ = cnt + 2;

b’ = NOT b

[] (NOT b) AND cnt <= 2 --> cnt’ = cnt - 1;

b’ = NOT b

The behavior of the generated state machine is as follows:

cnt : 0 2 1 3 (deadlock)
b : T F T F (deadlock)

Now suppose we wish to prove that the cnt variable is always
nonnegative.

cntThm : THEOREM nodes |- G(cnt >= 0);

This property is k-inductive for k = 2 (for the reasons men-
tioned in Section 4.1). Now we are going to compose some
instances of the node module together. SAL provides some

5

convenient syntax for doing this, but first, we must param-
eterize the above module. We being by defining an index
type [1..I] denoting the sequence 1, 2, . . . , I .

I : NATURAL = 5;

INDICES : TYPE = [1..I];

Now we modify the declaration of the node module from

node : MODULE =

BEGIN

...

as above to a module parameterized by indices:

node[i: INDICES]: MODULE =

BEGIN

...

where the remainder of the module declaration is exactly
as presented above. Now we can automatically compose
instances of the module together with the following SAL
declaration (an explanation of the syntax follows):

nodes : MODULE =

WITH OUTPUT cnts : ARRAY INDICES OF INTEGER

(|| (i : INDICES) : RENAME cnt TO cnts[i]

IN node[i]);

The module nodes is the synchronous composition of in-
stances of the node module, one for each index in INDICES.
The nodes module has only one state variable, cnts. This
variable is an array, and its values are taken from the cnt

variables in each module. Thus, cnts[j] is value of cnt

from the jth node module.

We can modify slightly the theorem proved about a single
module to cover all of the modules in the composition:

cntsThm : CLAIM nodes |-

G(FORALL (i : INDICES) : cnts[i] >= 0);

The theorem is proved using k-induction at k = 2. Indeed,
in the synchronous composition, it is proved for k = 2 for
any number of nodes (i.e., values of I). I proved cntsThm

for two through thirty nodes on a PowerBook G4 Mac with
one gigabyte of memory, and the proofs all took about 1-2
seconds.

On the other hand, if we change the synchronous composi-
tion in the nodes module above to an asynchronous compo-
sition,7 the cost increases exponentially. Intuitively, we have

7The theorem cntsThm would have had to include fairness
constraints if the asynchronously-composed modules did not
deadlock after some number of steps.

to increase the value of k to account for the possible inter-
leavings in which each module’s cnt and b variables are up-
dated. For two nodes (I = 2), proving the theorem cntsThm

requires at minimum k = 6. On the same PowerBook, the
proof takes about one second. For I = 3, the proof requires
k = 10, and the proof takes about three and one-half sec-
onds. For I = 4, we require k = 14 and the proof takes just
over 10 minutes; for I = 5, we require k = 18, and I stopped
running the experiment after five hours of computation!

This technique has a practical aspect. To verify a reinte-
gration protocol in SAL using inf-bmc, I used these tech-
niques [21]. A reintegration protocol is a protocol designed
for fault-tolerant distributed systems—in particular, I ver-
ified a reintegration protocol for SPIDER, a time-triggered
fly-by-wire communications bus being designed at NASA
Langley [27]. The protocol increases system survivability by
allowing a node that has suffered a transient fault (i.e., it is
not permanently damaged) to regain state consistent with
the non-faulty nodes and reintegrate with them to deliver
system services.

In the model of the system, I initially began with a highly-
asynchronous model. I realized, however, that much of the
asynchronous behavior could be synchronous without affect-
ing the fidelity of the model. One example is the specifica-
tion of non-faulty nodes (or operational nodes) being ob-
served by the reintegrating node. In this model, their ex-
ecutions are independent of each other, and their order of
execution is not relevant to the verification (we do not care
which operational node executes first, second, etc., but only
that each operational node executes within some window).
Thus, we can update the state variables of each operational
node synchronously. Each maintains a variable ranging over
the reals (its timeout variable—see Section 3.1) denoting at
what real-time it is modeled to execute, but their transitions
occur synchronously.

An anonymous reviewer of this report noted that the tech-
nique appears to be akin to a partial-order reduction [6]
applied to inf-bmc, and asked if such a reduction could be
realized automatically. For the simple example presented, I
believe it would be possible to do so, but as far as I know,
generalizations would be an open research question.

To summarize, while synchronous and asynchronous compo-
sition are not unique to SAL, their impact on k-induction
proofs is a more recent issue. Since k-induction is especially
sensitive to the lengths of trajectories to prove an invariant,
synchronous composition should be employed when possible.

5.2 Environmental Decomposition
Another use of synchronous composition is to decompose the
environment model from the system model. The purpose of
an environmental model is to constrain the behavior of a sys-
tem situated in that environment. In the synchronous com-
position of modules A and B, if either module deadlocks, the
composition A || B deadlocks. Thus, environmental con-
straints can be modeled by having the environment deadlock
the entire system on execution paths outside of the environ-
mental constraints.

6

For example, Geoffrey Brown and I used this approach in the
verification and refinement of physical-layer protocols [3].
Physical-layer protocols are cooperative protocols between
a transmitter and a receiver. The transmitter and receiver
are each hardware devices driven by separate clocks. The
goal of the protocols is to pass a stream of bits from the
transmitter to the receiver. The signal must encode not
only the bits to be passed but the transmitter’s clock signal
so that the receiver can synchronize with the transmitter to
the extent necessary to capture the bits without error.

In the model, we specify three modules: a transmitter (rx),
a receiver (tx), and a constraint module (constraint) simu-
lating the environment. The entire system is defined as the
composition of three modules, where the transmitter and
receiver are asynchronously composed, and the constraint
module is synchronously composed with the entire system:

system : MODULE = (tx [] rx);

systemEnv : MODULE = system || constraint;

In this model, the constraint module separates out from the
system the effects of metastability, a phenomenon in which a
flip flop (i.e., latch) does not settle to a stable value (i.e., “1”
or “0”) within a clock cycle. Metastability can arise when a
signal is asynchronous (in the hardware-domain sense of the
word); that is, it passes between clock regions. One goal of
physical-layer protocols is to ensure that the probability of
metastable behavior is sufficiently low.

In the module rx, the receiver’s behavior is under-specified.
In particular, we do not constrain the conditions under which
metastability may occur. The receiver captures the signal
sent with the boolean variable rbit. The receiver is speci-
fied with a guarded transition like the following (the guard
has been elided) allowing rbit to nondeterministically take
a value of FALSE or TRUE, regardless of the signal sent to it
by the transmitter:

... --> rbit’ IN {FALSE, TRUE};

The under-specified receiver is constrained by its environ-
ment. The constraint module definition is presented below,
with extraneous details (for the purposes of this discussion)
elided.

constraint : MODULE =

...

DEFINITION

stable = NOT changing OR tclk - rclk < TSTABLE;

...

TRANSITION

rclk’ /= rclk AND (stable => rbit’ = tdata) -->

[] ...

In the module, we define the value of the state variable
stable to be a fixed function of other state variables (model-
ing the relationship between the transmitter’s and receiver’s

respective clocks). The variable stable captures the suffi-
cient constraints to prevent metastability. We give a rep-
resentative transition in the constraint module. The transi-
tion’s guard is a conjunction. The first condition holds if the
receiver is making a transition (the guard states that the re-
ciever’s clock is being updated—this is a timeout automata
model, as mentioned in Section 3.1). The second conjunct
enforces a relation between the signal the transmitter sends
(tdata) and the value captured by the receiver (rbit): if
stable holds, then the receiver captures the signal. In other
words, the constraint module prunes the execution paths al-
lowed by the system module alone in which the value of
rbit is completely nondeterministic. Finally, note that be-
cause no state variables follow --> in the transition, no state
variables are updated by the environment.

So what are the benefits of the decomposition? One exam-
ple is refinement. Brown and I wished to refine the physical-
layer protocols we specified. These protocols are real-time
protocols. Unfortunately, we could not easily compose the
real-time specifications with synchronous (i.e., finite-state)
hardware specifications of the transmitter and the receiver.
Doing so would require augmenting the invariant about real-
time behavior with invariants about the synchronous hard-
ware. Ideally, we could decompose the correctness proof of
the protocol with the correctness proofs of the hardware in
the transmitter and receiver, respectively.

Therefore, we developed a more abstract finite-state, discrete-
time model of the protocols. The finite-state model could be
easily composed with the other finite-state specifications of
the synchronous hardware within a single clock domain; i.e.,
the transmitter’s encoder could be composed with a specifi-
cation of the remainder of the transmitter’s hardware, and
the receiver’s decoder could be composed with a specification
of the remainder of the receiver’s hardware. The entire spec-
ification could then be verified using a conventional model
checker, like SAL’s BDD-based model checker.

The goal was to carry out a temporal refinement to prove
that the real-time implementation refined the discrete-time
specification. Using inf-bmc, we verified the necessary re-
finement conditions. These conditions demonstrate that the
implementation is more constrained (i.e., has fewer behav-
iors) than its specification along the lines of Abadi and Lam-
port’s classic refinement approach [1].

In SAL, most of the refinement was “for free.” For example,
recall that a synchronous composition A || B constrains the
possible behaviors of module A and B. Thus, by definition,
A || B is a refinement of A.

Thus, to prove that the real-time model

system : MODULE = (tx [] rx);

systemEnv : MODULE = (tx [] rx) || constraint;

refines the discrete-time model

system_dt : MODULE = tx_dt [] rx_dt;

7

(where dt stands for“discrete time”), we simply had to prove
that tx refines tx_dt and that rx refines rx_dt. We did
not have to refine the constraint module, as one would
intuitively expect, since it is orthogonal to the system itself.

6. THE MARRIAGE OF MODEL CHECK-
ING AND THEOREM PROVING

Sometimes, even the powerful tools provided by SAL are
not enough. In this section, I describe three ways in which I
have used SAL in tandem with a mechanical theorem prover
to take advantage of the best of both worlds. The two ex-
amples include using SAL to discover counterexamples to
failed proof conjectures and verifying a theory of real-time
systems in a mechanical theorem prover, and then using SAL
to prove that an implementation satisfies constraints from
the theory.

6.1 Counterexample Discovery
Sometimes verifications require the full interactive reasoning-
power of mechanical theorem proving. This is the case
when, for example, the specification or proof involves in-
tricate mathematics (that does not fall within a decidable
theory), or the specification is heavily parameterized (e.g.,
proving a distributed protocol correct for an arbitrary num-
ber of nodes).

Although rarely discussed in the literature, most attempts
to prove conjectures using interactive mechanical theorem
proving fail. Only after several iterations of the following
steps

1. attempting to prove a theorem,
2. then discovering the theorem is false or the proof is too

difficult,
3. revising the specification or theorem accordingly,
4. and repeating from Step 1

is a theorem finally proved.

Provided the theorem prover is sound and the conjecture is
not both true and unprovable—a possibility in mathematics—
there are two possible reasons for a failed proof attempt.
First, the conjecture may be true, but the user lacks the
resources or insight to prove it. Second, the conjecture may
be false. It can be difficult to determine which of these is
the case.

Proofs of correctness of algorithms and protocols often in-
volve nested case-analysis. A proof obligation that cannot
be completed is often deep within the proof, where intu-
ition about the system behavior—and what constitutes a
counterexample—wanes. The difficulty is also due to the
nature of mechanical theorem proving. The proof steps is-
sued in such a system are fine-grained. Formal specifications
make explicit much of the detail that is suppressed in infor-
mal models. The detail and formality of the specification
and proof makes the discovery of a counterexample more
difficult.

Paul Miner, Wilfredo Torres-Pomales, and I ran against this
very problem when trying to verify the correctness of a fault-
tolerant protocol for a distributed real-time fault-tolerant

[-1] good?(r_status!1(r!1))
[-2] asymmetric?(b_status!1(G!1))
[-3] IC_DMFA(b_status!1, r_status!1, F!1)
[-4] all_correct_accs?(b_status!1, r_status!1, F!1)

|-------
[1] trusted?(F!1‘BR(r!1)(G!1))
[2] declared?(F!1‘BB(b2!1)(G!1))
{3} (FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b1!1)(p_1)) =>
NOT asymmetric?(r_status!1(p_1))))

&
(FORALL (p_1: below(R)):

(trusted?(F!1‘RB(b2!1)(p_1)) =>
NOT asymmetric?(r_status!1(p_1))))

[4] declared?(F!1‘BB(b1!1)(G!1))
[5] robus_ic(b_status!1, r_status!1,

F!1‘BB(b1!1)(G!1), F!1‘RB(b1!1))
(G!1, msg!1, b1!1)

=
robus_ic(b_status!1, r_status!1,

F!1‘BB(b2!1)(G!1), F!1‘RB(b2!1))
(G!1, msg!1, b2!1)

Figure 1: Unproved PVS Sequent

bus [22]. The protocol we were verifying was an interactive
consistency protocol designed for NASA’s SPIDER architec-
ture [27]. We were verifying the protocol in PVS.

The protocol suffered a bug in its design: the bug occurrs if
two Byzantine faults [15] (allowing unconstrained faulty be-
havior) occur simultaneously. Such an occurrence is a rare
pathological case that escaped our pencil-and-paper analy-
sis.

During the course of formally verifying the protocol, Torres-
Pomales independently discovered the bug through “engi-
neering insight.” Nevertheless, as a case-study in distilling
counterexamples from a failed proof, we decided to press on
in the proof until a single leaf in the proof tree remained. To
give the reader an idea about what the unproven leaf looked
like, we present the PVS sequent if Figure 1 (it is described
in detail elsewhere [22]).

The unproven leaf, however, does not give a good idea as to
whether a counterexample actually exists and if one does,
what that counterexample is. Therefore, building on the
specification and verification of a similar protocol done by
John Rushby in SAL [25], we formulated the unproven leaf
as an LTL conjecture in SAL (Figure 2) stating that in all
states, the unproven leaf from the PVS specification indeed
holds.

Note the similarity between the PVS sequent and the SAL
conjecture afforded by the expressiveness of SAL’s language.
The main difference between the sequent and conjecture are
the use of arrays in SAL rather than curried functions in
PVS and that the number of nodes are fixed in the finite-
state SAL specification.

For a fixed number of nodes, SAL easily returns a concrete
counterexample showing how a state can be reached in which
the theorem is false.

8

counterex : CLAIM system |-
G((pc = 4 AND

r_status[1] = good AND
G_status = asymmetric AND
IC_DMFA(r_status, F_RB, F_BR, G_status) AND
all_correct_accs(r_status, F_RB,

G_status, F_BR, F_BB))
=>

(F_BR[1] = trusted OR
F_BB[2] = declared OR
((FORALL (r: RMUs): F_RB[1][r] = trusted =>

r_status[r] /= asymmetric)
AND
(FORALL (r: RMUs): F_RB[2][r] = trusted =>

r_status[r] /= asymmetric)) OR
F_BB[1] = declared OR
robus_ic[1] = robus_ic[2]));

Figure 2: SAL Formulation in LTL of the Unproved
Sequent

While our case-study highlights the benefit of interactivity
between model checking and theorem proving, further work
is required. The case-study suffers at least the following
shortcomings:

• The approach is too interactive and onerous. It re-
quires manually specifying the protocol and failed con-
jecture in a model checker and manually correcting the
specification in the theorem prover.

• The approach depends on the counterexample being
attainable with instantiated parameters that are small
enough to be model checked. As pointed out by an
anonymous reviewer of this report, that the counterex-
ample was uncovered with small finite values accords
with Daniel Jackson’s “small scope hypothesis” [14].
For the case presented, we could have uncovered the
error through model checking alone, but our goal was
to prove the protocols correct for any instantiation of
the parameters, as we were in fact able to do, once the
protocol was mended [17].

• We would like a more automated approach to verify
the parameterized protocol specification in the first
place than is possible using mechanical theorem prov-
ing alone.

A more automated connection between PVS and SAL would
be a good start to satisfying many of these desiderata.

6.2 Real-Time Schedule Verification
In this final example, I used PVS to specify and verify a
general mathematical theory, and then I used SAL to au-
tomatically prove that various hardware realizations satis-
fied the theory’s constraints. Specifically, I used PVS to ex-
tend a general theory about time-triggered systems. Time-
triggered systems are distributed systems in which the nodes
are independently-clocked but maintain synchrony with one
another. Time-triggered protocols depend on the synchrony

assumption the underlying system provides, and the proto-
cols are often formally verified in an untimed or synchronous
model based on this assumption. An untimed model is sim-
pler than a real-time model, but it abstracts away timing
assumptions that must hold for the model to be valid.

John Rushby developed a theory of time-triggered system in
PVS [23]. The central theorem of that work showed that un-
der certain constraints, a time-triggered system simulates a
synchronous system. Some of the constraints (or axioms, as
they were formulated in PVS) were inconsistent. I mended
these inconsistencies and extended the theory to include a
larger class of time-triggered protocols [20].

A theorem prover was the right tool for this effort, as the the-
ory is axiomatic and its proofs rely on a variety of arithmetic
facts (e.g., properties of floor and ceiling functions, prop-
erties of absolute values, etc.). Furthermore, using PVS,
I could formally prove the theory consistent by showing a
model exists for it using theory interpretations, as imple-
mented in PVS [19].

Once the theory was developed, I wished to prove that spe-
cific hardware schedules satisfied the real-time constraints
of the theory. To do so, I essentially lifted the schedule con-
straints (i.e., the axioms) from the PVS specification into
SAL, given the similarity of the languages. Then I built
a simple state machine that emulated the evolution of the
hardware schedules through the execution of the protocol. I
finally proved theorems stating that in the execution of the
state machine, the constraints are never violated. This ver-
ification also used inf-bmc (Section 4), since the constraints
were real-time constraints.

Synchronous Model

Correctness
Requirements

Protocol A Protocol B

Implements
(proved in PVS)

Satisfies
(proved in PVS)

Time-Triggered Model

Time-Triggered
Timing Requirements

Protocol A Protocol B

Schedule
satisfies

(proved in SAL)

Figure 3: Time-Triggered Protocol Verification
Strategy

The upshot of the approach is a formally-verified connection
between the untimed specification and the hardware realiza-
tion of a time-triggered protocol with respect to its timing
parameters, as shown in Figure 3.

Stepping back, the above approach is an example of the
judicious combination of mechanical theorem proving and
model checking. While theorem proving requires more hu-
man guidance, it was appropriate for formulating and verify-
ing the theory of time-triggered systems because the theory
required substantial mathematical reasoning, and we only
have to develop the theory once. To prove the timing char-
acteristics of the implementations are correct, model check-
ing was appropriate because the proofs can be automated,
and the task must be repeated for each implementation or

9

optimization for a single implementation.

7. CONCLUSION
My goal in this paper was to advocate for and demonstrate
the utility of the advanced features of SAL. I hope this report
serves as a “cookbook” of sorts for the uses of SAL I have
described.

In addition to the features and techniques I have demon-
strated herein, other applications have been developed. As
one example, Grégoire Hamon, Leonardo de Moura, and
John Rushby prototyped a novel automated test-case gener-
ator in SAL [11]. The prototype is a few-dozen line Scheme
program that calls the SAL API for its model checkers.
Still other uses can be found on the SAL wiki at http://

sal-wiki.csl.sri.com/index.php/Main_Page, which should
continue to provide the community with additional SAL suc-
cesses.

Acknowledgments
Many of the best ideas described herein are from my coau-
thors. I particularly thank Geoffrey Brown for his fruitful
collaboration using SAL. I was first inspired to use SAL
from attending Bruno Dutertre’s seminar at the National
Institute of Aerospace. John Rushby’s SAL tutorial [25]
helped me enormously to learn to exploit the language. I
received detailed comments from the workshop’s anonymous
reviewers and from Levent Erkök at Galois, Inc. Much of
the research cited herein was completed while I was a mem-
ber of the NASA Langley Research Center Formal Methods
Group.

8. REFERENCES
[1] M. Abadi and L. Lamport. The existence of refinement

mappings. Theor. Comput. Sci., 82(2):253–284, 1991.

[2] C. Barrett, L. de Moura, and A. Stump. Design and
results of the 2nd satisfiability modulo theories
competition (SMT-COMP 2006). Formal Methods in
System Design, 2007. Accepted June, 2007. To appear.
A preprint is available at http://www.smtcomp.org/.

[3] G. Brown and L. Pike. Temporal refinement using smt
and model checking with an application to
physical-layer protocols. In Proceedings of Formal
Methods and Models for Codesign
(MEMOCODE’2007), pages 171–180. OmniPress,
2007. Available at http://www.cs.indiana.edu/
~lepike/pub_pages/refinement.html.

[4] G. M. Brown and L. Pike. Easy parameterized
verification of biphase mark and 8N1 protocols. In The
Proceedings of the 12th International Conference on
Tools and the Construction of Algorithms
(TACAS’06), pages 58–72, 2006. Available at http://
www.cs.indiana.edu/~lepike/pub_pages/bmp.html.

[5] G. M. Brown and L. Pike. ”easy” parameterized
verificaton of cross domain clock protocols. In Seventh
International Workshop on Designing Correct Circuits
DCC: Participants’ Proceedings, 2006. Satellite Event
of ETAPS. Available at http://www.cs.indiana.edu/
~lepike/pub_pages/dcc.html.

[6] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[7] L. de Moura, S. Owre, H. Rueß, J. Rushby,
N. Shankar, M. Sorea, and A. Tiwari. SAL 2. In
R. Alur and D. Peled, editors, Computer-Aided
Verification, CAV 2004, volume 3114 of Lecture Notes
in Computer Science, pages 496–500, Boston, MA,
July 2004. Springer-Verlag.

[8] L. de Moura, H. Rueß, and M. Sorea. Bounded model
checking and induction: From refutation to
verification. In Computer-Aided Verification, CAV’03,
volume 2725 of LNCS, 2003.

[9] B. Dutertre and L. de Moura. Yices: an SMT solver.
Available at http://yices.csl.sri.com/, August
2006.

[10] B. Dutertre and M. Sorea. Modeling and verification
of a fault-tolerant real-time startup protocol using
calendar automata. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, volume 3253 of
Lecture Notes in Computer Science, pages 199–214,
Grenoble, France, Sept. 2004. Springer-Verlag.
Available at
http://fm.csl.sri.com/doc/abstracts/ftrtft04.

[11] G. Hamon, L. deMoura, and J. Rushby. Generating
efficient test sets with a model checker. In 2nd
International Conference on Software Engineering and
Formal Methods, pages 261–270, Beijing, China, Sept.
2004. IEEE Computer Society.

[12] J. Hughes. Why Functional Programming Matters.
Computer Journal, 32(2):98–107, 1989.

[13] D. V. Hung. Modelling and verification of biphase
mark protocols using PVS. In Proceedings of the
International Conference on Applications of
Concurrency to System Design (CSD’98),
Aizu-wakamatsu, Fukushima, Japan, March 1998,
pages 88–98. IEEE Computer Society Press, 1998.

[14] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, 2006.

[15] Lamport, Shostak, and Pease. The Byzantine generals
problem. ACM Transactions on Programming
Languages and Systems, 4:382–401, July 1982.
Available at http:
//citeseer.nj.nec.com/lamport82byzantine.html.

[16] K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[17] P. Miner, A. Geser, L. Pike, and J. Maddalon. A
unified fault-tolerance protocol. In Y. Lakhnech and
S. Yovine, editors, Formal Techniques, Modeling and
Analysis of Timed and Fault-Tolerant Systems
(FORMATS-FTRTFT), volume 3253 of LNCS, pages
167–182. Springer, 2004. Available at http://www.cs.
indiana.edu/~lepike/pub_pages/unified.html.

[18] J. S. Moore. A formal model of asynchronous
communication and its use in mechanically verifying a
biphase mark protocol. Formal Aspects of Computing,
6(1):60–91, 1994.

[19] S. Owre and N. Shankar. Theory interpretations in
PVS. Technical Report SRI-CSL-01-01, SRI,
International, April 2001. Available at
http://pvs.csl.sri.com/documentation.shtml.

[20] L. Pike. Modeling time-triggered protocols and
verifying their real-time schedules. In Proceedings of
Formal Methods in Computer Aided Design
(FMCAD’07). IEEE, 2007. Available at http://www.

10

cs.indiana.edu/~lepike/pub_pages/fmcad.html. To
appear.

[21] L. Pike and S. D. Johnson. The formal verification of
a reintegration protocol. In EMSOFT ’05: Proceedings
of the 5th ACM international conference on Embedded
software, pages 286–289, New York, NY, USA, 2005.
ACM Press. Available at http://www.cs.indiana.
edu/~lepike/pub_pages/emsoft.html.

[22] L. Pike, P. Miner, and W. Torres. Model checking
failed conjectures in theorem proving: a case study.
Technical Report NASA/TM–2004–213278, NASA
Langley Research Center, November 2004. Available
at http://www.cs.indiana.edu/~lepike/pub_pages/
unproven.html.

[23] J. Rushby. Systematic formal verification for
fault-tolerant time-triggered algorithms. IEEE
Transactions on Software Engineering, 25(5):651–660,
September 1999.

[24] J. Rushby. Verification diagrams revisited: Disjunctive
invariants for easy verification. In E. A. Emerson and
A. P. Sistla, editors, Computer-Aided Verification,
CAV ’2000, volume 1855 of Lecture Notes in
Computer Science, pages 508–520, Chicago, IL, July
2000. Springer-Verlag. Available at http:
//www.csl.sri.com/users/rushby/abstracts/cav00.

[25] J. Rushby. SAL tutorial: Analyzing the fault-tolerant
algorithm OM(1). Technical Report CSL Technical
Note, SRI International, 2004. Available at http:
//www.csl.sri.com/users/rushby/abstracts/om1.

[26] J. Rushby. Harnessing disruptive innovation in formal
verification. In 4th IEEE International Conference on
Software Engineering and Formal Methods (SEFM).
IEEE Computer Society, 2006. Available at http://
www.csl.sri.com/users/rushby/abstracts/sefm06.

[27] W. Torres-Pomales, M. R. Malekpour, and P. Miner.
ROBUS-2: A fault-tolerant broadcast communication
system. Technical Report NASA/TM-2005-213540,
NASA Langley Research Center, 2005.

[28] F. W. Vaandrager and A. L. de Groot. Analysis of a
Biphase Mark Protocol with Uppaal and PVS.
Technical Report NIII-R0455, Nijmegen Institute for
Computing and Information Science, 2004.

11

